Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift

Abstract : We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regu-larizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler-Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results.
Type de document :
Article dans une revue
Journal of Computational and Applied Mathematics, Elsevier, 2017, 326C, pp.138-158. 〈10.1016/j.cam.2017.05.015〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00840211
Contributeur : Antoine Lejay <>
Soumis le : jeudi 6 juillet 2017 - 20:55:17
Dernière modification le : lundi 8 octobre 2018 - 21:28:06
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 07:24:26

Fichier

kohatsu-lejay-yasuda_Finale.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Arturo Kohatsu-Higa, Antoine Lejay, Kazuhiro Yasuda. Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift. Journal of Computational and Applied Mathematics, Elsevier, 2017, 326C, pp.138-158. 〈10.1016/j.cam.2017.05.015〉. 〈hal-00840211v5〉

Partager

Métriques

Consultations de la notice

190

Téléchargements de fichiers

153