A locking-free approximation of curved rods by straight beam elements

Abstract : We consider an elastic model for a curved rod with arbitrary three-dimensional geometry, incorporating shear and membrane as well as bending and torsion effects. We define an approximation procedure based on a discretization by linear Timoshenko beam elements. Introducing an equivalent mixed problem, we establish optimal error estimates independent of the thickness, thereby proving that shear and membrane locking is avoided. The approximation scheme is tested on specific examples and the numerical results confirm the estimates obtained by theory.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 1997, 77 (3), pp.299-322. 〈10.1007/s002110050288〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00839737
Contributeur : Dominique Chapelle <>
Soumis le : samedi 29 juin 2013 - 17:42:45
Dernière modification le : lundi 21 mars 2016 - 11:32:35

Lien texte intégral

Identifiants

Collections

Citation

Dominique Chapelle. A locking-free approximation of curved rods by straight beam elements. Numerische Mathematik, Springer Verlag, 1997, 77 (3), pp.299-322. 〈10.1007/s002110050288〉. 〈hal-00839737〉

Partager

Métriques

Consultations de la notice

74