
HAL Id: hal-00838528
https://inria.hal.science/hal-00838528

Submitted on 25 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oops! What about a Million Kernel Oopses?
Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

To cite this version:
Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall. Oops! What about a
Million Kernel Oopses?. [Technical Report] RT-0436, INRIA. 2013, pp.27. �hal-00838528�

https://inria.hal.science/hal-00838528
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
43

6-
-F

R
+E

N
G

RESEARCH
REPORT
N° 436
June 2013

Project-Teams REGAL and LIP6

Oops! What about a
Million Kernel Oopses?
Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller,
Julia Lawall

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Oops! What about a Million Kernel Oopses?

Lisong Guo∗, Peter Senna Tschudin∗, Kenji Kono†,
Gilles Muller∗, Julia Lawall∗

Project-Teams REGAL and LIP6

Research Report n° 436 — June 2013 — 24 pages

Abstract: When a failure occurs in the Linux kernel, the kernel emits an “oops”, summarizing
the execution context of the failure. Kernel oopses describe real Linux errors, and thus can help
prioritize debugging efforts and motivate the design of tools to improve the reliability of Linux
code. Nevertheless, the information is only meaningful if it is representative and can be interpreted
correctly.
In this paper, we study a repository of kernel oopses collected over 8 months by Red Hat. We
consider the overall features of the data, the degree to which the data reflects other information
about Linux, and the interpretation of features that may be relevant to reliability. We find that
the data correlates well with other information about Linux, but that it suffers from duplicate and
missing information. We furthermore identify some potential pitfalls in studying features such as
the sources of common faults and common failing applications.

Key-words: Linux, kernel oops, debugging

∗ lisong.guo@lip6.fr, peter.senna@lip6.fr, gilles.muller@lip6.fr, julia.lawall@lip6.fr
† kono@ics.keio.ac.jp

Oops ! Que faire d’un Million de Kernel Oopses ?
Résumé : Lorsqu’une défaillance survient dans le noyau de Linux, le noyau émet un rapport de
«oops» qui résume le contexte d’exécution à ce moment. Les «kernel oopses» décrivent des vrais
problèmes de Linux. Ils peut aider à fixer des priorités pour les tâches de mise au point et motiver
le développement d’outils permettant d’améliorer la fiabilité du code de Linux. Néanmoins, les
informations des oops ne sont significatives que si elles sont représentatifs et sont interprétées
correctement.

Dans cet article, nous étudions les kernel oopses mémorisés pendant huit mois par Red Hat.
Nous considérons les caractéristiques générales de ces rapports, la corrélation entre les rapports
et d’autres informations éxtérieures, et l’interprétation des caractéristiques liée à la fiabilité de
Linux. Notre étude montre principalement (i) que les kernel oopses sont corrélés aux informations
extérieures, (ii) les kernel oopses souffrent de problémes de duplication et d’absence de rapports.
Par ailleurs, nous avons identifiés des pièges á éviter dans l’étude des sources des fautes usuelles
et dans les applications fréquement défaillantes.

Mots-clés : Linux, kernel oops, debugging

Oops! What about a Million Kernel Oopses? 3

1 Introduction

Crash report repositories, as are maintained for software such as Windows [1] and Mac OS
X [2], collect crash reports from users as they occur. The data in such repositories thus has the
potential to help developers and software researchers alike identify the important trouble spots in
the software implementation. As a result, such data has been used for tasks such as prioritizing
debugging efforts, detecting the emergence of malware, and monitoring the resurgence of bugs [3].

We consider crash reports in the context of the Linux kernel. Linux is an open-source oper-
ating system that is used in settings ranging from supercomputers to embedded systems. The
critical nature of many of these usage contexts means that it is important to understand and
quickly address the errors in the Linux kernel that are encountered by real users. Between 2007
and 2010, a repository collecting Linux crash reports, commonly known as oops messages, or just
oopses, was maintained under the supervision of kernel.org, the main website for distributing
the Linux kernel source code. However, due to hardware limitations, that data was difficult to
access, and we are not aware of any systematic study of Linux kernel oopses that was made at
that time. That data furthermore now appears to be lost, due to unavailability of the underlying
database.

Since September 2012, Red Hat has revived the collection of Linux kernel oopses. This
repository reopens the possibility of using kernel crash reports to understand the real errors
encountered by Linux kernel users. Nevertheless, drawing conclusions from a set of crash reports
requires understanding the semantics of the reports themselves and the degree to which the
reports are representative of real errors. The Linux kernel has a number of properties that make
interpreting oops messages challenging and that potentially call into question the repository
data’s representativeness.

The first challenge in interpreting the Linux oops reports is that of code diversity. The Linux
kernel is highly configurable, exists in many versions, and is packaged into many distributions.
Quite different code may be executed by users relying on different hardware architectures, differ-
ent filesystems, different devices, etc. Furthermore, different Linux distributions, such as Debian
and Fedora, have different strategies for choosing a kernel: Debian uses older stable versions,
while Fedora keeps up with the most recent releases. Thus, a user having one kind of hardware
and running one Linux distribution may encounter a quite different set of errors than a user with
another.

The second challenge in interpreting the Linux oops reports is the issue of oops transmission.
For security and performance reasons, the Linux kernel does not itself submit oopses to the
repository, but only causes them to be written to a kernel log file. Different Linux distributions
provide different user-level applications for retrieving oopses from these log files and submitting
them to the repository. Thus, the set of reports that appears in the repository depends on the
strategies taken by these tools, which may include asking user permission.

The third challenge in interpreting the Linux oops reports is the issue of optimization. As
performance-critical, low-level code, the Linux kernel incorporates optimizations and execution
strategies that are not typically found in application code. These optimizations and execution
strategies affect the reliability of the oops data and complicate its interpretation.

In this paper, we study how we can interpret Linux kernel oopses to draw valid conclusions
about Linux kernel reliability. To this end, we perform a study of over 187,000 Linux kernel
oopses, collected in the Red Hat repository between September 2012 and April 2013. We first
study properties of the data itself, then correlate properties of the data with independently
known information about the state of the Linux kernel, and then consider some features of the
data that can be relevant to understanding the kinds of errors encountered by real users and how
these features can be accurately interpreted. The main lessons learned are as follows:

RR n° 436

4 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

• The number of oopses available for different versions varies widely, depending on which
Linux distributions have adopted the version and the strategies used by the associated
oops submission tools.

• The repository may furthermore suffer from duplicate and missing oopses, although the
available information does not permit identifying either accurately.

• Identifying the service causing a kernel crash may require considering the call stack, to
avoid merging oopses triggered in generic utility functions. The call stack, however, may
contain stale information, due to kernel compilation options.

• Analyses of the complete stack must take into account that the kernel maintains multiple
stacks, only one of which reflects the current process’s or interrupt’s execution history.

• Kernel executions may become tainted, indicating the presence of a suspicious action in
the kernel’s execution history. Oopses from tainted kernels may not reflect independent
problems in the kernel code.

The rest of the paper is organized as follows. Section 2 illustrates the key features of a kernel
oops, and the workflow around the generation and transmission of a kernel oops. Section 3 gives
an overview of the data and studies its internal consistency, focusing on the possibility of duplicate
or missing oopses. Section 4 compares properties of the oopses to existing information about the
Linux kernel, including versions and their release date, distributions and their associated versions,
hardware architectures, and the most error-prone services. Then, Section 5 studies some features
of the data that can be relevant to understanding kernel reliability, including the frequency of
different error types, failing functions, reasons for entering the kernel, and the impact of previous
kernel events. Section 6 then describes the threats to the validity of our study. Finally, we
consider related work in Section 7 and conclude in Section 8.

2 Background

We first present the key features of kernel oopses, the code that triggers their generation, and
the workflow that results in their being submitted to the Red Hat repository.

2.1 Key features of a kernel oops

A kernel oops documents the internal state of the Linux kernel at the time of a failure. It is
represented in plain text, and comprises a number of fields. Each field represents one aspect of
the system state in the form of a key-value pair.

Fig. 1 shows a (slightly simplified) sample kernel oops1 from the Red Hat kerneloops repos-
itory. This example illustrates a typical kernel oops generated by x86 code in the case of a
runtime exception. We describe its key features, highlighted in boldface.

Oops description A kernel oops begins with a description of the cause of the oops. Our oops
was caused by NULL pointer dereference (lines 1).

1ID in the kerneloops repository: 5095a67440bfca031f0007e3

Inria

Oops! What about a Million Kernel Oopses? 5

1 BUG: unable to handle kernel NULL pointer dereference at (null)
2 IP: [<c10a1ca1>] anon_vma_link+0x24/0x2b *pde = 00000000
3 Oops: 0002 [#3] SMP
4 last sysfs file: /sys/devices/LNXSYSTM: 00/LNXSYBUS:00 /PNP0C0A:

00/power_supply/BAT1/charge_full
5 Modules linked in: rndis_wlan rndis_host cdc_ether...
6 [last unloaded: scsi_wait_scan]
7 Pid: 2452, comm: gnome-panel Tainted: G D (2.6.32-5-686 #1) Aspire 5920
8 EIP: 0060: [<c10a1ca1>] EFLAGS: 00010246 CPU: 0
9 EIP is at anon_vma_link+0x24/0x2b
10 EAX: f6f84404 EBX: f6f84400 ECX: eb4aa5b4 EDX: 00000000
11 ESI: eb4aa580 EDI: eb4aa5d8 EBP: ef76a5d8 ESP: f61c3eb8
12 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
13 Process gnome-panel (pid: 2452, ti=f61c2000 task=ef4a1100 task.ti=f61c2000)
14 Stack:
15 00000006 ef76a630 c102efe8 d42a7a40 00000000 00000004...
16 Call Trace:
17 [<c102efe8>] ? dup_mm+0x1d5/0x389
18 [<c102fb0c>] ? copy_process+0x91b/0xf2d
19 [<c1030258>] ? do_fork+0x13a/0x2bc
20 [<c10b1f41>] ? fd_install+0x1e/0x3c
21 [<c10b9504>] ? do_pipe_flags+0x8a/0xc8
22 [<c113c603>] ? copy_to_user+0x29/0xf8
23 [<c1001dae>] ? sys_clone+0x21/0x27
24 [<c10030fb>] ? sysenter_do_call+0x12/0x28
25 Code: 02 31 db 89 d8 5b c3 56 89 c6 53 8b 58 3c 85 db...
26 EIP: [<c10a1ca1>] anon_vma_link+0x24/0x2b SS: ESP 0068: f61c3eb8
27 CR2: 0000000000000000
28 ---[end trace 4dbb248fc567ac92]---

Figure 1: A sample kernel oops

Table 1: The information found in common kinds of oopses

Oops type id Version Taint Die cnt Cmd Stack top Call trace general cause
CNTXT_BLOCK × × × × blocking call in a non-blocking context
CNTXT_SCHED × × × × call schedule in an atomic context
CNTXT_CALL × × × × func call violates context dependent rules

PT_MAP × × × × invalid entry in the page mapping table
PT_STATE × × × × inconsistent or invalid page table
BUG_ON × × × × × × × assertion failure
INV_PTR × × × × × × × null pointer/bad page dereference
WARN × × × × × × warning

SOFT_LOCK × × × × × one CPU is stuck
GPF × × × × × × × violation of hardware protection mecha-

nisms

Error site The IP (Instruction Pointer) field indicates the name of the function being executed
at the time of the oops, the binary code offset at which the oops occurred in that function, and the
binary code size of that function. This information is also indicated by the value of the registers

RR n° 436

6 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

EIP for the 32-bit x86 architecture and RIP for the 64-bit x86 architecture. Lines 2, 9 and 26
each show that in our example oops, the error occurred within the function anon_vma_link.

Die counter The Oops field includes information about the die counter, between square brack-
ets, which indicates how many serious errors have occurred since the system was booted. Our
oops is the third such error (line 3).

Process name The comm field indicates the name of the process being executed when the
error occurred. Our oops was generated during the execution of gnome-panel (line 13).

Taint The Tainted field gives a sequence of characters, amounting to a bitmap, recording
whether some events have previously occurred in the kernel execution. In our example, the
Tainted field on line 7 contains ‘G’ indicating that no proprietary module has been loaded into
the kernel and ‘D’ indicating that a kernel oops has previously occurred. The latter is consistent
with the value of the die counter.

Version Following the taint bits, the Tainted field indicates the build version of the Linux
kernel and possibly the machine model, defined by the vendor. Line 7 shows that our oops was
generated by Linux version 2.6.32.

Call trace The call trace contains the list of return pointers into the sequence of nested function
calls that led to the oops. Lines 16-24 show the call trace of our oops.

Oops ID A kernel oops may end with a string of the form –-[end trace XXXX]–-, where
XXXX represents the identifier associated with the kernel oops. The identifier (oops_id) is repre-
sented as a 16-character hexadecimal string. It represents the current value of a global variable
that is initialized to a 64-bit random number on the first oops within a given boot and is then
incremented each time an oops containing an oops id is generated. Line 28 shows the oops id of
our oops.

2.2 Types of Kernel Oopses

While many of the kernel oopses in the Red Hat repository contain the above features, this is not
always the case. Indeed, a kernel oops is generated by ad-hoc print statements in the kernel code.
Thus, the format of an oops can vary for each error type. Furthermore, because oopses include
architecture-specific information, such as register names and memory addresses, the format of a
kernel oops can vary by architecture.

Most of the text in the oops shown in Table 1 is generated by the function __die, shown in
Fig. 2. This function is used for most severe errors. In __die, most of the work is done by the call
to show_registers (line 7), which prints the registers but also prints other information, including
the the call trace. The function __die, however, is not used for all kinds of errors. For example,
when the memory manager detects a page containing invalid flags, it uses bad_page (Fig. 3) to
generate an oops. bad_page does not use show_registers. Instead it uses dump_stack, which
prints the call trace, but not the register information. Finally, a further variation in the oops
structure is introduced by the fact that generation of the call trace is ultimately controlled by
a configuration flag. Table 1 lists a collection of common x86 error types and the features that
may be included in the corresponding oopses.

Inria

Oops! What about a Million Kernel Oopses? 7

1 int kprobes die(const char *str, struct pt regs *regs, long err) {
2 unsigned short ss; unsigned long sp;
3 printk(KERN EMERG "%s: %04lx [#%d] ",str,err&0xffff,++die counter);
4 printk("SMP \n");
5 if (notify die(DIE OOPS, str, regs, err, . . .) == NOTIFY STOP)
6 return 1;
7 show registers(regs);
8 . . . // initialize ss, sp
9 printk(KERN EMERG "EIP: [<%08lx>] ", regs−>ip);
10 print symbol("%s", regs−>ip);
11 printk(" SS:ESP %04x:%08lx\n", ss, sp);
12 return 0;
13 }

Figure 2: Function __die (simplified), called on many kinds of system faults

1 static void bad page(struct page *page) {
2 . . . // code to limit the frequency of reports
3 printk(KERN ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
4 current−>comm, page to pfn(page));
5 printk(KERN ALERT
6 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
7 page, (void *)page−>flags, page count(page),
8 page mapcount(page), page−>mapping, page−>index);
9 dump stack();
10 out:
11 ClearPageBuddy(page);
12 add taint(TAINT BAD PAGE);
13 }

Figure 3: Function bad_page (simplified), called on detecting a bad page

In addition to __die and to ad hoc oops generating functions, such as bad_page, the Linux
kernel also provides the oops-generating macros BUG and WARN, and variants, for generating bug
and warning messages, respectively. These macros are executed for diverse reasons, but generate
their oopses in a fixed format. We designate oopses generated by the WARN macros as warnings
and all others as bugs.

2.3 Workflow around Kernel Oopses

The life cycle of a kernel oops is composed of three phases: generation, collection, and submis-
sion. Our understanding of this workflow is based on our study of the related tools and on our
experiments in which we generated an oops and observed its path to the repository.

The Linux kernel itself is in charge of generation, which is ultimately performed through the
kernel printing function printk. This function writes to the kernel message buffer (/proc/kmsg).
The generated message is then asynchronously fetched by the kernel service ‘klogd’, which outputs
the contents of the buffer to the system logging files. This strategy implies that some oops
messages may be missed or corrupted, if e.g., the message buffer overflows, or if the kernel
crashes before the message is picked up by klogd.

Collection and submission are then taken care of by tool sets that are bundled with various
distributions of Linux. Fedora provides ABRT (the Automatic Bug Reporting Tool) [4], which
collects C/C++ and Python application crash reports, and as well as kernel oopses. ABRT
consists of several services, including abrtd (daemon to detect crashes), abrt-gui and abrt-applet
(GUI for the management of error reports), and abrt-oops (kernel oops parser). Debian and
Ubuntu provide kerneloops [5], which is dedicated to kernel oopses. kerneloops includes the

RR n° 436

8 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

kerneloops daemon, kerneloops-applet and kerneloops-submit, to collect kernel oopses, to ask for
permission to submit them, and to submit them, respectively. Different toolsets have different
strategies for storing, parsing, and submitting kernel oopses. For example, ABRT truncates the
end marker of a kernel oops including the oops_id, while kerneloops preserves this information.

The kernel oops toolsets submit oopses to both the public kerneloops.org [6] repository
and the corresponding repository for each Linux distribution. ABRT first parses kernel oopses
from system logging files, stores them in its local file system, and then asks the user whether
to submit them. It keeps the parsed kernel oopses persistent and hashes the content to detect
duplicates. Kerneloops keeps oopses in memory after parsing, and detects duplicates only within
these known oopses. Kerneloops thus risks submitting duplicate oopses if it is restarted. We
have reproduced this behavior.

3 Properties of the raw data

We now study of the Red Hat kernel oops repository data itself. We first give an overview of the
sources of these kernel oopses, in terms of the associated Linux kernel version and the associated
Linux distribution. We then consider the possibility of duplicate or missing oopses.

Oops origins As shown in Table 1, most oops kinds contain architecture-specific information,
such as register names and memory addresses. We consider only architecture-specific oopses for
the x86 processor family, including both 32-bit and 64-bit x86 architectures, as well as all non
architecture specific oopses. This amounts to over 99% of the available 187,342 oopses.

Fig. 4 shows the number of reports for each Linux kernel version represented in the repository.
The version information is taken from the Tainted field, as described in Section 2.1. The Linux
kernel is made available as a series of subreleases, starting with a series of “rc” (release candidate)
versions before the primary release, followed by the release itself, followed by a series of bug-fixing
releases, having increasing minor release numbers (e.g., 2.6.32.14 or 3.6.4). We do not distinguish
between these subreleases. For 7% of the reports, there is no version information. These reports
are typically associated with oopses for which the entire report is a single line of text indicating
the problem.

Fig. 5 shows the number of reports per Linux distribution, with the Fedora information
broken down into the individual Fedora releases. Oopses contain no specific field for distribution
information. Instead, we try to deduce the distribution from the version information. Some
distributions, such as Fedora or Ubuntu, include a string indicating the distribution explicitly,
with Fedora also including the number of the Fedora release. In other cases, such as Debian and
Suse, we have used other information, such as filename paths or comments related to the version
name found on the Internet. We find that most reports are for Debian or Fedora. This is likely
due to the support in these distributions for kernel oops reporting, via the kerneloops and ABRT
utilities, rather than the popularity or reliability of the distributions themselves.

The number of reports from Fedora varies widely by release, with Fedora 11, 17 and 18 having
the most reports. The number of reports seems to be mainly affected by the strategy taken by
Fedora for collecting and transmitting the reports. For example, whether the oops reporting tool
is installed by default, and whether it asks the user for permission to send a report or whether
reports are sent automatically. Red Hat appears to have experimented with sending more and
more reports automatically in Fedora 17 and 18, i.e., once the new repository was available.
Nevertheless, this effort seems to have been rolled back at the end of the considered period, due
to an outage of the repository between late February and early March 2013.

Inria

Oops! What about a Million Kernel Oopses? 9

2.6.3
2.6.18
2.6.25
2.6.26
2.6.27
2.6.28
2.6.29
2.6.30
2.6.31
2.6.32
2.6.33
2.6.34
2.6.35
2.6.36
2.6.37
2.6.38
2.6.39
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
unknow

n

100

101

102

103

104

105

106

107
20
04

20
06

20
08 20

09

20
10

20
11

20
12

20
13

re
po

rt
s

Figure 4: Number of reports per Linux version (log scale) and release year

debian
fedora
gentoo
kernel.org
suse
ubuntu
unknow

n

0

20,000

40,000

60,000

80,000

re
po

rt
s

fc9
fc10
fc11
fc12
fc13
fc14
fc15
fc16
fc17
fc18
fc19

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

ke
rn
el
oo

ps
-0
.1
0

0.
12

0.
12

ab
rt
-0
.0
.1
1

1.
1.
0

1.
1.
13

2.
0.
2

2.
0.
4.
98
1

2.
0.
10

2.
0.
19

2.
1.
3

re
po

rt
s

Figure 5: Number of reports per Linux distribution and reporting tool used

In some cases, the version information contains only the number of the Linux version, with
no added distribution information. In these cases, we consider that the kernel is not associated
with a particular distribution, and instead has been specifically compiled and installed by the
user from the code at the Linux kernel website, kernel.org. Such oopses may come from more
advanced users.

Duplicate oopses Ideally, each error that occurs in the system would correspond to exactly
one oops in the repository. In practice, however, we find many probable duplicates.

Concretely, we have observed the following kinds of probable duplicates: i. Identical reports.
We detect these by using the SHA1 hash of each original raw message. ii. Reports that are
identical modulo fragments of kernel time stamps or log level markers. Such text is normally
removed by the parsers of the kernel oops tool sets. For duplicate detection, we remove these

RR n° 436

10 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

debian

fedora

gentoo

kernel.org

suse

ubuntu

other

overall

0

20

40

60

80

100

%
of

re
po

rt
s

bug warn unknown subsumed

Figure 6: Duplicate reports per Linux distribution

fc9 fc10 fc11 fc12 fc13 fc14 fc15 fc16 fc17 fc18 fc19
0

20

40

60

80

100

%
of

re
po

rt
s

bug warn unknown subsumed

Figure 7: Duplicate reports per Fedora release

timestamps before computing the SHA1 hash. iii. Finally, a prefix or suffix of a report may be
missing. For duplicate detection, we parse the reports, and consider to be duplicates reports for
which the only difference as compared to another oops is that some fields are missing. We refer
to such reports as being subsumed.

Fig. 6 shows the percentage of reports that may be duplicates of another oops for each Linux
distribution, considering those found to be identical by the SHA1 hash and by subsumption.
Overall, we observe a rate of duplicates of 40%. Furthermore, we observe that although Fedora
has used ABRT, having a sophisticated duplicate detection mechanism, since Fedora 12, many
of the Fedora reports, particularly the warnings, appear to be duplicates. Recall, however, that
ABRT discards the oops id, so we are missing a crucial piece of information that could distinguish
reports. Fig. 8 shows the percentage of oopses with no oops id, for versions having at least 1000
reports. Finally, Debian has the largest number of duplicates, at over 10,000. However, it has
the largest number of reports overall (Fig. 5), and so this number makes just over 12% of its
total.

In summary, Linux distributions that are supposed to result in few duplicates, seem to result
in many, although the oops id is missing so we cannot be sure. And Linux distributions that are
supposed to be likely to result in duplicates do result in duplicates, but at a relatively low rate.
Thus, subsequently, we consider all reports, whether or not they appear to be duplicates. This

Inria

Oops! What about a Million Kernel Oopses? 11

strategy may magnify the importance of some kinds of oopses, in particular warnings, which
are the most common possibly duplicated reports, but it does accurately reflect the kind of
information that is provided to the user of the repository.

Missing oopses It is intrinsically difficult to accurately count the number of missing reports,
because such reports are not present in the repository. Nevertheless, we can estimate their
number from the various counters and historical information that are found in some kinds of
reports (see Table 1). Specifically, we consider i. the oops id, ii. the die counter, and iii. the
taint. The oops id is a random number generated on the first oops id generating oops on each
boot and incremented for each subsequent such oops. Because the initial value is random, gaps
may indicate either missing reports or the starting value for a new boot. Thus, the oops id
itself is not a reliable means of detecting missing reports. The die counter is initially 0, and is
incremented and then printed on several kinds of oopses. When the die counter is greater than
1, there should be a preceding oops in the same boot with the preceding die counter value. Any
such oops id that is not present represents a missing oops. Finally, the taint word in an oops
indicates whether there is at least one previous bug or warning within the current boot. For a
report with either ’D’ (die) or ’W’ (warn) taint and with an oops id, the immediately previous
oops id should also be present. Again, any such oops id that is not present represent a missing
report.

Over all of the versions, we find 7852 oopses where there is an oops id and the die counter
reaches a value greater than 1, and 51% of these where the expected previous die counter is
missing. Furthermore, we find 37265 oopses where there is an oops id and the taint indicates
a previous bug or warning, and 47% of these where the expected previous oops id is missing.
In each case, we require that the version information be present and identical, to try to avoid
confusion between oops ids that are identical but unrelated. These results consistently show a
high rate of missing oopses in cases where multiple oopses occur within a single boot.

While our results suggest a high rate of missing oopses, the validity of this conclusion is called
into question by the small number of oopses taken into account: 4% in the die counter case and
20% in the taint case. The scope of our analysis is indeed constrained by the need to take into
account the oops id. As we have noted, Fedora’s ABRT, used starting with Fedora 12, removes
the oops id from a kernel oops. While only 0.2% of the reports have a die counter greater than
1 but no oops id, 11% have taint indicating a previous bug or warning but no oops id. Thus,
it is impossible to assess missing oopses in these cases. Nevertheless, based on the ratio of the
number of oopses missing according to the taint information to the total number of oopses plus
the missing number, it appears that overall, we are missing at least 9% of the oopses.

The oops id In principle, the problem of detecting duplicate and missing reports could be
resolved if the kernel would associate a unique identifier with each boot, and a counter, analogous
to the die counter, that is incremented on each oops. A step in this direction is already present
with the oops id. Nevertheless, some observations about the oops id reveal challenges that can
be encountered in implementing such a scheme.

To be useful, the proposed boot identifier must be unique. We have observed that the current
oops id is not always unique. In the extreme, the oops ids 4eaa2a86a8e2da22, a7919e7f17c0a727,
and 0000000000000002 occur with 35, 27, and 21 different version strings, respectively. Over-
all, we have 28 such non-unique oops ids. Some may be due to corruption of the oops id
counter. Others may be due to incrementing such a corrupted value; for instance, we also find
0000000000000003, etc., up to 0000000000000008, in decreasing amounts. Still it is possible that
some of these duplicated oops ids result from weaknesses in the random number generator.

RR n° 436

12 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

Figure 8: Percentage of reports without oops ids per Linux version. Version with one star have
at least 1000 reports, while versions with two stars have at least 10,000 reports. This convention
is followed in subsequent figures.

Starting in Linux 3.3,2 the implementation of the Linux random number generator was im-
proved to take advantage of hardware-level random number generation facilities, if available.
Such facilities are available for the x86 architecture. Indeed, after Linux 3.3, our only duplicates,
taking into account the version string, are 0000000000000002 and nearby oops ids, as well as
a7919e7f17c0a727. These may thus represent corrupted oops id values. On the other hand, as
shown in Fig. 8, we also have relatively few oopses for those versions that contain oops ids.

Likewise, for the proposed counter to be useful, the process of incrementing it on each oops
must be well-defined. Currently, in the Linux kernel, neither the oops id nor the die counter is
incremented atomically, meaning that these computations are subject to race conditions. Indeed,
introducing locks could reduce the amount of information available, e.g., if the lock itself were
to become corrupted due to the error.

Finally, in the context of the repository, the boot id and counter have to be transmitted to
the repository reliably. This is not he case of recent Fedora oopses, where ABRT strips the oops
id.

4 Correlation with external information

To help establish the representativeness of the data in the kernel oops repository, we compare
the properties of the oops data to some independent observations about the Linux kernel. In
this, we study the kernel versions and Linux distributions associated with the oops reports, and
the architectures from which the reports originate.

Linux version As shown in Fig. 4, we have at least 1000 reports from Linux kernel versions
ranging from 2.6.25, released in April 2008, to 3.8, released in February 2013. Four versions, from
Linux 3.6 to Linux 3.9, were released in the period covered by our study. For the recent versions,
we might expect that the number of reports would increase when the version is released, then
remain stable for the period in which it is the most recent version, and then finally decrease when
a new release appears. Earlier versions are typically used by users who have a need for stability,

2Kernel patch cf833d0b9937874b50ef2867c4e8badfd64948ce

Inria

Oops! What about a Million Kernel Oopses? 13

0

200

400

600

re
po

rt
s
/
da

y

2.6.29 2.6.30

0

200

400

600

800

1,000

re
po

rt
s
/
da

y

2.6.32 3.2

7
Sep

2012

2
O
ct

2012

27
O
ct

2012

21
N
ov

2012

16
D
ec

2012

10
Jan

2013

4
Feb

2013

1
M
ar

2013

26
M
ar

2013

20
A
pr

2013

0

1,000

2,000

3,000

re
po

rt
s
/
da

y

3.6 3.7

Figure 9: Prevalence of reports from selected Linux versions over time (versions for which there
are at least 5000 reports)

rather than new functionality. We might expect the number of reports from such versions to be
fairly stable, but to decrease over a long period of time.

The top two graphs of Fig. 9 show the number of reports per day for the older versions for
which we have the most reports: 2.6.29, 2.6.30, 2.6.32, and 3.2. For these versions, the number
of reports per day is fairly stable, modulo a few spikes and periods in which there are no reports
at all. Excluding the days on which we have no reports, 2.6.29 has on average 39 reports per
day, 2.6.30 has on average 32 reports per day, and 2.6.32 has on average 287 reports per day. In
each case the number of reports per day is relatively constant across the considered time period.
These results substantiate our hypothesis. However, for Linux 3.2, we have only 90 reports per
day, which is fewer than for Linux 2.6.32, even though Linux 3.2 is more recent. Thus, it appears
to be necessary to take into account other factors than just the age of the Linux version.

The bottom graph of Fig. 9 shows the number of reports per day for the recent versions for
which we have the most reports: 3.6 and 3.7. As expected, the number of reports for Linux 3.6

RR n° 436

14 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

increases sharply in early November 2012, shortly after the release of Linux 3.6 at the end of
September 2012, and the number of Linux 3.6 reports starts to decline in late January 2013, as
the number of reports from Linux 3.7, which was released in December 2012, rises. Note that
in each case, reports start to appear in large numbers roughly one month following the release
date. This can be ascribed to the fact that users typically do not adopt each version as it is
release, but wait for the subsequent more stable subreleases, in which essential bug fixes have
been applied.

While versions 3.6 and 3.7 fit the expected pattern, we do not have the same pattern with
Linux 3.8, which was released in mid February 2013, well within the considered period. We have
very few reports for this version, typically 25 or fewer per day. Again, we conclude that other
factors must be involved.

Linux distribution To better understand the reason for the number of reports per version,
we consider also the association of the various Linux versions with the various Linux distribu-
tions (e.g., Fedora, Debian, Ubuntu etc.). Indeed, most users of the Linux kernel use the kernel
provided with their Linux distribution, and upgrade the kernel as the distribution suggests to do
so.

Fig. 10 shows the prevalence of kernel oopses for each Linux kernel and for each Linux
distribution, for those versions for which we have at least 1000 reports. Most versions have most
reports from either Debian or Fedora, but not both. Reports from Linux 2.6.26, 2.6.32, and 3.2
are almost entirely from Debian. Linux 2.6.26 was the kernel of Debian 5.0, released in 2009,
Linux 2.6.32 was the kernel of Debian 6.0, released in Debian 6.0, released in 2011, and Linux 3.2
is the kernel of Debian 7.0, released in 2013. In particular, within the considered time period,
Debian 6.0 was the current “stable” version, used by most Debian users, and Debian 7.0 was
the current “testing” version. This explains the constant, relatively high number of reports for
Linux 2.6.32, observed in Fig. 9, and the constant but lower number of reports for Linux 3.2.
We expect that the number of reports for Linux 3.2 will rise, now that it is used in the current
Debian “stable” version, as of May 2013.

As shown in Fig. 10, many of the versions not used by the Debian releases mostly have
reports from Fedora. Fig. 11 breaks down all of the versions for which we have any report from
Fedora by the rate of the various Fedora releases as compared to the number of Fedora reports
for that version. We find that the earliest Linux version associated with each Fedora release in
the oopses is always the one that was shipped with that Fedora release. For instance, oopses
from Fedora 9 appear with Linux 2.6.25, which is the default kernel of Fedora 9. Furthermore,
we also see how the Linux kernel shipped with a Fedora release changes over time, and then
how one Fedora release is subsumed by the next one. Fedora 9 oopses occur with Linux 2.6.25
through 2.6.27, at which point they are replaced by oopses from Fedora 10. 2.6.27 is indeed the
default kernel of Fedora 10. Thus, the oopses associated with Fedora releases correspond to the
versions associated with those releases.

Hardware architecture Fig. 12 shows the number of bug and warning reports found in the
repository for the 32-bit and 64-bit x86 architectures. We determine the architecture by the size
of instruction addresses in the call trace and the values in the registers, whichever is available.
We furthermore only consider reports for which which a version and error type are available,
representing 91% of the total number of reports. There are few reports for versions 2.6.18 and
3.9, and thus the information for these versions may not be representative.

We expect that the number of users of 32-bit architectures is declining, and thus there should
be fewer reports from such architectures for more recent kernels. Indeed, starting with version
2.6.36, the rate of reports from 32-bit machines is almost always much lower than the rate of

Inria

Oops! What about a Million Kernel Oopses? 15

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

Debian Fedora Gentoo Kernel.org Suse Ubuntu

Figure 10: Prevalence of reports from different distributions for different versions, for which there
are at least 1000 reports (* referred to Fig 8)

2.6.25
2.6.26
2.6.27
2.6.29
2.6.30
2.6.31
2.6.32
2.6.33
2.6.34
2.6.35
2.6.38
3.1

3.3

3.4

3.5

3.6

3.7

3.8

0

20

40

60

80

100

%
of

re
po

rt
s

fc9 fc10 fc11 fc12 fc13 fc14 fc15 fc16 fc17 fc18 fc19

Figure 11: Prevalence of reports from different Fedora distributions for different versions (all
versions for which there is at least one Fedora report are included)

reports from 32-bit machines from versions prior to 2.6.36, particularly in terms of the rate of
reports that represent bugs. Most Linux x86 code is shared between both the 32 and 64-bit
architectures, and so this drop off is not likely to be due to an improvement in the quality of
the 32-bit specific code. Thus, we conclude that the recent releases of Linux have fewer 32-bit
reports simply because the 32-bit architecture has fewer users.

5 Features related to kernel reliability

We now consider how to correctly interpret various features of an oops that may be useful in
assessing kernel reliability.

RR n° 436

16 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

2.6.18
2.6.25
2.6.26
2.6.27
2.6.28
2.6.29
2.6.30
2.6.31
2.6.32
2.6.33
2.6.34
2.6.35
2.6.36
2.6.37
2.6.38
2.6.39
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0

20

40

60

80

100

%
of

re
po

rt
s

32-bug 32-warn 64-bug 64-warn unknown-bug unknown-warn

Figure 12: Prevalence of reports from 32 and 64 bit machines

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

GPF INV_PTR SMP_ID CNTXT_SCHED
PT_MAP PT_STATE SOFT_LOCK WARN

Figure 13: Prevalence of the 8 most common events (bugs or warnings)

Error types Fig. 13 shows the frequency of various bugs and warnings, across the various
versions, for the oopses specifying a version. In every case, warnings make up the largest share of
the oopses. Many of these warnings come from the same functions. Fig. 14 and 15 show that in
some versions, a single function may be the source of over 90% of the warnings, for either the 32-
bit or 64-bit architecture. We furthermore observe that it is useful to distinguish between these
architectures, because some kinds of warnings that are prominent on one architecture are less
common or absent on others. For example, the warning in default_send_IPI_mask_logical is
common on the 32-bit architecture, but the function is not used on the 64-bit architecture.

Call trace top origin Several works on Linux code have identified drivers as a main source
of faults, e.g., based on the results of static analysis [7, 8]. A kernel oops repository provides an
opportunity to determine whether drivers are the main source of errors encountered in practice.
We consider invalid pointer references, a common kind of serious error (Fig. 13), and study the

Inria

Oops! What about a Million Kernel Oopses? 17

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

mark_buffer_dirty (fs) brcms_c_wait_for_tx_completion (drivers)
__mark_inode_dirty (fs) intel_modeset_check_state (drivers)
dev_watchdog (net) default_send_IPI_mask_logical (arch)
i915_gem_set_tiling (drivers) mtrr_trim_uncached_memory (arch)

Figure 14: Top 8 warning-generating functions, 32-bit architecture

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

mark_buffer_dirty (fs) brcms_c_wait_for_tx_completion (drivers)
__mark_inode_dirty (fs) intel_modeset_check_state (drivers)
dev_watchdog (net) ieee80211_rx (net)
cfg80211_roamed (net) iwl_irq_tasklet (drivers)

Figure 15: Top 8 warning-generating functions, 64-bit architecture

RR n° 436

18 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

2.6.25
*

2.6.26
*

2.6.27
*

2.6.29
*

2.6.30
*

2.6.31
*

2.6.32
**

2.6.35
*

2.6.39
*

3.0
*

3.1
*

3.2
**

3.3
*

3.6
**

3.7
**

3.8
*

0

20

40

60

80

100

%
of

re
po

rt
s

block drivers fs kernel lib mm unknown bad address

Figure 16: Top 6 services containing invalid pointer references

service associated with each oops. We approximate the service as the top-level subdirectory
containing the definition of the function in which the invalid reference occurs.

Fig. 16 shows the top 6 services in which invalid pointer references occur. Additionally, there
are a number of cases where the service is unknown because the invalid reference occurs in an
external function, that is not part of the kernel source tree (“unknown”), and where the service is
unknown because the call to the function itself represents the invalid reference (“bad address”).

While driver functions do make up a large percentage of the functions in performing an invalid
pointer reference, such errors occur in other services as well. Notably, in Linux 3.3, 3.6, and 3.7
there are many errors in kernel code. To understand why, we have also studied the names of
the functions in which invalid pointer references most frequently occur. One such function is
the primitive locking function _raw_spin_lock, which is defined in the kernel subdirectory.
Because locking is such a basic functionality of the Linux kernel, it is not likely that the fault is
in the definition of _raw_spin_lock itself, but rather in its caller, which may have attempted to
lock an invalid lock. To identify the service associated with the caller, we search for the name
of the calling function at the top of the call trace. We find that 74% of the failing calls to
_raw_spin_lock come from file system functions.

Correctly using the call trace to find the caller of the crashing function, however, requires
understanding the kernel call trace generation process. As an optimization, the kernel is compiled
such that the stack frames do not contain a frame pointer. This optimization implies that the
kernel is not able to unambiguously identify return pointers on the stack. Instead, it scans the
stack to find addresses that could correspond to an address within a function. For each such
address, it determines whether its position corresponds to the expected offset from its stack base
pointer register. If this property is not satisfied, the pointer is referred to as stale and the name
of the corresponding function is annotated with ? in the call trace field of kernel oops. Stale
pointers are common, and may arise when function pointer arguments are passed via the stack or
when the stack contains uninitialized local variables whose locations coincide with the positions
of previously stored return pointers. It may also occur that the base pointer register does not
correspond to any of the stack positions containing return pointers, and thus the entire call trace
is considered to be stale. The latter phenomenon is illustrated by the call trace in our sample
kernel oops in Fig. 1 (lines 24 to 31).

To address the issue of stale pointers, when consulting the call trace, we find the service

Inria

Oops! What about a Million Kernel Oopses? 19

09
N
ov

2012

19
N
ov

2012

30
N
ov

2012

09
D
ec

2012

20
D
ec

2012

30
D
ec

2012

09
Jan

2013

19
Jan

2013

29
Jan

2013

10
Feb

2013

0

20

40

60

80

100

%
of

re
po

rt
s

disk_clear_events(block) default_send_IPI_mask_logical(arch)
usb_submit_urb(drivers) brcms_c_wait_for_tx_completion(drivers)

Figure 17: Common warnings by day for Linux 3.6

associated with the topmost non-stale pointer, if available. If there is no non-stale pointer, we
fall back on taking the function at the top of the call trace.

Spikes As shown in Fig. 9, there are two significant spikes in the oopses per day for Linux 3.6,
on November 9, 2012 and January 16, 2013. Such spikes can potentially dominate other data and
distort assessments of reliability. As shown in Fig. 13, most of the reports for these versions are
warnings. Thus, we study the frequency of warnings by day for Linux 3.6 to see if the number
of oopses per day has an impact on the frequencies of these warnings.

Fig. 17 shows the rate of warnings from the most common warning-generating functions during
the period in which there are the most oopses for Linux 3.6. While the rate of warnings from the
most common warning-generating functions changes over time, there is no significant difference
between November 9 or January 16 and the surrounding days. Thus, the spikes on these days
affect the number of reports present, but not their relative number, and the information for these
days can be safely combined with the rest.

Trigger action We next consider the action that caused the kernel to be entered, which
provides another perspective on which kernel services are error prone. Actions include those that
are initiated by the kernel, such as booting and creating a kernel thread, those that are initiated
by applications, such as system calls, and those that are initiated by devices, such as interrupts.
To identify the trigger action, we analyze the bottom of the call trace. In doing so, we must
take into account stale pointers, as was described above. But we also must take into account the
particular structure of Linux call traces.

For both 32-bit and 64-bit x86 architectures, Linux manages a linked list of stacks, comprising
a process stack, an interrupt stack, and, on 64-bit x86 architectures, a set of exception stacks.3
For the 32-bit x86 architecture, there is an explicit annotation of an interrupt stack only if both
an interrupt stack and a process stack are present. Thus, there is an ambiguity; if an interrupt
occurs when no process is running in the kernel, then there is only one stack and no delimiter.

3On the 64-bit x86 architecture, a serious interrupt is referred to as an exception.

RR n° 436

20 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

irq32 irq64 process32 process64
0

10

20

30

40

50

60

70

80

90

100

%
of

re
po

rt
s

boot create a kernel thread device hotplug idle interrupt
page fault system call virtualization unknown other

Figure 18: Stack bottoms of interrupt and process stacks

We thus classify a 32-bit call trace containing only a single stack as representing an interrupt
stack if the bottom function of the call trace is an interrupt function, such as common_interrupt
or apic_timer_interrupt. For the 64-bit x86 architecture, interrupt stacks are delimited by
IRQ and EOI (End Of Interrupt) and exception stacks are delimited by the name of the exception
and EOE (End Of Exception). There is no ambiguity in this case.

To identify the action that triggered an error, we consider the bottom-most non-stale function
in the current stack, if any, or if there is no non-stale pointer, then the bottom-most stale
function in the current stack. This strategy covers 89% of the reports, excluding those for which
there is no call trace or for which the architecture cannot be determined. We have manually
classified these functions according to what kind of action they represent: system boot, creation
of a kernel thread, the idle process, an interrupt, a page fault, a system call, or support for
virtualization. Fig. 18 shows the results for interrupt and process stacks for the 32-bit and 64-bit
x86 architectures, considering only those functions that occur at least 50 times. We have only
420 occurrences of an exception stack, and none of the stack bottoms satisfied this threshold.

Most of the results are as could be expected: the trigger action for an interrupt stack is
always an interrupt, and the most common trigger action for a process stack is a system call.
We do have a small anomaly, that is not visible in the graph, for 64-bit process stacks. Although
the interrupt stack is in principle unambiguous for the 64-bit x86 architecture, we have over
350 cases where an interrupt function appears at the bottom of what seems to be a 64-bit x86
process stack. All of these instances come from Suse. Indeed, only 5 Suse reports out of the 1139
having a call trace have an interrupt stack delimiter, and thus we conjecture that the Suse oops
reporting tool may eliminate them.

Impact of taint Because the Linux kernel is intended to be a long-running system and be-
cause it must meet stringent performance requirements, it cannot keep available in memory an
unbounded history of its actions. Thus, an oops primarily provides an instantaneous picture of
the state of the kernel. Nevertheless, when certain kinds of events have occurred in the kernel
execution, the kernel may have been left in an unreliable state. Thus, a small amount of his-
torical information is recorded, known as taint, which amounts to a one-word bit map recording
the previous occurrence of various events. The events considered involve the inclusion of suspect
code in the kernel, and the previous occurrence of specific and generic errors. The presence of

Inria

Oops! What about a Million Kernel Oopses? 21

Table 2: Taint types
Loaded code: Specific errors:
P: Proprietary module loaded. M: Machine check exception.
G: No proprietary module loaded. B: System has hit bad_page.
F: Module forcibly loaded. U: Userspace-defined naughtiness.
R: Module forcibly unloaded. A: ACPI table overridden.
C: drivers/staging modules loaded. I: Severe firmware bug.
O: Out-of-tree modules loaded. S: SMP with non-SMP CPU.
Generic errors:
D: Previous die. W: Previous warning.

no G P F R C O M B U A I S D W
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

re
po

rt
s

contents specific errors generic errors

Figure 19: Number of occurrences of individual taint bits

taint can reduce the credibility of an oops as a record of an error in the kernel.
Fig. 19 shows the number of occurrences of the individual taint bits across the reports. Only

reports that have taint information are included, amounting to 93% of the reports. Almost half of
these reports have no taint (label ’no’). For these oopses, there is the greatest likelihood that the
source of the problem is captured in the oops, rather than depending on some previous action.
Of the remainder, two thirds (’G’) do not involve proprietary modules, meaning that maintainers
can reconstruct the execution environment using code that is freely available. Of those that do
not involve proprietary modules, 45% do involve external modules (’O’), implying some extra
work for the maintainer to find the relevant code. Finally, 6% of the reports containing taint
information derive from kernels that include so-called “staging” drivers (’C’). These immature
drivers are integrated into the kernel so that they can keep up with kernel changes as they
mature. The kernels involved may be development kernels. Few of the reports come from kernels
that have previously experienced the specific errors represented by the taint field (’M’ through
’S’); only the numbers of machine check exceptions (’M’) and bad pages (’B’) are non-negligible.
Finally, 6% of the reports containing taint information come from kernels that have previously
experienced a serious error (’D’), and 28% come from kernels that have previously experienced
a warning (’W’).

6 Threats to Validity

The overall goal of our study is to identify the potential threats to validity in using kernel oopses
as an indicator of Linux kernel reliability. Our study itself, however, may suffer from threats to
validity, related to our interpretation of the studied data. Several of the authors have experience
developing and maintaining Linux kernel code [9, 10, 11, 12], we have studied the source code
of the user-level oops-reporting tools, and we have duplicated the process of generation and

RR n° 436

22 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

submission of kernel oopses to the repository. This experience helps ensure the validity of the
analysis.

7 Related Work

Windows Error Reporting (WER) [1, 3] is a post-mortem debugging system that collects and
processes error reports from a billion machines. The primary goal of WER is to help programmers
prioritize and debug the issues reported directly from the end users, which coincides with a
potential use of Linux kernel oopses. WER enables statistics-based debugging, which helps
prioritize debugging effort, find hidden causes, test root cause hypotheses, measure deployment of
solutions, and watch for regressions. Our work addresses how to accurately interpret a repository
of error reports for the Linux kernel. This analysis opens the door for using Linux kernel oopses
in the context of such a debugging system.

Bug reports are another form of artifact that reflect the bugs encountered by real users of a
software system. Jalbert et al. [13] studied the rate of duplicate bug reports within a dataset of
29,000 bug reports from the Mozilla project. Bug reports, however, are different than oopses,
in that bug reports are written by users in free text, making detecting duplicates much more
difficult. The kinds of duplicates are furthermore different in nature than the ones that we have
considered in Section 3. Jalbert et al.’s goal is to detect cases where multiple users encounter
the same problem, while we are interested in detecting cases where a tool has submitted a report
generated by a single error occurrence multiple times.

Seo and Kim use Mozilla crash dumps to study the problem of incomplete bug fixes [14]. The
Mozilla Crash Reporting System groups crash reports based on the name of the crashing function.
Seo and Kim analyze a bug fix proposed for a given crashing point to determine whether the fix
covers all of the collected stack traces that reach that point. A similar study could be carried out
for Linux if the oops call traces can be interpreted correctly. We have highlighted the issues of
stale pointers and multiple stacks (Section 5) that must be taken into account when interpreting
a call trace.

Potential run-time errors in Linux have been studied using fault injection. Gu et al. [15]
performed a series of fault injection experiments on the Linux kernel of version 2.4.20. Their
goal was to analyze and quantify the response of the Linux kernel in various crashing scenarios.
Most recently, Yoshimura et al. [12] did an empirical study on the kernel oopses resulting from
fault injection. Their goal was to quantify the damage that could be incurred at the time of a
kernel oops. These illustrate the potential for using kernel oopses in reliability studies. Our work
opens the door for using kernel oopses generated by real users, rather than oopses generated by
fault injection.

A number of studies have used static analysis to estimate the rate of faults within the source
code of the Linux kernel [7, 8]. The latter study has found that the quality of the Linux kernel
code has improved significantly, e.g., the number of faults per line has dropped, but still, the
Linux kernel is far from bug-free. Thus, the study of Linux kernel oopses will continue to be
relevant.

8 Conclusion

In this paper, we have provided a tour of the Linux kernel oopses available in the recently
established oops repository at Red Hat. Our analysis has revealed the information available in
such a repository, but also the challenges involved in interpreting it. As studies of repositories
such as those of Windows and Mozilla have shown, an oops repository has great potential to

Inria

Oops! What about a Million Kernel Oopses? 23

shed light on the reliability of the Linux kernel, as well as to help study development practices.
We expect that our results will serve as a guideline for the correct interpretation of the results
of future research studies.

Acknowledgement
We would like to thank Anton Arapov for granding us the access to the kernel oops repository.
The experiments carried out in this paper relied heavily on the OCaml parallelization library
Parmap, developed by Danelutto and Di Cosmo [16].

References
[1] Microsoft MSDN. Windows Error Reporting.

[2] Apple Inc., CrashReporter. Technical Report TN2123, Cupertino, CA, 2008.

[3] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols, D. Grant,
G. Loihle, and G. Hunt, “Debugging in the (very) large: ten years of implementation and
experience,” in SOSP, Big Sky, Montana, USA, 2009, pp. 103–116.

[4] Automatic Bug Reporting Tool (ABRT), Fedora.

[5] Kernel Oops Tracker (kerneloops), Ubuntu.

[6] A. Arapov. (2012, Sep.) Kernel Oops Repository.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of operating
systems errors,” in SOSP, Banff, Alberta, Canada, 2001, pp. 73–88.

[8] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller, “Faults in Linux: ten
years later,” in ASPLOS, Newport Beach, CA, USA, Mar. 2011, pp. 305–318.

[9] G. Muller, J. L. Lawall, and H. Duchesne, “A framework for simplifying the development
of kernel schedulers: Design and performance evaluation,” in HASE 2005 - High Assurance
Systems Engineering Conference, Heidelberg, Germany, Oct. 2005, pp. 56–65.

[10] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting and automating col-
lateral evolutions in Linux device drivers,” in EuroSys, Glasgow, Scotland UK, Apr. 2008,
pp. 247–260.

[11] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller, “Hector: Detecting resource-
release omission faults in error-handling code for systems software,” in DSN13, Glasgow,
Scotland UK, Jun. 2013.

[12] T. Yoshimura, H. Yamada, and K. Kono, “Is Linux kernel oops useful or not,” in HotDep.
Hollywood, CA, USA: USENIX Association, Oct. 2012.

[13] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking systems,” in
DSN, Jun. 2008, pp. 52–61.

[14] H. Seo and S. Kim, “Predicting recurring crash stacks,” in ASE, Essen, Germany, 2012, pp.
180–189.

RR n° 436

24 Lisong Guo, Peter Senna Tschudin, Kenji Kono, Gilles Muller, Julia Lawall

[15] W. Gu, Z. Kalbarczyk, K. Ravishankar, and Z. Yang, “Characterization of Linux kernel
behavior under errors,” in DSN, San Francisco, CA, USA, Jun. 2003, pp. 459–468.

[16] M. Danelutto and R. Di Cosmo, “A "minimal disruption" skeleton experiment: Seamless
map & reduce embedding in ocaml,” Procedia CS, vol. 9, pp. 1837–1846, 2012.

Inria

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Key features of a kernel oops
	Types of Kernel Oopses
	Workflow around Kernel Oopses

	Properties of the raw data
	Correlation with external information
	Features related to kernel reliability
	Threats to Validity
	Related Work
	Conclusion

