M. D. Plumbley, On Polar Polytopes and the Recovery of Sparse Representations, IEEE Transactions on Information Theory, vol.53, issue.9, pp.3188-3195, 2007.
DOI : 10.1109/TIT.2007.903129

URL : https://hal.archives-ouvertes.fr/hal-00839327

J. Tropp, Greed is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2231-2242, 2004.
DOI : 10.1109/TIT.2004.834793

S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/S1064827596304010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

R. Gribonval and P. Vandergheynst, On the exponential convergence of matching pursuits in quasi-incoherent dictionaries, IEEE Transactions on Information Theory, vol.52, issue.1, pp.255-261, 2006.
DOI : 10.1109/TIT.2005.860474

URL : https://hal.archives-ouvertes.fr/inria-00544945

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 2010.
DOI : 10.1007/978-1-4419-7011-4

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21, 2011.

B. Mailhé, B. L. Sturm, and M. D. Plumbley, Recovery of nested supports by greedy sparse approximation algorithms, Proc. Int. Conf. Acoustics, Speech, Signal Process, p.2013