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ABSTRACT

In this paper we introduce a simple and fast method for realtime

recognition of multiple pitches produced by multiple musical in-

struments. Our proposed method is based on two important facts:

(1) that timbral information of any instrument is pitch-dependant

and (2) that the modulation spectrum of the same pitch seems to re-

sult into a persistent representation of the characteristics of the in-

strumental family. Using these basic facts, we construct a learning

algorithm to obtain pitch templates of all possible notes on vari-

ous instruments and then devise an online algorithm to decompose

a realtime audio buffer using the learned templates. The learn-

ing and decomposition proposed here are inspired by non-negative

matrix factorization methods but differ by introduction of an ex-

plicit sparsity control. Our test results show promising recognition

rates for a realtime system on real music recordings. We discuss

further improvements that can be made over the proposed system.

1. INTRODUCTION

We address two important problems often discussed in the music

information retrieval and computer music research communities:

estimating multiple fundamental frequencies of music signals and

musical instrument recognition. Both topics have received sub-

stantial effort from the research community especially in the recent

years for polyphonic sounds (as opposed to solo or monophonic

audio). Both are also important tasks for many applications in-

cluding automatic music transcription, music information retrieval

and computational auditory scene analysis. Another motivation

for this work is the continuing need for live algorithms in com-

puter music where the recognition of musical characteristics of the

signal such as pitches and instruments becomes essential.

The multiple-pitch detection literature contains a wide variety

of methods spanning from pure signal processing models to ma-

chine learning methods for both music and speech signals. For

an excellent overview of different methods for multiple-f0 esti-
mation, we refer the reader to [1]. The main aim of instrument

identification is to determine the number and the names of the

instruments present in a given musical excerpt. Whereas musi-

cal instrument recognition studies mainly deals with solo musical

sounds, the number of those dealing with polyphonic music has

been increasing in the recent years. In [2], Kashino et al. develop a

template-matching method that compares the observed waveform

locally with sum of template waveforms that are phase aligned,

scaled, and filtered adaptively. Similarly [2, 3] use feature match-

ing methods where features computed in zones where several notes

overlap are modified or discarded before stream validation depend-

ing on their type. Other systems directly address the instrument

identification without considering note models or pitch detection.

In [4], Essid et al. introduce an SVMmodel with a hierarchical tax-

onomy of a musical ensemble that can classify possible combina-

tions of instruments played simultaneously. In another approach,

Livshin and Rodet [5] use an extensive set of feature descriptors on

a large set of pitched instrument sound samples, reducing the fea-

ture dimensions with Linear Discriminant Analysis and then clas-

sifying the sounds with a KNN method. More recently Kitahara

et al. [6] have proposed a method for visualizing the instrument

existence probabilities in different frequency regions.

In this paper, we propose a new technique that recognizes mul-

tiple pitches along with their instrument origin in polyphonic mu-

sical audio signals and in realtime; hence, addressing both prob-

lems mentioned earlier. The main difference between our proposed

method and the ones discussed above is the fact that our system is

geared towards real-time recognition and for realistic musical sit-

uations. Our approach is similar to [2] where instrument-based

pitch templates are being matched to the ongoing audio but differs

significantly by the extensive reliance on sparse machine learning

in our approach. Our proposal is inspired by simple observational

facts regarding the nature of musical instruments and consists of

decomposing an ongoing audio signal using previously learned

instrument-dependant pitch templates and sparse non-negative con-

straints. We discuss the basic idea and general architecture of the

algorithm in section 2. The algorithm both in learning and realtime

decomposition phases, uses a recently introduced signal represen-

tation scheme based on modulation spectrum [7]. The key fact

here is that the modulation spectrum of musical instruments seems

to be an important discriminating factor among them. We will dis-

cuss the modulation spectrum and its pertinence to our problem in
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section 3 as the main signal processing front-end for our algorithm.

In section 4 we show how instrument templates are learned. This

learning is once-for-all and is based on Non-negative Matrix Fac-

torization (NMF) algorithm [8]. These learned templates would

be imported to the main algorithm for realtime instrument-based

pitch detection called sparse non-negative decomposition detailed

in section 5. This is followed by some results and discussion on

further improvement envisioned for the proposed system. An ear-

lier version of the machine learning algorithm proposed here has

appeared previously in [9] by the first author and for a different

application. In this paper, we have refined the learning methods

and are introducing it in a more elaborate and different context.

2. GENERAL ARCHITECTURE

As mentioned earlier, we attempt to address both the problem of

multiple-pitch detection and musical instrument recognition. The

motivation behind this mix is the simple fact that for each given

musical instrument, the timbral profiles vary along different pitches

or notes produced by the instrument. Moreover, the timbral pro-

file of a given pitch on a given instrument varies along different

modes of performance for certain instruments (for example play-

ing ordinario or pizzicato on violin family). Given this fact, we

propose learning templates for each sound produced in each in-

strument once and for all, and use these templates during realtime

detection.

Another important motivation behind the proposed algorithm

is the simple intuition that humans tend to use a reconstructive

scheme during detection of multiple pitches or multiple instru-

ments and based on their history of timbral familiarity and music

education. That is to say, in music dictation practices, well-trained

musicians tend to transcribe music by conscious (or unconscious)

addition of familiar pitches produced by musical instruments. The

main idea here is that during detection of musical pitches and in-

struments, there is no direct assumption of independence associ-

ated with familiar patterns used for reconstruction and we rely

more on reconstruction using superpositions.

Considering these facts, we can generally formulate our prob-

lem by non-negative factors. Non-negativity in this case simply

means that we do not subtract pitch patterns in order to determine

the correct combination but rather, we somehow manage to di-

rectly point to the correct combination of patterns that reconstruct

the target by simple linear superposition. Mathematically speak-

ing, given V as a non-negative representational scheme of the re-

altime audio signal in R
N
+ , we would like to achieve

V ≈ WH (1)

whereW is a non-negative R
N×r
+ matrix holding r templates cor-

responding to objects to be detected andH is a simple non-negative

r × 1 vector holding the contribution of each template in W for

reconstructing V . During realtime detection, we are already in
possession of W and we tend to obtain H indicating the presence

of each template in the audio buffer that is arriving online to the

system in V . Given this formulation, there are three main issues to
be addressed:

1. What is an efficient and pertinent representation for V ?

2. How to learn templates inW using this representation?

3. And how to obtain an acceptable result inH in realtime?

We will give a general overview of the three questions above

in the following subsections and present algorithmic descriptions

in the coming sections.

2.1. Representational Front-end

Any representational front-end chosen for the formulation above,

should at least meet two important properties: (1) obviously it

should have enough information for discrimination between in-

struments, and (2) due to the non-negative formulation in equa-

tion 1 it should preserve itself when multiple instruments are present

at least to a good extent and in our case, observe superposition of

different instruments.

Dubnov et al. have shown in [10] that phase coupling is an

important characteristic of a sustained portion of sound of individ-

ual musical instruments and show results obtained for various in-

struments observing consistencies in phase coupling templates for

at least flute and cello. Furthermore, they note that the statistical

properties of a signal due to phase variation can not be easily re-

vealed by standard spectral analysis techniques due to the fact that

second-order statistics and the power spectrum are phase blind. In

their proposal they use a quadratic phase coupling method using

higher-order statistics to obtain the phase coupling representation.

Using additive sinusoidal analysis, their method is highly sensitive

to the fundamental frequencies of the sound itself.

The representational front-end we propose in this paper is in-

spired by findings in [10] as an indirect but efficient method to

represent spectral modulations of the signal, also capable of rep-

resenting pitch information. We will detail this representational

scheme in section 3.

2.2. Sparsity of the solution

Equation 1 simply assumes a linear combination of the previously

learned templates with non-negative coefficients for reconstruction

of V or learning H . The price to pay for this simplicity is of
course solving for the correct results in H where there are many

possible combinations of templates that might achieve a given er-

ror criterion. This issue becomes even more important if there is

no mathematical independence between the basis stored in W as

templates. This is a major difficulty with non-negative constraint

problem solving. More specifically, for our problem, harmonic re-

lations between pitches of an instrument and among instruments

themselves always lead to various approximate solutions for H
and leading to the famous octave errors and more.

To overcome this problem, we use the strong assumption that

the correct solution for a given spectrum (in V ) uses a minimum of
templates in W , or in other words, the solution has the minimum

number of non-zero elements in H . This assumption is hard to
verify for every music instrument and highly depends on the tem-

plate representations in W , but is easily imaginable as harmonic

structure of a music note can be minimally expressed (in the mean

squared sense) using the original note than a combination of its

octaves and dominant.

Fortunately, this assumption has been heavily studied in the

field of sparse coding. The concept of sparse coding refers to a

representational scheme where only a few units out of a large pop-

ulation are effectively used to represent typical data vectors [11].

In section 5 we propose a technique to control sparsity in a non-

negative constraint problem.
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3. MODULATION SPECTRUM

For non-stationary signal classification, features are traditionally

extracted from a time-shifted, yet short data window. For instru-

ment classification, these short-term features do not efficiently cap-

ture or represent longer term signal variations important for the

given task and can barely represent important discriminative char-

acteristics such as spectral envelope or phase coupling for musical

instrument recognition. Sukittanon et al. in [7] propose a mod-

ulation spectrum representation that not only contains short-term

information about the signal, but also provides long-term informa-

tion representing patterns of time variation on the spectrum itself.

In this model, the audio signal is the product of a narrow band-

width, stationary low-pass modulating random process m(t) and
the high-pass carrier, a deterministic function c(t)

x(t) = m(t) · c(t)

For the model to be accurate, m(t) is assumed to be non-negative
and its bandwidth does not overlap with that of c(t). The above
model has been applied to speech and audio coding [12]. Fol-

lowing the observations in section 2.1 and in [10], we study the

feasibility of this representation for our task and hope that m(t)
will provide an informative representation for pitched musical in-

struments.

Modulation Spectrum is based on a two-dimensional repre-

sentation of the acoustic and modulation frequency or a joint fre-

quency representation. Moreover, it does not require prior estimate

of the periodicity of the signal. One possible representation of this

form is Px(η, ω), as a transform in time of a demodulated short-

time spectral estimate where ω and η are acoustic frequency and

modulation frequency respectively. To obtain this representation,

we first use a spectrogram with an appropriately chosen window

length to estimate a joint time-frequency representation of the sig-

nal Px(t, ω). Second, another transform (Fourier in our case) is

applied along the time dimension of the spectrogram to estimate

Px(η, ω). Figure 1 shows the analysis structure undertaken on the
audio (top) to obtain the modulation spectrum (down). A more

rigorous view of Px(η, ω) is the convolution in ω and multiplica-

tion in η of the correlation function of a Fourier transform of the

signal x(t) and the underlying data analysis window w(t), as in
equation 2 [7].

Px(η, ω) = W ∗(ω − η

2
)W (ω +

η

2
) (2)

∗ w X∗(ω − η

2
)X(ω +

η

2
)

Figure 2 shows this representation for one analysis frame of

piano and trumpet both playingA4 (f0 ≈ 440Hz). The time-span
of this analysis corresponds to the length of the first transformN1,

the length of the second transformN2 and the sampling frequency

fs which here are 2048, 32, 44100 leading to a span of almost 1.5
seconds. Frequency modulation resolution, similar to frequency

and time resolution in Fourier transform, relies on the choice of

N2 and both transforms’ overlap sizeH1 andH2.

Interpretation of Px(η, ω) above is straightforward. The val-
ues of Px(η, ω) lying along η = 0 is an estimate of the non-
stationary information about the signal which, in our case, corre-

sponds mostly to harmonic partials in the spectrum. Values along

η > 0 correspond to the degree of spectral modulation. For exam-
ple, in figure 2 almost all partials of the trumpet are being mod-

Figure 1: Analysis structure for obtaining modulation spectrum

(bottom) from audio (top).

ulated whereas for piano (left) modulation decreases for higher

partials.

The non-negativity of the modulation spectrum representation

and its ability to demonstrate phase coupling of instruments as

modulation frequencies makes it a perfect candidate for the repre-

sentation needed for V in our problem definition. Furthermore, At-

las et al. discuss associativity of this representation in [13], leading

to superposition of instrument templates when several are present

in the spectrum. This is demonstrated in figure 3 where modula-

tion spectrum of flute playing A6 alone is represented at left and

modulation spectrum of a recording of piano playing A4 and flute

playing A6 at the same time is represented at the right. Intuitively,

the figure on the right of figure 3 would be a straight superposition

of the left figures in figure 2 and 3 despite their different scaling.
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Modulation Spectrum for Trumpet A4
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Figure 2: Modulation Spectrum of Piano (left) and Trumpet (right)

playing A4, zoomed over 0 − 10KHz acoustic frequencies.
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Modulation Spectrum for Flute A6
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Modulation Spectrum for Flute A6 + Piano A4
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Figure 3: Modulation Spectrum of Flute playing A6 (left) and Pi-

ano (A4) and Flute (A6) playing together (right), zoomed over

0 − 10KHz acoustic frequencies.

Hence, we adopt this two-dimensional joint frequency repre-

sentation as the front-end of our system.

4. LEARNING INSTRUMENT-BASED PITCH

TEMPLATES

As mentioned in section 2, the proposed system solves for the

existence of previously learned instrument-based pitch templates

(stored in W in our notation). Here we discuss how these tem-

plates are learned and resolve the second question in section 2.

As a reminder, W contains modulation structures of all pitches of

each given instrument. For example, for an acoustic piano, matrix

W would contain all 88 notes as 88 different 2-D representations.
To this end, training is done on databases of instrumental sounds

[14, 15] using an off-line training algorithm that learns different

modulation structures of instruments by browsing all sounds given

in the database and stores them in matrixW for future use.

For each audio file in the database, training is an iterative NMF

algorithm [8] with a symmetric kullback-leibler divergence for re-

construction error as shown in Equation 3, where ⊗ is an element

by element multiplication. In this off-line training, V would be

the modulation spectrum of the whole audio file as described in

Section 3 and the learning algorithm factorizes V as V ≈ WH .
The subscript a refers to the ath template and other subscripts in

equation 3 are vector indexes used during learning. In order to ob-

tain precise and discriminative templates, we put some constraints

onW vectors learned during each NMF iteration. For each sound

in the database (or each pitch) we force the algorithm to decom-

pose V into two objects (W has two 2-D elements) where we only

learn one vector and have the other fixed as white non-negative

noise, where only the first one would be stored for the global W .

This method helps the algorithm focus more on the harmonic and

modulation structure of V . Furthermore, we require modulation
frequencies higher that zero (η > 0) at each iteration by a con-
stant factor (Emph in equation 3). The idea behind this factor is
to emphasize non-stationary structure of the signal, important for

between instrument discrimination.

Haµ ←− Emph ⊗ Haµ
i
WiaViµ/(WH)iµ

k
Wka

Wia ←− Emph ⊗ Wia
i
HaµViµ/(WH)iµ

ν
Haν

(3)

When the training reaches an acceptable stopping criteria, the

modulation spectra in the local W will be saved in the global W
and the algorithm continues to the next audio file in the database

until it constructs W for all given sounds in the database. Fig-

ure 4 shows learned modulation spectrum templates for flute and

violin playing A4. During analysis, the parameters are N1 =
2048, N2 = 32, H1 = 1024, and H2 = 16 leading to a time
resolution of ∼ 370ms and modulation upper bound of around
21Hz for a sampling frequency of 44100Hz. Both templates were
trained on audio files in the SOL database [15] and were converged

after slightly more than 100 iterations.
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Figure 4: Learned Modulation Spectrum of Flute A4 (left) and

Violin A4 (right).

Note that using this type of representation for templates has

an important disadvantage. The modulation spectrum described

above provides a large dimension compared to traditional short-

term spectral estimations. To compensate for this, we reduce the

representation by cutting frequencies above 6KHz. This choice
was adopted by trial-and-error and since most useful partial and

modulation information lie below this threshold. Moreover, dur-

ing learning and decomposition, we consider the 2-D modulation

spectrum and templates as images that hence, can be reshaped into

a 1-D vector and back.

5. SPARSE NON-NEGATIVE DECOMPOSITION

We are now in a position to address the third and last issue brought

in section 2. Having V as the modulation spectrum analysis of

real-time audio andW as stored instrument-based pitch templates,

we would like to obtain H such that V ≈ WH . As mentioned
earlier in section 2.2, in order to decompose the spectrum using

learned pitch templates, the solution needs to be sparse. One of the

useful properties of the original NMF [8] is that it usually produces

a sparse representation of the data. However this sparseness is

more of a side-effect than a goal and one can not control the degree

to which the representation is sparse. In this section, we introduce

a modified sparse non-negative decomposition algorithm.

Numerous sparseness measures have been proposed and used

in the past. In general, these measures are mappings from R
n

to R which quantify how much energy of a vector is packed into

a few components. As argued in [16], the choice of sparseness

measure is not a minor detail but has far reaching implications

on the structure of a solution. Very recently, Hoyer has proposed

an NMF with sparseness constraints by projecting results into ℓ1
and ℓ2 norm-spaces [17]. Due to real-time considerations and the

nature of sparseness in audio signals for pitch determination we

propose a modified version of Hoyer’s method described in [17].

The definition commonly given for sparseness is based on the

ℓ0 norm defined as the number of non-zero elements

‖X‖0 =
# {j, xj )= 0}

N
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whereN is the dimension of vectorX . It is a characteristic for the
ℓ0 norm that the magnitude of non-zero elements is ignored. More-

over, this measure is only good for noiseless cases and adding a

very small measurement noise makes completely sparse data com-

pletely non-sparse. A common way to take the noise into account

is to use the ℓε norm defined as follows:

‖X‖0,ε =
# {j, |xj | ≥ ε}

N

where parameter ε depends on the noise variance. In practice, there

is no known way of determining this noise variance which is inde-

pendent of the variance in x. Another problem of this norm is that
it is non-differentiable and thus can not be optimized with gradi-

ent methods. A solution is to approximate the ℓε norm by tanh
function,

g(x) = tanh(|ax|b)

where a and b are positive constants. In order to imitate ℓε norm,

the value of b must be greater than 1.

In addition to the tanh norm, we force an ℓ2 constraint on

the signal. This second constraint is crucial for the normalization

of the results and emphasis on significance of factorization during

note events in contrary to silent states.

In summary, the sparseness measure proposed is based on the

relationship between the ℓε norm and the ℓ2 norm as demonstrated

mathematically in Equation 4.

sparseness(x) =

√
N − tanh(|xi|

2)/ x2
i√

N − 1
(4)

Algorithmic realization of this sparsity constraint is a straightfor-

ward and cheap iterative procedure that projects the results first to

the ℓε hyperplane and then solves for the intersection of this pro-

jection with the hyperplane possessed by ℓ2. Figure 5 shows a

synthetic signal (left) and its sparse projection using the proposed

procedure with ℓε = 0.9 and ℓ2 equal to signal’s energy.
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Figure 5: Synthetic signal before sparse projection (left) and after

(right).

For non-negative sparse decomposition, we use gradient de-

scent updates instead of the original NMF multiplicative updates

(Equation 3) and project each vector in real-time to be non-negative

and have desired ℓ2 and ℓε norms. This projected gradient descent,

adapted from [17], is outlined below. Once again this algorithm

shows the factorization forH when templates are known.

Given V and W , find the non-negative vector H with a given ℓε

norm and ℓ2 norm:

1. Initialize H to random positive matrices or to previous

value ofH in sequence

2. Iterate

(a) SetH = H − µHW T (WH − V )

(b) Set si = hi + (ℓε − tanh(h2
i ))/N

andmi = ℓε/N

(c) Set s = m + α(s − m) where

α =
−(s−m)T m+

√
((s−m)T m)2− (s−m)2( m2

−ℓ2
2
)

(s−m)2

(d) Set negative components of s to zero
and setH = s

Algorithm 1. Sparse Non-negative Matrix Decomposition

Here, step (a) is a negative gradient descent and (b) through (d)

are the projection process on the ℓε and ℓ2 space. In (b) we are

projecting the vector to the ℓε hyperplane and (c) solves a quadratic

equation ensuring that the projection has the desired ℓ2 norm.

For realtime pitch/instrument detection, the ℓ2 norm is pro-

vided by the spectrum energy of the realtime signal (directly cal-

culated from the column in V corresponding to η = 0) and the
ℓε takes values between 0 and 1, is user-specified and can be con-
trolled dynamically. The higher the ℓε, the more sparse is the so-

lution in H . V would be a vector of size N1 × N2 where here

we use N1 = 2048 and N2 = 32 and further reduced (along N1)

to capture modulation structures up to about 6KHz acoustic fre-
quency in a sampling rate of 44.1KHz. Equivalently, W would

be a matrix of SizeOf(V )×m withm as the number of templates

andH would be a vector of sizem.

6. EVALUATION

A clean evaluation of a systems such as the one proposed in this

paper bears practical difficulties. It should be clear by now that we

are attempting towards a multi-instrument transcription of music

signals in form of a piano roll presentation. To evaluate such rep-

resentation one needs an annotated and transcribed music of the

same type to an order of milli-seconds. There has been recent at-

tempts in creating such database but for monophonic music or in

the best case, polyphonic but mono-instrument sounds (such as pi-

ano music). Evaluation procedures that has been undertaken so far

in the literature do not seem to be close to ideal either. In systems

where the authors aim for multiple-instrument identification, the

pitch information is missing [4, 6]. Otherwise, other researchers

aimed at manual mixing of single note recordings of different in-

struments as the basis of their evaluations (for example in [5]).

As mentioned in the beginning of this paper, our system is des-

tined towards real-time applications in computer music systems.

Therefore, it is vital that the evaluation procedure is done on real

music recordings and in real musical situations despite the diffi-

culties of such approach.

In this section we showcase the performance of our system in

two manners: (1) A subjective evaluation where we demonstrate

the real-time output of the system on short musical examples and

compare the results visually with the piano-roll representations of

their scores. (2) An objective evaluation where we evaluate the

algorithm on mixed music recordings and provide detailed results.
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All audio files and results used during evaluation as well as more

fine-tuned and detailed images can be viewed on the project’s web-

site1.

6.1. Subjective Evaluation

Figures 6(a) and 6(b) show the performance of the system (bot-

tom) on a real recording of the first phrase of Beethoven’s Sonata

for Piano and Violin (The spring). A piano roll representation of

the MIDI score of the same phrase is represented in figure 6(a)

where the Piano section has darker color than the violin part. In

the sample result (figure 6(b)), decomposition results are repre-

sented as an image where the Piano and Violin results occupy a

separate space. The Y-axis represents pitches for each instrument

(88 for Piano and 41 for Violin) and are sorted in ascending order
to resemble a piano-roll representation.
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(b) Decomposition Results

Figure 6: Sample result (1): Beethoven’s Spring Violin-Piano

Sonata, 2nd movement, starting bars with score (top) and system

result (bottom).

Similarly, figures 6.1 shows the performance of the system

(bottom) on a real recording of a few bars from Francis Poulenc’s

Sonata for Flute and Piano with the score excerpt shown in a pi-

ano roll presentation on the top. Here again, the flute section is

represented by a lighter color in the piano roll score of figure 7(a).

1http://cosmal.ucsd.edu/arshia/DAFx07/
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(b) Decomposition Results

Figure 7: Sample result (2): Francis Poulenc’s Sonata for Flute

and Piano (excerpts).

The parameters used for training and real-time decomposi-

tions for both examples are as follows: Fs = 44100Hz, N1 =
4096, N2 = 32, H1 = 256, and H2 = 16. During real-time anal-
ysis, these choices leave us with an analysis time-span of almost 3
seconds and response delay of 93 milli-seconds.

For a subjective evaluation, it suffices to compare the score

piano-roll representation with the result images in figures 6(b) and

7(b). For the Piano parts, specially for the Piano and Violin exam-

ple, the low notes are hard to distinguish, especially with the cur-

rent scaling of the paper. However, in both figures the main con-

tour of both scores can be easily detected with the eyes. An impor-

tant remark here is the (weaker) presence of the first instruments

(Violin and Flute) in the accompaniment instrument (Piano). Both

detailed analysis of the results and the confusions are addressed in

the next section.

6.2. Objective Evaluation

Due to the lack of high-resolution annotated and transcribed en-

semble recordings, we tend to mix transcribed and annotated mono-

phonic music for different instruments and evaluate the perfor-

mance of our system on the mixed audio. The advantage of this

approach is that first, we will be dealing with real music recordings

and two, we can easily calculate precisions for instrument/pitch
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detection across instruments since the annotations for each instru-

ment are separate. The disadvantage, of course, is that after-the-

fact mixing of two instruments can not demonstrate eventual spec-

tral fusions common in ensemble recordings (which was not the

case in our subjective evaluation). For this paper, we focus on

two-instrument mixes and address more enhanced evaluations in

another publication.

Audio and annotation files used for this evaluation session are

taken from the Score Following Evaluation Task prepared by the

author for MIREX 2006 [18] and also from a previous experi-

ment reported in [9]. Table 1 shows the specification of Audio
and (aligned) MIDI files used during the evaluation. The MIDI

annotations that come with each audio file, provide aligned score

to audio information. Note that although these annotation were

created automatically and double checked using a high-resolution

analysis software, they are not perfect especially in the case of Pi-

ano because of the difficulty in assigning correct note lengths in a

polyphonic situation and in the presence of the piano pedal. This

issue is quite present for piece number 2 which is usually played
with a high utilization of the sustain pedal.

Table 1: Specification of Audio and Midi used for evaluation

# Piece Name Time Events Instr.

1 Mozart’s Piano Sonata in A major,K.331 9:55 4268 Piano

2 Chopin’s Nocturne no.2, opus 9 3:57 1291 Piano

3 Bach’s Violin Sonata 1, Movement 4 3:40 1622 Violin

4 Bach’s Violin Sonata 2, Movement 4 5:13 2042 Violin

For this evaluation we created two Piano and Violin mixtures

according to their lengths: 1 + 4 and 2 + 3, and ran the system
on both mixtures. Mixing starts at time zero so since the piano

recordings are always longer in our case, we are sure that during

the length of the violin parts there is always activity in both instru-

ments and we are left with some extra piano-only section in the

end. During evaluations, for each note event in the aligned score,

we look at the corresponding frames of the analysis observation

and check if the corresponding template has high activity and if it

is among the top N templates, where N specifies the number of

pitches active at the event frame time taken out of the reference

MIDI. This way, for each event in the score we can have a pre-

cision percentage and the overall mean of these can represent the

algorithm’s precision. Moreover, since we do not have any specific

temporal model and also the ending of notes are usually doubtful

(especially for Piano) we can consider (subjectively) positive de-

tection during at least 80% of a note life to be acceptable and

refine the precision. Cross classification can be computed in the

same way by switching the piano and violin references between

results.

Tables 2 and 3 show confusion matrices out of the above eval-
uation for each mix (where numbers refer to specifications in ta-

ble 1). This confusion matrix is to be read as follows: the row
elements correspond to the results being evaluated and the col-

umn elements correspond to the reference alignment being used

for evaluation. For example, element (1, 2) refers to the percent-
age within which the system has decoded violin elements in the

Piano results. Therefore, it is natural that this confusion matrix

is not symmetrical. On another note, values in the confusion ma-

trices do not add up to 100%. Each row column of the matrix

represents the instances in a predicted instrument class while each

row represents the instances in an actual class. These measures ob-

viously are not representative of all sorts of errors a transcription

system can undergo. For a detailed description of different kinds

of errors in a music transcription problem we refer the reader to

[19]. In what follows we emphasize the precision rate and inner-

instrumental confusion thereof through the results. Finally, note

that precision rates in Tables 2 and 3 correspond to both (multiple)
pitch and instrument classification where the reference for both is

obtained from the aligned MIDI scores to audio.

Results in tables 2 and 3 suggest that the precision rate (diag-
onal values) for the violin parts are significantly higher than the

Piano part. This is mainly due to the fact that the Violin sections

(files 3 and 4 in table 1) are much louder than the piano audio
files and we did not normalize the loudness before mixing to be as

natural as possible. Other reasons for the deficiency of the Piano

pitch/instrument detection comes from the fact that in both pieces

there is an extensive use of sustain pedals which confuses the sys-

tem when trying to match templates for reconstructing the ongoing

modulation structure. Furthermore, lower Piano precision in Table

2 is because the sustain pedal is being used much more in Chopin’s
Nocturne than Mozart’s Sonata, which is stylistically reasonable.

Confusion Matrices

Piano Violin

Piano 45% 9.2%

Violin 17.1% 67.5%

Table 2: Mix of 2 + 3

Piano Violin

Piano 52.8% 17.9%

Violin 24.3% 89.3%

Table 3: Mix of 1 + 4

Overall, given the nature of the problem, that is simultaneous

multiple-pitch and multiple-instrument detection in real-time, the

results are satisfactory and not far from other state-of-the-art sys-

tems cited earlier in section 1.

7. CONCLUSION AND DISCUSSION

In this paper we presented a technique for detection of multiple-

pitches produced by multiple-instruments and in real-time. The

core of the proposed system relies on a rather simple machine

learning principle based on sparse non-negative constraints. The

simplicity behind this algorithm is due to observations on the na-

ture of musical instruments and basic facts regarding musical pitch

and timbre structures. After formulating the problem we discussed

three main issues regarding the formulation and presented solu-

tions for each.

If the proposed method is to be useful in computer music ap-

plications, the precision rates should obviously be higher than the

ones in Tables 2 and 3. The work presented in this paper is re-
garded as a first step towards the complex problem of multiple

pitch and instrument recognition in real-time. However, obtained

results with a more rigorous evaluation framework as stated be-

fore, are close to the state-of-the-arts reported elsewhere. Here we

elaborate on the future directions of this project and on how the

proposed algorithm can be improved.

The on-line learning algorithm developed in section 5, uses

a simple gradient descent update that is projected at each itera-

tion to assure sparsity. From a machine learning perspective, gra-

dient descent updates are not always the best solution and more

intelligent optimization techniques such as convex optimization

and semi-definite programming would be more suitable. How-

ever, for this experiment and due to our real-time constraints, we

DAFX-7



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

adopted the gradient descent approach and will report on more ad-

vanced methods in later publications. Also, the sparse constraints

introduced are quite powerful in order to avoid inner-instrumental

overuse of templates but does not directly address avoiding inner-

instrumental confusions. New sparsity measures should be exper-

imented in order to overcome this issue. On another note, we use

the amplitude (or absolute value) of the complex modulation spec-

trum reported in section 3. Later improvements will consider the

complex values or in other words, the phase information of the

modulation spectrum directly into the decomposition algorithm.

We conducted subjective and objective evaluations of the algo-

rithm but in the limited case of two instruments. A more elaborate

evaluation procedure is needed to discover true deficiencies and

outcomes of the proposed algorithm. However, for the given task,

the evaluation frameworks that has been introduced so far in the

literature do not provide sufficient and accurate data for such fine-

tuned evaluation. We will be elaborating on this subject to further

improve the test-bed that can lead to better frameworks and im-

proved systems.

Finally, as mentioned earlier in the paper, one of the main

motivations for this research is to provide real-time tools for the

computer musicians and researchers with their growing need for

real-time detection tools. The algorithm and application proposed

in this paper is currently under development for MaxMSP2 and

Pure Data3 real-time computer music environments and will soon

be available for free download4.
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