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Super Space Clothoids

Romain Casati

Florence Bertails-Descoubes

INRIA and Laboratoire Jean Kuntzmann (Grenoble University, CNRS), France*

Figure 1: Many physical strands exhibit a smooth curled geometry with affine-like curvature profile, which is captured and deformed accu-
rately thanks to our new 3D dynamic primitive. From left to right, three examples of real strands whose shapes are synthesized and virtually
deformed in real-time using a very low number of 3D clothoidal elements: a vine tendril (4 elements), a hair ringlet (2 elements), and a
curled paper ribbon (1 single element). Left photograph courtesy of Jon Sullivan, pdphoto.org.

Abstract

Thin elastic filaments in real world such as vine tendrils, hair
ringlets or curled ribbons often depict a very smooth, curved shape
that low-order rod models — e.g., segment-based rods — fail to
reproduce accurately and compactly. In this paper, we push for-
ward the investigation of high-order models for thin, inextensible
elastic rods by building the dynamics of a G3-continuous piecewise
3D clothoid: a smooth space curve with piecewise affine curvature.
With the aim of precisely integrating the rod kinematic problem,
for which no closed-form solution exists, we introduce a dedicated
integration scheme based on power series expansions. It turns out
that our algorithm reaches machine precision orders of magnitude
faster compared to classical numerical integrators. This property,
nicely preserved under simple algebraic and differential operations,
allows us to compute all spatial terms of the rod kinematics and
dynamics in both an efficient and accurate way. Combined with a
semi-implicit time-stepping scheme, our method leads to the effi-
cient and robust simulation of arbitrary curly filaments that exhibit
rich, visually pleasing configurations and motion. Our approach
was successfully applied to generate various scenarios such as the
unwinding of a curled ribbon as well as the aesthetic animation of
spiral-like hair or the fascinating growth of twining plants.
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1 Introduction

A key motivation in Computer Graphics is the creation of digi-
tal shapes and motions which capture or even enhance the visual
complexity and beauty of nature. Long and thin flexible structures,
often called strands [Pai 2002], are well-spread in plants (foliage,
stems), animals (hair, coral) and human-made objects (ropes, rib-
bons). Due to their smooth curved shape and complex way of de-
forming, characterized by many instabilities, strands largely partic-
ipate to the world’s visual richness and aesthetics. In this paper
we aim at deriving an accurate, efficient and robust computational
model to simulate the mechanics of strand-like structures, with a
particular interest for curled geometries.

The nonlinear mechanical behavior of inextensible and unshearable
strands is well-described by the Kirchhoff theory of thin elastic
rods, set up more than a century ago [Dill 1992]. However, the
governing equations of motion, consisting of stiff partial differen-
tial equations of fourth order in space, are known to be difficult to
discretize and thus delicate to simulate in both a faithful and stable
way. In particular, inextensibility and bending forces, which are the
main sources of numerical stiffness, need to be treated carefully.

Most previous methods, relying on a nodal displacement formula-
tion of strands, lead to sparse equations but require considerable
refinement to account for curved geometries. Furthermore, han-
dling the inextensibility constraint and discretizing the nonlinear
bending forces in a stable way is challenging. In contrast, here we
seek for high-order rod elements whose shape compactly and faith-
fully approximates large portions of real, arbitrarily bendy strands,
with a reduced parametrization adapted to the kinematics of the
rod. In that vein, the super-helix model, relying on deformable,
perfectly inextensible helical elements, and yielding linear bend-
ing forces, was a first approach towards this goal [Bertails et al.
2006]. However, this model still lacks one order of continuity (only
G'-continuous junctions) for capturing visually pleasing smooth-
ness properties (at least G continuity). More generally, it turns
out that in the real world, most strands exhibit a continuous curva-
ture profile (see Figure 1), much closer to a piecewise affine profile
rather than a piecewise constant one. Reinforced by this observa-
tion, we design a new rod element whose centerline takes the form
of a 3D clothoid or 3D Euler spiral — a space curve characterized
by linearly varying curvature and torsion (see, e.g., [Harary and Tal
2012]). Our new super space clothoid rod model, stable and per-

IThe centerline of our rod element is actually more general as it corre-
sponds to linear material curvatures and twist — the entire class of so-called
3D Euler spirals being obtained by cancelling the first material curvature.
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fectly inextensible, results from the G2-continuous assemblage of
such elements.

One major difficulty with a model based on linearly varying cur-
vature and torsion, compared to lower-order geometries, lies in the
numerical evaluation of the centerline (and as a consequence, of
all kinematic terms), which does not have a closed-form anymore,
but still needs to be precisely evaluated. In the 2D case, Bertails-
Descoubes [2012] addressed this issue with the help of Romberg’s
quadrature rule to evaluate the kinematics of a 2D rod element
(a clothoid). Although this approach remains practical and fast
enough for real-time in 2D, due to simple relationships between
curvature (one single variable), orientation (one angle), and posi-
tion, it becomes totally unsuitable in the 3D case where the kine-
matics is governed by a linear differential equation operating on
a nonlinear manifold of dimension 6. As for traditional numeri-
cal schemes, they turn out to be too prohibitive to discretize both
kinematic and dynamic spatial terms at the requested precision, in
a reasonable amount of time.

Our work is inspired by ideas from the symbolic computation
community whose primary focus are extremely accurate compu-
tational methods with bounding guarantees, relying on advanced
algebraic considerations combined with multi-precision evaluation
algorithms (see, e.g., [Mezzarobba 2010]). However, if high com-
putational accuracy is clearly part of our requirements, efficiency
is also crucial to us, in order to achieve on a standard machine the
millions of evaluations expected at each time step, in a reasonable
amount of time. Our work is thus aimed at designing a method
suitable for standard, floating-point arithmetic.

The chore of our approach is a new dedicated integration scheme
based on power series expansions, which fully leverages the struc-
ture of the rod kinematic problem while carefully avoiding numer-
ical issues due to floating-point arithmetic. Our method reaches
machine precision orders of magnitude faster compared to classi-
cal numerical integrators. Furthermore, our algorithm naturally ex-
tends to the computation of sums, products and integrals, allowing
us to evaluate all spatial terms of the rod dynamics in an efficient
and accurate way. As a result, we are able to simulate a full dy-
namic rod made of 6 clothoidal elements in real-time. Compared to
previous rod models, our approach provides a better order of spatial
convergence and generates richer motion at a competitive compu-
tational cost.

2 Related Work

The scientific study of strands has a long history in various fields,
tracing back to the first continuous mechanics theories a few cen-
turies ago to their further analysis in physics and mathematics, and
their recent numerical treatment in Mechanical Engineering and
Computer Graphics. Motivation originates from a number of appli-
cations ranging from the understanding of DNA supercoiling [Ben-
ham and Mielke 2005] and climbing plants [Goriely and Neukirch
2006] to the simulation of submarine cables [Goyal et al. 2008],
surgery threads and needles [Pai 2002; Chentanez et al. 2009], or
hair [Ward et al. 2007].

Theories for thin elastic rods Various theories were proposed
in mechanics to model the equilibria and the dynamics of strands,
depending on the type of deformation considered. In this paper,
our goal is to capture the geometric richness of typical strands de-
formations such as waving hair, coiling cables, curled ribbons or
twining plants. These phenomena are largely nonlinear, dominated
by bending and twisting elastic deformations, while stretching and
shearing can be neglected. To properly account for this regime, we
consider inextensible strands with a vanishing cross-section inertia,
neglect shearing, and assume moment strains to remain small

making use of an elastic constitutive model — while large displace-
ments, at the origin of the desired geometric nonlinearities, are al-
lowed. The model is thus strictly subject to finite? rotations around
the cross-section axes (bending) and around the tangent of the cen-
terline (twisting). The corresponding governing equations — a set
of partial differential equations together with boundary conditions
— were first developed by Kirchhoff and Clebsch in their theory
of thin elastic rods under finite displacements [Dill 1992]. Within
a more general framework on shells, rods and points, the Cosserat
brothers [1909] later on proposed a clever mathematical represen-
tation of the rod geometry, relying on a space curve (the centerline)
together with a material frame attached to the rod cross-section and
continuously rotating along the centerline around the so-called Dar-
boux rotation vector. A modern description of these theories can be
found in [Antman 1995; Audoly and Pomeau 2010]. Pai [2002] was
the first to introduce them to the Computer Graphics community.

Discretizing material rods In Mechanical Engineering, both fi-
nite differences and finite elements approaches were developed to
discretize material rods in space and time. Though finite differ-
ences schemes have in principle the advantage of being easy to set
up, properly accounting for the rod boundary conditions (typically,
a clamped rod with the other end free) generally requires the use
of a shooting strategy, which implies the solving of multiple non-
linear problems. Moreover, the stiff nature of the Kirchhoff equa-
tions, stemming from the presence of fourth-order spatial deriva-
tives, imposes the use of overly small steps in time and space, or
sophisticated implicit integrators [Goyal et al. 2008]. In contrast,
a finite elements strategy allows one to single out spatial terms
from time-evolving quantities, and provides a vast choice of ele-
ments to approximate them together with the boundary conditions.
A popular method is the so-called geometrically exact beam ap-
proach [Reissner 1973; Simo and Vu-Quoc 1986], which derives
an exact weak formulation for a generalized Kirchhoff rod with
stretching and shearing, and finally discretizes the displacement and
rotation fields with interpolating shape functions. One important
issue of this approach, which spurred many subsequent works in
the finite elements community, deals with the proper interpolation
of rotations for preserving objectivity, i.e., invariance of the strain
measures under rigid motion [Crisfield and Jeleni¢ 1998]. More-
over, regarding our specific needs here, this method is not directly
applicable to the handling of inextensible and unshearable rods.

In Computer Graphics, finite differences schemes initially proposed
by Pai [2002] to solve the statics of Kirchhoff rods were subse-
quently superseded with more robust schemes so as to deal with the
full dynamic case, relying on variational formulations or discrete
differential geometry. Two purely reduced-coordinates models,
based on a minimal parametrization of the system, were proposed
to account for the exact kinematics of the rod, and especially to
preserve inextensibility: the articulated rigid body approach [Hadap
and Magnenat-Thalmann 2001; Hadap 2006], parameterized by an-
gular joints, and the super-helix model [Bertails et al. 2006], param-
eterized by curvatures and twist. In contrast, further work focused
on nodal models in order to get an explicit, point based representa-
tion of the centerline leading to a sparse mass matrix, at the price
of adding external constraints to preserve the true kinematics. In
the CoRde model [Spillmann and Teschner 2007], both positions
and orientations are considered as degrees of freedom. The La-
grange equations of motion are written for discrete approximations
of kinetic and potential energies — including a stretch term — and
orientations are coupled back to the centerline through soft con-
straints. Relying on the Bishop frame, Bergou et al. [2008] use a
curve angle parameterization to reduce the number of redundant pa-
rameters and guarantee that the orientation frame naturally remains

2 As opposed to infinitesimal.



adapted to the centerline. Discrete equations of motion are then es-
tablished by leveraging principles from discrete differential geom-
etry. Due to the choice of a nodal parameterization, inextensibility
however needs to be explicitly enforced, e.g., through a fast pro-
jection scheme [Bergou et al. 2008] or a stiff stretch term [Bergou
etal. 2010]. Finally, to ensure proper stability at an acceptable com-
putational cost, a fully implicit scheme based on Newton’s method
is advocated to discretize the nonlinear stiff bending and stretching
forces [Bergou et al. 2010].

Reduced Lagrangian dynamics One advantage of reduced dy-
namics is that, by directly considering moment strains as actual de-
grees of freedom (i.e., curvatures and twist instead of positions),
the rod kinematics is exactly preserved, without redundancy and
without adding any further constraint. Models parameterized by
curvatures also benefit from an inexpensive implicit handling of
bending forces, as those forces are linear in curvature. Finally,
while multiple collision tricks — such as the position alteration
technique [Baraff and Witkin 1998] — were specifically developed
for nodal models in Computer Graphics, more sophisticated contact
solvers including Coulomb friction naturally cope with reduced La-
grangian models [Daviet et al. 2011], without having to worry about
getting intermingled with external kinematic constraints.

Super-helices Similarly to finite elements, the super-helix
model relies upon a weak formulation of the dynamics of a Kirch-
hoff rod. The main difference is that the sparse discretization does
not operate onto displacement and rotation fields, but at the curva-
ture level. Curvatures and twist are approximated with piecewise
constant functions, from which the geometry of the rod — which
takes the simple form of a piecewise circular helix — is recursively
derived. An important advantage of such a formulation is that the
true kinematics of the rod, including perfect inextensibility, is in-
trinsically captured. The non-objectivity issue raised by finite el-
ements methods that linearly interpolate the rotation field is also
naturally circumvented. The price to pay is the loss of sparsity in
the mass matrix. However, in practice a small number of elements
— five to ten — is generally sufficient to capture rich shapes and
deformations, while keeping computations reasonable.

Yet, using a low resolution may yield a lack in fairness, as il-
lustrated in Figure 2. Like in the 2D case [Bertails-Descoubes
2012], G'-smooth junctions between elements (continuity of tan-
gents only, not of curvatures) are particularly visible in 3D and aes-
thetically disturbing. Moreover, a long helical element located at
the clamped end of a strand may not possess enough degrees of
freedom to correctly unwind when pulled downwards, and may re-
main “locked”. Such issues are naturally alleviated with our new
super space clothoid model.

(a) (b)

Figure 2: Comparison of fairness between (a) the super-helix
model and (b) our space clothoid model. Whereas junctions be-
tween elements are particularly visible for the super-helix (5 ele-
ments here), our model generates a very smooth, visually pleasing
shape even at a very coarse resolution (2 elements here).

3 Contributions and Overview

Our idea is to push forward the investigation of high-order rod mod-
els by considering elements whose material curvatures and twist
vary linearly with arc length (Section 4). Compared to previous rod
models, one important challenge when increasing the order of ele-
ments is the loss of a closed-form solution for the kinematics. While
traditional integration schemes become excessively prohibitive at
the requested precision in the 3D case, we discovered that the kine-
matic problem still possesses a lot of structure (Section 5), which
can be leveraged so as to design a fast and highly accurate integra-
tion scheme (Section 6). Importantly, our algorithm naturally ex-
tends to the computation of all spatial terms of the dynamics (Sec-
tion 7), allowing us to simulate rods with rich shape and motion ef-
ficiently. We carefully validate our new rod model against the most
relevant models of the literature and demonstrate the effectiveness
of our approach, especially for winding rods, through various ex-
amples ranging from the growth of twining plants to the animation
of curly hair (Section 8).

4 Discrete Kirchhoff Rods

Notation In what follows, s denotes the space variable and ¢ the

time variable. Space derivatives are represented by the prime sym-

bol, so that a’(s,t) = % and time derivatives by the dot symbol,

so that a(s,7) = 22. For the sake of clarity, we may omit the time

variable when describing the geometry of the rod. The special or-
thogonal group of dimension 3, denoted SO(3), collects finite rota-
tions of R? (represented as direct orthogonal matrices) and is a non
commutative Lie group.

4.1 General Case

Let us consider an inextensible and unshearable material rod of
length L, represented by a centerline r(s) together with a mate-
rial frame Z(s), both parameterized by arc length s € [0,L]. At
location s, the vector r(s) € R3 gives the 3D position of the cen-
terline and the rotation Z(s) € SO(3) encodes the tangent vector
ny(s) = r'(s) as well as the two normal vectors ny(s) and ny(s)
attached to the cross section of the rod.

For simplicity, we assume the rod is clamped at s = O and its
clamped position r(0) = r,; and orientation Z(0) = %, are given.
Note that this assumption holds in most real strands we wish to
model, e.g., plants and hair. Otherwise, it could easily be dropped
out by releasing r. and %, as degrees of freedom.

Kinematics From s = 0 to s = L, the material frame %(s) con-
tinuously evolves along the centerline r(s) through infinitesimal ro-
tations around the so-called Darboux vector Q(s) which represents
the instantaneous space rotation vector of the rod. This space evo-
lution mathematically writes

' (s) = [Q(s)]c Z(s), (1

where [u]x denotes the skew symmetric matrix corresponding to
the vector cross product operator, i.e., [u]xv =u x v. It is note-
worthy that the local coordinates of € in the material frame repre-
sent the material twist Ky and curvatures K and k» of the rod, i.e.,
Q(s) = Z(s) x(s), where k(s) = [ko(s), k1 (s), k2 (s)] is called the



curvature vector in the remainder of the paper. By further using
properties of rotation matrices, one can reformulate Equation (1) as

A'(s) = R(s)[x(5)] - )

Finally, by compacting the centerline and the material frame into
one single variable .7 (s) = {r(s);%(s)} and assuming K(s) is
fixed, the full kinematics of the rod can be formulated as an ex-
plicit? linear first-order Cauchy-Lipschitz problem, referred to as
the Darboux problem (see, e.g., [Ivanova 2000]),

{ O F) = {no(): 26 k6] )
with #(0) = {rq; %} as initial conditions,

which admits a unique solution. Note that the ambient space is not
a vector space but rather a nonlinear differentiable manifold, since
the kinematic relationship for the material frame operates onto the
non commutative Lie group SO(3). Due to non commutativity, the
solution has no formal expression in the general case.

Dynamics Let p be the volumetric mass of the rod and S the sur-
face area of its cross section. We assume the rod is subject to exter-
nal forces such as gravity or contact forces. Expressing the balance
of linear and angular momentums on an infinitesimal portion of the
rod and neglecting inertial momentum due to the vanishing cross-
section lead to the following dynamic equations for a Kirchhoff rod,

St(s) = T/(s)+p(s
{M/(s)+n0(s)§T(s) _ o F ) 8

where p is the linear density of external forces and T(s) (resp.
M(s)) is the internal force (resp. internal moment) transmitted from
the free part of the rod through its cross section at s. The free end
condition at s = L implies that T(L) = M(L) = 0.

Finally, dynamic equations are completed with a constitutive law
that express the ability of the rod to elastically bend and twist,

M(s) =Kj3 (K‘(S) — K'O(S)> in the local basis Z(s), (5)

where K3 is a diagonal 3 x 3 matrix collecting the twisting and
bending stiffness, and x°(s) € R3 collects the intrinsic curvatures
and twist of the rod, used to model spontaneous curliness.

Numerical model Equations (3-5) together with the boundary
conditions at s = 0 and s = L form a nonlinear and stiff bound-
ary value problem, which has no formal solution and is known to
be difficult to solve numerically.

Realizing that curvature plays a key role in both the kinematics and
the dynamics of the rod, an interesting idea consists in approximat-
ing the curvature vector with a simple, polynomial expression that
is function of s. The coefficients of the polynomial are then taken
as primary variables of the discrete model. One immediate conse-
quence is that bending forces, which are linear in curvature, become
linear in the discrete variables. Being stiff in nature, those forces
can thus be treated implicitly in a straightforward manner, without
having to solve a nonlinear problem. Furthermore, the kinematic
(Darboux) problem becomes numerically fractable. In the simplest
case when the curvature is assumed to be constant, the solution to
Equation (3) is exactly a circular helix. Getting such a closed-form
kinematics was the main strength of the super-helix model. How-
ever, as noted previously, a discrete rod with piecewise constant
curvature may still represent a rather rough approximation of the
continuous case, with an improper degree of continuity at the joints.
Instead of using an excessively refined primitive, one may think it

3Coefficient of the highest derivative is 1.

would be worth designing a richer, higher-order element with affine
curvature, that would better stick to the actual curvature profile of
real strands and guarantee visually pleasing smoothness of the cen-
terline at any resolution. One becomes unfortunately faced with
the loss of a formal expression for the kinematics. Yet, observ-
ing that the Darboux problem still possesses a lot of structure, we
show in the following that such a space clothoid element can be
conveniently derived. The key is to introduce a fast and accurate
integration scheme based on power series expansions. This numer-
ical algorithm is then used as a formal computation tool to evaluate
the spatial terms of the dynamics at a high precision.

4.2 Affine Curvature: the Space Clothoid Element

Discrete kinematics Let us discretize the rod into N + 1 nodes
with arc lengths s;, i € {0..N}. Similarly to the 2D super clothoid
model [Bertails-Descoubes 2012], discrete curvature variables &;
are located at nodes s;. On each element between two successive
nodes s; and s;4 1, the curvature vector k(s) is assumed to vary lin-
early with arc length, so that its expression on element i of length
l; (with L =Y, ¢;) reads

S§— 8 N S—S8;i A
K(s)= (1= 2 ) R+ —— Ry Vs € [siysip1]-
g,‘ gi

In the following, we shall denote q € R3 (N+1) our state variable
collecting all the degrees of freedom &;, and q° the constant vector
of same size storing the discrete intrinsic curvatures and twists 1'%1-0.
For now, we assume the centerline of the rod r can be computed as
a function of s, q, r; and %, by solving the Darboux problem (3)
with an accurate numerical method. This difficult point is specifi-
cally tackled in Sections 5 and 6. Formally differentiating the cen-
terline twice with respect to time leads to the following expression
for acceleration,

.. Lk . 0%r . or .
i(s,r) =¥ (SJ)+Q(1)qu(SJ)Q(f)+ a*q(s,f)Q(f)a (6)

where ¥*(s,t) is the acceleration generated by the clamping mo-
tion, which can be dropped when the clamped end is static. Expres-
sion (6) puts in evidence the linear dependency of the centerline
acceleration ¥ with respect to the reduced acceleration .

Discrete dynamics Discrete equations of motion result from a
weak formulation of the strong Kirchhoff equations (4), where the
trial functions are deduced from the constrained, piecewise affine
kinematics. Consider an infinitesimal virtual displacement 8q of
our discrete degrees of freedom. This translates into a pertur-
bation 0« in curvature, which causes an infinitesimal rotation of
the material frame around a virtual rotation vector 60, such that
O = [60]« Z, as well as an infinitesimal displacement Sr of the
centerline. Applying the principle of virtual work [Reissner 1973]
while considering an inextensible rod, as well as the boundary con-
ditions given above, leads to the following weak formulation,

./OL (M'(s) +10(s) x T(s)) - 56 (s) ds = O,

where T(s) = [L (p(s') — pSi(s')) ds’. Integrating by parts and not-
s

ing that §x(s) = 60'(s) and [80(s)]x no(s) = (8r)'(s), we get

| /0 “M(s) - 5x(s)ds + /0 " p(s) - 5r(s)ds = pS /O “i(s) - or(s) ds.

Finally, relating perturbed quantities to the virtual displacement dq
and using Equation (6) yields the discrete dynamic equations

M(q)ii+K(q—q°) +G(q)+A(q,q) =0 @)



where
L or 8r
M(q) = /a% aq
G(q = -pSg A 7 ®)
L3 82
A(g,q) = S/O i'( aq2q+r)d

and where the constant stiffness matrix is defined as

4 4
K3 2K; 0 0
)4 Lo+L
K3 5K
K= 0 .. . . 0
ZN—Z?;///N—I Ks ngl K;
o T fyeie
N6 1K N3 K

The main challenge consists in evaluating vectors G and A and ma-
trix M in a both accurate and fast way. Section 7 addresses this is-
sue by demonstrating how our power series computation algorithm
naturally extends to the evaluation of these dynamic terms. An effi-
cient and stable time-stepping scheme is then derived to discretize
Equation (7).

5 Kinematics Integration with Power Series

We now focus on solving the Darboux problem (3) under the as-
sumption of an gffine curvature vector. For simplicity, we shall
consider here a single clothoidal element of length ¢ along end cur-
vatures Ky and K. The handling of a kinematic chain of N smoothly
connected elements will be addressed in Section 6.5.

5.1 Solution of the Darboux Problem

When the curvature vector is affine (and even polynomial), the key
idea is to formulate the solution of (3) as a power series expansion
(PSE). This is made possible thanks to the following theorem:

Theorem 1 Let R >0 (possibly R = +o0). If K is C™ and admits

Z Kns" on |—R,R|, then the so-
n=0
lution F of 3) is also C* and admits a power series expansion

= {Z rys’; Z Rns™} on | =R, R|, recursively defined as*

n=0 n=0

a power series expaml()n K

n

Z %k [Kn—k] X

) k=0
_ T
= (1 0 O,

%() = %Cl and Vne N, %,H,] = ?

ro=rq and VneN, | |

This theorem ensues from Cauchy’s theorem on analytic solutions
of linear ODEs with analytic coefficients (see, e.g., [Poole 1936]
§2). In the particular case where x is a polynomial, the theorem
applies with R = 40 and thus .% admits a power series expansion
on R. We now derive such a solution when x is a polynomial of
degree 1, that is, when the element is a space clothoid.

“4Note that the coefficients a, of the power series expansion ¥, a,s" of
an analytic function A(s) do not share the same physical dimension. On
the contrary, the general term of the series, d,(s) = a,s”, which is used in
Section 5.2, is physically homogeneous to the sum A(s) for all n € N.

Affine curvature Let y be the slope of k(s), ¥ = &t
sions of Theorem 1 turn into

Ry = Rl
e%l :%0[7%0}><
1 X
%n+2: n+2 (LOZV!+1[KO}><+’%” [Y]x) VneN (9a)
ro = I
Tut1 = oy %n(l 0 0)" vneN. (9b)

Computing the centerline thus follows from that of the material
frame, which involves the recursive sequence (9a) of second order.

5.2 Numerical Computation of the Solution

Consider the power series for the material frame Zn 8", where
s > 0 is fixed. The study developed here with the aim of comput-
ing the sum Z(s) analogously transposes to the evaluation of the
centerline r(s).

Summation Since the series Y, %, s" is convergent on R, we
have ||%Z,s"|| — 0 which is equivalent to ||Z,|| = o (in), where
n——+oo s

II|| is an arbitrary norm on matrices. In the following, we shall
take the max norm ||.||., which gives the maximum absolute value
over all entries of the matrix. The fast decreasing of %, thus com-
pensates for the fast increasing of s” when s > 1. Instead of com-
puting the sequence of coefficients %, using Recursion (9a) and
then performing multiplications by s” to get each term of the sum,
it is numerically wiser to directly compute the general term of the
series % (s) = %y s" for all n € N and express Z(s) as the sum
Yo o%n(s). From (9a) it easily follows that %,,(s) is defined as

Ro = Re)
G\ (s) = s R [Ro) (10)
Fnia(s) = (Zi1(s) [Rol s +5%n(s) [V]) VneN.

n+2

Truncated Series In practice, the sum of the series has to be
truncated in order to be numerically computed. The question is
whether the summation can be pruned down without dropping rel-
evant terms and making a large approximation error; if so, where?
Luckily enough, it turns out that only the very first terms of the
series are relevant, the following ones rapidly decreasing in norm
and falling below the machine precision. This is due to the sim-
ple structure of our kinematic problem (3), which formulates as an
explicit linear ODE with polynomial coefficients. In this case in-
deed, we can prove that the general term of the series super-linearly
decreases to zero at the limit when 7 tends to infinity [Neher 1999].

In our iterative summation algorithm, we stop adding a new term as
soon as its norm falls below the machine precision. In practice, for
all the series we computed, this led to about 100 terms to be added
together. Actually, when using our piecewise power series com-
putation algorithm described in Section 6, the number of relevant
terms to be added was even lower (= 20).

Computation of the sum: some severe numerical issues All
the theory developed so far seems to nicely go along with our initial
goal consisting in integrating the kinematics efficiently and accu-
rately. However, when numerically evaluating the sum of the rele-
vant terms in finite precision, one is inevitably faced with round-off
issues leading to huge approximation errors. This is not a surprise.
Textbooks on numerical integration usually recommend rnot to use
power series expansion to solve differential equations, because of
the risk of having to sum and subtract small values together with



large ones [Press et al. 2007]. This numerical catastrophic can-
cellation problem precisely occurs in our case, and is described in
details in next section.

Why then persist in such a foolish direction? Because, in our case,
this numerical issue can be effectively remedied. In next section,
we devise an adaptive piecewise summation algorithm which guar-
antees that the sum of the power series can be safely computed,
without catastrophic cancellation. Besides, we show that on a cer-
tain class of integration problems including the Darboux problem,
our new algorithm turns out to reach high accuracy, orders of mag-
nitude faster than traditional integration schemes such as Euler or
Runge-Kutta methods. Ultimately, power series expansions and ap-
plicability of our algorithm nicely extends towards all the spatial
terms of the dynamics, as demonstrated in Section 7, leading to a
powerful space discretization method for our high-order rod model.

6 Fast and Precise Power Series Summation

6.1 Numerical Cancellation Issue

Consider expression (14 y) —y which should be equal to 1 what-
ever the value of y. In floating-point arithmetic, this equality only
holds if y is close enough to 1. In double precision for example,
take y = 10'® and compute the expression above. The numerical
result is 0.0, yielding a relative error of 100%. This error is the con-
sequence of first, an absorption phenomenon when computing the
sum 14 10'6, which, due to machine overflow when aligning man-
tissa, is approximated as 10'6. Then, a cancellation phenomenon
when subtracting 10'. Such unfortunate combination of absorp-
tion and cancellation leads to erroneous results and for this reason
is called catastrophic cancellation. Details on floating-point arith-
metic can be found, e.g., in [Goldberg 1991].

Catastrophic cancellation revealed When naively computing
the sum of our power series Y%, (s) for a long and/or curly rod, we
observed a dramatic loss of precision leading to erroneous results,
as illustrated in Figure 3a. Let us figure out why catastrophic can-
cellation occurs in this case, and how it can be efficiently remedied.

()

—\\

(b) (©)

Figure 3: (a): Dramatic loss of precision when naively summing
power series of the kinematics. (b): In contrast, our piecewise sum-
mation algorithm guarantees high precision of the summation. (c):
A long and highly curved space clothoid integrated with our piece-
wise computation method, using 109 subdivisions.

In Figure 4 we have plotted in blue the norm of the general term
%n(s) function of n, for different values of s. The resulting
“hillock”-like profile implies that when computing the sum of the
series, one actually adds very small values together with very large
ones in norm, the widest range being obtained when getting to the
top of the hillock. Note that the larger s is, the higher the top of
the hillock is. More precisely, in Section 6.2 we provide an explicit
upper-bound 77 (s) for the top of the hillock (see Equation (12)).
€ (s) is shown to grow quasi-exponentially with the increasing
function A(s), introduced in Equation (11). Moreover, as depicted
in red by Figure 4, 77 (s) appears to match closely the increasing
of the “top” of the hillock, function of s. Such a match helps one

realize how fast and high the top of the hillock grows with s. More-
over, looking back to Recursion (9a), one notes that entries of the
matrices to be added are of alternating sign, due to the product with
skew symmetric matrices. This results in cancellation when com-
puting the sum. All this combined together, it is then not surprising
that we are faced with a catastrophic cancellation issue when A (s)
(and thus s) becomes too large. As A(s) increases with s as well
as with intrinsic curvatures (see Equation (11)), we now understand
why numerical issues show up for a long and/or curly rod.
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Figure 4: Hillock-like profile of the general term %, (s) in norm.
In blue: Evolution of H@" (S)Hm function of n (at fixed s), in log
scale. As expected [Neher 1999], the decreasing towards 0 appears
to be super-linear. In red: Evolution, function of s, of the upper-
bound J€ (s) provided by Equation (12), in log scale. Note that the
plot of this upper-bound visually matches the maximum function
maxy ||@n(s)| ., meaning that the top of the hillock grows quasi-
exponentially with s.

Multi-precision schemes vs. floating-point arithmetic One
common solution to avoid catastrophic cancellation is to work
with algorithms allowing for arbitrary precision (see, e.g., [Neher
1999]). However, the required precision often needs to be fixed in
advance, which only shifts the length/curvature’s threshold beyond
which catastrophic cancellation occurs. More importantly, as basic
operations like addition are performed with a software library and
not directly onto the machine processor, computations are consid-
erably slowed down. We have tried to solve our kinematic problem
with power series, using the GMP multi-precision library [Granlund
and the GMP development team 2012], and observed a frame rate
of 1FPS for 100 sampling points, that is, about 1000 times as slow
as with double precision (hardware) computations.

For us it is critical to precisely evaluate kinematic terms so as to
correctly compute all spatial coefficients of the dynamic problem.
However, getting an extreme accuracy beyond machine precision is
unnecessary. In contrast, computational cost has fo keep very low
so as to get an interactive dynamic scheme — involving millions of
operations per time step — for our rod primitive. Thus we rather
stick to standard floating-point arithmetic and look for an efficient
way of guaranteeing high precision when computing power series.

Splitting strategy  Our summation method relies on an automatic
subdivision of the integration domain into subintervals, on which
integration can be safely performed. This subdivision strategy is
similar in spirit to the splitting approach proposed by Neher [1999]
to integrate explicit linear ODEs with polynomial coefficients accu-
rately. However, as Neher’s goal is to reach extreme accuracy while
precisely quantifying the loss of precision, the focus is primary put
on the use of multi-precision arithmetic and on the correct propa-
gation of error enclosure, rather than on computational efficiency.



Splitting is only performed as a fail-safe process when the multi-
precision scheme fails to encompass the total range of the sum-
mands. Furthermore, splitting is recursively performed through di-
chotomy by computing at each step a (costly) recess condition indi-
cating whether the summands fall in the appropriate precision range
or not. In contrast, our approach automatically computes once and
for all the right subintervals which guarantee high-precision com-
putations over the entire integration domain. Our splitting is ef-
ficiently computed and proves to be close to optimal, thanks to a
simple yet precise upper-bound.

6.2 Limiting the range of summands

Let us first transform the recursive sequence (10) of second order
into a recursive sequence of first order by introducing the 3 x 6
matrices %, (s) = (%n(s), Zn—1(s)), with %y = (Za1, 0). Atfixed s,
#%,(s) can be easily upper-bounded in norm as

A

n!

[7a(s)]|. < 2 [70]].. with A(s) = 2s([|&o]l.. +57]..). (11)

This upper-bound may be identified, up to a constant factor, to the
general term of the exponential series &, (x) = fl—': at point x = A(s).

Let us now upper-bound the top of the hillock of Figure 4 and see
how it grows with the variable s assumed to be positive. The maxi-
mum of the general term &, (x) over n € N is reached when n = | x|,
where |.] denotes the floor function. At the maximum, the term of
the series thus reads

ol e[xj(l-%logﬁ)

I_xJ ! x%ﬁrm 2 ij T

max &, (x) = &|,| (x) = , (12

meaning that for large x = A(s), the upper-bound J7(s) =
max, &,(A(s)), which actually closely approximates the top of the
hillock (see Figure 4), grows quasi-exponentially with A (s).

To avoid catastrophic cancellation, a natural idea then consists in
upper-bounding x by a value M depending on the machine preci-
sion, so that the top of the hillock remains within the range where
additions between two numbers can be safely performed, i.e., with
no absorption of their leading digit. More precisely, if the machine
has a precision of 107 (d = 7 for a floating number encoded on
32 bits, d = 16 on 64 bits), then the top of the hillock should be

bounded by 10% 50 as to be able to safely cover additions on the

range [10*% , 10%]. Using Equation (12), one can easily prove that
a sufficient upper-bound for M is

Mgmax{neNs.t. (n+1)"<10%n!}. (13)

One gets M < 19 for d = 16. In practice, we set M to 10 to maintain
good precision across summation. This choice allowed us to reach
high precision for all the summations we have computed.

6.3 Adaptive Piecewise Summation (APS)

Consider again the norm of the general term of our first-order re-
cursive sequence || 7,(s)||, < @(A(s)) ||%].... From previous sec-
tion, a sufficient condition to avoid catastrophic cancellation when
computing the sum ¥ (s) = ¥, ¥,(s) is to have A(s) < M with M
provided by Equation (13). Since A is a second order polynomial
in s > 0, this implies s < smax (0) with

(o) |12 +2M]17]l..~ Il (o).

s (0) = 2. ify70
‘max = M .
(o) else if 1.('(0') #0
400 otherwise

(14)
and recalling that x(0) = Kp.

More generally, suppose we have already computed ¥ at a given
point 0; > 0. Then ¥ can be safely evaluated through Recur-
sion (10) at any s satisfying 0; < s < G; + Smax (0;)-

The idea then consists in splitting the evaluation domain [0, ¢] into p
adaptive subintervals [0, 01],[01,07],- - [0,—1,£] such that 6, | =
O; + smax(0;). On each subinterval, summation is thus guaranteed
to be performed with good accuracy (see an illustration in Figure 5).

0,0] [01,02]

—

Figure 5: Visual representation of our piecewise summation algo-
rithm applied to the rod’s kinematics (one clothoidal element). The
length of each subinterval which guarantees a safe evaluation of
the geometry is automatically provided by our method.

[62./’,]

From Equation (9b) it is clear that using the same subintervals, the
centerline r(s) can be also safely computed, since the supplemen-

tary Wll factor appearing in the power series coefficient only acts
in favor of mitigating the norm of the general term of the series.

From Expression (14), more subdivisions are to be expected in
curled parts than in straight ones, as depicted by Figure 5. In prac-
tice, the number of subdivisions used for our examples remained
fairly low (around 10 to 20) and seldom reached more than one
hundred. Moreover, we experimentally found out that our spatial
upper-bound was close to optimal, as taking longer segments very
often makes the computation algorithm fail. Figure 3b shows a typi-
cal example of clothoid integrated with our approach, and Figure 3¢
depicts an extreme case where the clothoidal element is lengthy and
highly curved.

Summation algorithm Assume that we have a naive rou-
tine naiveSumbDarboux (s, Rcl, kap0, gam) for computing the sum
Z(s) at s > 0 (using Recursion (10)), with data xapo and gam as
first end curvature and curvature slope, respectively. Then our new
piecewise summation algorithm, which safely computes Z(s) at
any s > 0, simply reads

Matrix function adaptivePiecewiseSumDarboux (double s,
Matrix Rcl, Vector kap0, Vector gam) {
Matrix in = Rcl; // Current initial value
sig0 = 0; sigl = s.max(0); // Upper—bound given by (14)
kapOc = kap0; // Curvature at first end point
while ( sigl < s ) {
// Compute the series at the end of the subinterval
in = naiveSumDarboux (in, sigl—sig0, kapOc, gam);
sigh0 = sigl;
sigl = sig0 + s_max(sig0); // Updating upper—bound
kapOc = kap0 + sigOxgam; // Updating kapOc
}
// Compute the series at s
return naiveSumDarboux (in, s—sig0, kapOc, gam);
}
For the interested reader, we provide in supplemental material all
the details for implementing our algorithm in the case of a simple
2D Cauchy problem on SO(2).

6.4 Comparisons against classical integrators

We have applied our new integration method (APS) to the solving
of the Darboux problem for a curly rod made of a single clothoidal
element. The performance of APS was compared against 4 classi-
cal ODE:s integrators: standard Euler (Euler), Euler on a Lie group



(Lie), Runge-Kutta of second (RK?2) and forth (RK4) order. We first
computed the geometry of the rod at a very high precision, with any
of these integrators (all converged to the continuous solution). This
high-precision geometry served as a reference for our comparisons.
Then, we applied each integrator to our kinematic problem with a
varying spatial step (corresponding to a varying truncature error for
our method), and saved for each problem-solving the computational
time as well as the numerical precision reached, measured as the L,
distance to the reference.
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Figure 6: Evaluation of our formal-like integrator (APS) compared
to classical integrators, on the Darboux problem (reference rod in
red). Our method largely outperforms all others.

In Figure 6 we have plotted as a function of the precision the
minimum computational time required to achieve the correspond-
ing precision, in log scale. Apart from the bottom right region
where precision is poor and corresponds to a visually large error,
our method clearly and largely outperforms all other integrators.
It even manages to reach machine precision with a very low tim-
ing * = 2.6 10~2ms, which appears to be out of reach for other
integrators in a reasonable amount of time, whatever their order of
convergence. Indeed, increasing the order of Runge Kutta from 2 to
4 does impact the number of performed time steps to reach a given
precision, but not the total computational time required. The good
performance of our method is explained by the fact that our com-
putation algorithm leverages the particular structure of the problem
consisting of an explicit linear ODE with polynomial coefficients.

Finally, although our summation method to compute the material
frame is by no ways constrained to operate on SO(3) (unlike the
Lie integrator), the total sum Z(s) appears to be, up to the machine
precision, an exact rotation matrix, with no need for subsequent
projection onto the SO(3) manifold.

6.5 Computing a Kinematic Chain

Until now we have focused on a single clothoidal element. Our aim
is now to build the kinematics of a full rod made of N connected el-
ements with G>-continuous junctions. This can be achieved by us-
ing a process very similar to our piecewise computation strategy for
one element, presented above. Let r'(s) and %' (s) be respectively
the local centerline and local material frame of element i. Denoting
by %, (resp. rh,) the coefficient of degree n of the power series for
Z'(s) (resp. ri(s)), continuity conditions between elements i — 1

and i read
Ay = #'(i)
# = Hylkil,
051+2 = ﬁ('%)rlurl[kl]x +'%>ril[i,.[ii'i+lfii'i]><)v VneN
) = i)
v = 5 Z)(100)7, VneN.

7 Propagating Power Series to the Dynamics

7.1 Computing the coefficients of the temporal ODE

Our goal is now to accurately and efficiently compute vectors G
and A and matrix M of the dynamic equation (7) for a super space
clothoid. The expressions of these coefficients, given by (8), build
upon the kinematics using 4 basic operations: (a) Linear combina-
tion; (b) Integration with respect to s; (c) Scalar product; and (d)
Differentiation with respect to q.

Invariance property A nice property is that, assuming the basic
operands are convergent power series and that conditions for apply-
ing our piecewise summation are satisfied (which holds for Z(s)
and r(s), see Section 6), then the result of each operation (a), (b),
(c), and (d) is also a convergent power series on R and our computa-
tion algorithm remains valid. Figure 7 sums up this nice invariance
property, and provides the resulting power series as well as a suit-
able upper-bound for the corresponding general term, accounting
for the validity of our summation algorithm.

Proving the convergence of a power series under linear combina-
tion, integration and product is straightforward. For the first two
operations, the upper-bound given in Figure 7 is multiplied by a
constant or a decreasing factor compared to the general term of the
operand. Summation with our algorithm is thus guaranteed to op-
erate within the range of high precision. Consider now the product
of series, given by the Cauchy product. The (n+ 1) factor in the
upper-bound is actually not an issue as all scalar products appearing
in Equation (8) are subsequently integrated, thus being multiplied
by ﬁ The product of maximums however raises up the top of
the hillock, and theoretically, twice as much as subdivisions should
be required to guarantee accurate summation of terms. In practice
however, such a refinement proved to be unnecessary to maintain
high precision.

Finally, power series and applicability of our summation algorithm
also propagate through differentiation with respect to q. This can
be proved by considering the differential equation satisfied by the
differentiated quantity — typically the material frame Z(s) and the

centerline r(s). The ODEs for g—; and %—‘f read

(ﬂ), = a—‘%(1 00)"

dq dq
P AT d [K],
(5a) = S, 1

and are very similar to the kinematic equations. It is in particular

easy to show that the supplementary term % % in (15), which

admits a power series expansion on R, has no impact on the con-
vergence of the solution nor on the profile of the general term of the
corresponding power series.

Simple, fast and accurate computation From what precedes,
all the terms given by Equation (8) are convergent power series on
R and their sum can be computed with high precision thanks to our



Operation Power series convergence on R and computation Justification for applying our summation algorithm
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Power series convergence and induction given by Cauchy’s theorem

The ODE for g—g fits the structure required

(explicit, linear, with polynomial coefficients)

Figure 7: Algebraic and differential operations preserve the structure of our problem and thus ensure the convergence of power series on R

as well as the validity of our summation algorithm.

adaptive piecewise computation algorithm. For instance, consider
the mass matrix M(q). Its power series expression reads

We compute M by first, computing the general term of the power

series of g—;. Then we compute the general term of the Cauchy

product for this series, and finally sum across each element, us-
ing APS. Note how integration is simplified thanks to the use of
power series. The most expensive operation actually appears to be
the Cauchy product. In practice however, the overhead was not sig-
nificant as the maximal number of terms involved in Cauchy prod-
ucts remained lower than 20.
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7.2 Time-stepping scheme

For efficiency purposes, we discretized the dynamic equation (7)
using a semi-implicit Euler scheme. Linear terms in q are handled
in an implicit way while nonlinear terms are set explicit. As the
stiffest terms (bending and twisting forces) are precisely linear in q,
such a simple scheme actually yields a fairly good stability while
remaining very cheap. For scenarios involving fast and nervous
motions (see Section 8.1), we found out that impliciting the term
A at first-order in q furthermore increased stability without adding
too much overhead. In most of our demos, we have been using a
large time step varying between 11 and 33 ms.

8 Validation and Results

In this section we carefully validate our new rod primitive and
compare it to the most relevant ones in Computer Graphics. We
also demonstrate the ability of our primitive to efficiently and faith-
fully reproduce various challenging phenomena involving arbitrary
curled rods, from the growth of twining plants to the animation of
curly hair. Corresponding animations are presented in the accom-
panying video.

8.1 Comparisons with previous models

Framework We compare our Super Space Clothoid primitive
(SSC, with 3 (N + 1) degrees of freedom) against two inextensible
rod models based on radically different discretization approaches:

e The Super-Helix model (SH), based on a piecewise constant
curvature discretization of the kinematics. Similarly to our
model, inextensibility is intrinsically captured and a semi-
implicit time-stepping scheme is used where the internal elas-

tic forces, which are linear, are made fully implicit. This
model possesses 3N degrees of freedom when the rod is split
into N helical elements.

e The Discrete Elastic Rod model (DER), based upon a nodal
discretization of the centerline [Bergou et al. 2008]. In the
case of curled rods, to avoid severe numerical instabilities,
we opted for the fully implicit time-stepping scheme derived
in [Bergou et al. 2010]. In this latest version of the model,
nodal positions r; as well as discrete twist angles 0; are re-
leased as degrees of freedom, and inextensibility is enforced
through a stiff (implicit) stretch force. For a rod split into N
straight elements, the total number of degrees of freedom is
3(N+1)+N=4N+3.

In both cases, we used the reference implementation provided by
the authors for our comparisons.

Finally, we designed two different rod simulations as benchmarks:
(a) a straight rod falling under gravity and swinging in the plane,
and (b) a long curly rod unwinding under gravity (see Figure 8).

(a) (b)

Figure 8: Our two benchmarks (a) and (b), illustrated with our
model SSC made of 5 elements.

Validation and spatial convergence Our first experiment con-
sists in computing the equilibrium position of the curled rod under
gravity (b), using the three models SSC, SH, and DER, with a vary-
ing number of degrees of freedom (dof). At a high resolution, we
notice that the three models converge exactly to the same config-
uration, which validates the consistency of our approach. We call
this limit configuration the reference configuration. We then com-
pare the geometric error (measured with the L, distance) between
the reference configuration and the equilibrium configuration gen-
erated by each model’, when the number of degrees of freedom
varies. Results are shown in Figure 9, left, in log scale (similar re-
sults were obtained for experiment (a)). The higher order of conver-
gence of our approach compared to others is clearly demonstrated.

SFor DER, smoothing the centerline with a spline didn’t improve results.




At the limit of the visual distinction to the reference, our model
requires around 3 times less dofs than SH, and 50 times less than
DER. Even with a low spatial resolution, our model provides good
accuracy, whereas DER requires at least 200 dofs (~ 50 elements)
to generate a reasonable equilibrium configuration. To closely ap-
proximate the reference, 1000 dofs (= 250 elements) are required
for DER compared to 70 dofs (= 23 elements) for SH and 24 dofs
(= 7 elements) for our model. In order to free ourselves from varia-
tions in time-stepping schemes between the three models, as well as
from their poor (only first) order of convergence — all this making
comparisons to a dynamic reference very tricky — we have cho-
sen to measure accuracy on the static rod configuration. Yet, one
can reasonably imagine that such measured accuracy is a reliable
indicator of the global spatial accuracy achieved all along motion.

Computational time for a nervous motion We now measure
the computational time required to simulate our dynamic experi-
ments (a) and (b). To enhance richness of motion, friction parame-
ters are kept small. We then choose the same timestep (df = 11 ms)
for all models, and plot the total computational time function of the
number of dofs, for each model. Figure 9, middle, gives the result-
ing plots for the curly experiment (b). Very similar plots are ob-
tained for the straight rod experiment (a). As expected, for a given
number of dofs, our model requires more computations than SH
which itself appears to be more costly than DER. Note also that the
performance of DER better (linearly) scales up with dofs compared
to the two other models. This is due to the sparse implementation of
DER, compared to the dense structure of reduced models. However,
as already mentioned, our model requires much less dofs than other
approaches (especially DER) to generate accurate spatial configu-
rations and to closely match reference static equilibria. This raises
up the fundamental question of the trade-off between accuracy and
computational time, which is addressed below.

Accuracy vs. computational time To get a hint of the accu-
racy vs. cost trade-off for the different rod models, a natural idea
is to connect the accuracy plot (Figure 9, left) to the cost plot (Fig-
ure 9, middle). The intersection of both plots yields Figure 9, right.
Interestingly, plots for SH and SSC cross each other above the vi-
sual limit for precision, and before the real-time limit. In the low-
accuracy zone, the super helix model provides a better trade-off
than our model. Note however that our accuracy measure does not
take into account fairness, which, at such low resolutions, proves
to be quite poor with SH compared to SSC (see Figure 2). When
getting to the high accuracy zone, our model starts to behave better
than SH. In this case indeed, the computational overhead for com-
puting each element becomes compensated by the gain in accuracy.

Finally, on nervous motions such as those generated by our two
benchmarks (a) and (b), DER clearly under-performs compared to
the two reduced models. Indeed, DER is first penalized by the com-
plex geometry of the rod, which requires a large resolution to be
correctly represented and/or mechanically deformed. Second, due
to the fast unwinding (resp. swinging) of the curly (resp. straight)
rod, which causes a fast increase in stretching and bending terms,
the Newton solver requires a large number of iterations to converge.
Since DER is in practice almost always stable, one could increase
its performance by raising up the timestep to a larger value, i.e.,
dt = 33ms. We re-run the two simulations (a) and (b) with this
new timestep for all models. Our model coped with it and we again
obtained the same plot profile.

Energy preservation To assess the richness of motion yielded
by each model, we simulate the swinging motion (a) and plot the
mechanical energy function of time. All friction parameters are set
to 0 so that dissipation is caused by numerical damping only, and
we use the same timestep (df = 11ms) for all models. As SH is
unstable at this timestep (while the two others remain stable even

for dt = 33 ms), we compare our model to DER only. We notice
that the motion generated by DER is more damped than ours, as
depicted by the substantial loss of energy right at the beginning of
the motion. We observed the same phenomenon on experiment (b).
Actually, such numerical damp-

ing is mainly due to the implicit w —
treatment of stretch terms, which I
is necessary for DER to stably
preserve inextensibility. In con-
trast, as our model is intrinsi-
cally inextensible, high frequen-
cies due to a fast unwinding of
the rod are much less filtered out K o

by the time integrator. R B T

Mechanical Energy (i J)

Discussion It is quite difficult to give an exhaustive compara-
tive study of such different rod models: each approach has its own
strengths and weaknesses, and depending on the context of usage,
the best trade-off may not be uniquely determined. In our study, we
deliberately focused on the simulation of the nervous (as opposed
to damped) motion of arbitrarily curly rods. In that context, we ob-
served that our super space clothoid model offered the best trade-off
in terms of spatial accuracy, stability and computational time. In-
deed, although pushing upward the order of elements has a price to
pay, this price is mitigated by the high resulting accuracy which es-
pecially outperforms that of the super helix model. Moreover, while
our time-stepping is not fully implicit, it proves to be sufficiently
stable in most scenarios thanks to the (inexpensive) implicit han-
dling of linear stiff terms, in particular of elastic forces. In contrast,
the main strength of the discrete elastic rod model is definitely its
great stability, which proved to be essential for simulating fast and
nervous motions of curly rods — an explicit time-stepping scheme
requiring a way too small timestep to remain stable. However, sta-
bility has a price to pay, first in term of computational cost. This
price is exacerbated in the case of a nervous motion, since the New-
ton solver needs much more iterations to converge. Second, some
substantial numerical damping, mainly caused by implicit stretch
terms, contributes to filter out high frequencies, thus impoverishing
the original motion.

Note that our (modest) dynamic study relied for each model on
the most stable time-stepping scheme implemented among avail-
able codes. Models could be coupled to more sophisticated inte-
grators, with higher order of accuracy and better energetic proper-
ties [Hairer et al. 2006]. In the future we would like to push forward
the dynamic comparisons between models in such settings.

8.2 Coupling with contact

Twining plant The growth of twining plants around a pole is a
fascinating problem that raises several interesting questions such
as the mechanical ability of a plant to climb depending on the
width of the pole, or the topology of contact that is involved dur-
ing growth [Goriely and Neukirch 2006]. In their paper, Goriely
and Neukirch model this phenomenon as a spatial boundary value
problem by considering a naturally curled Kirchhoff rod with con-
stant intrinsic curvature &, contacting at both end points a cylinder
of radius R, with & > % (otherwise the plant could not twine around
the pole). In the 2D frictionless case, by studying bifurcations of the
underlying dynamical system (space playing the role of time) they
show that there exists a unique critical value p. for the curvatures
ratio p = KR below which the rod is able to climb, and numeri-
cally estimate (through a shooting strategy) that p. ~ 3.3. In the
favorable configuration (p < p), it is demonstrated that the contact
topology remains stationary as the plant twines around the pole, and
that it is characterized by an isolated contact point at the tip (the tip
making a constant angle with the pole) followed by a region with-
out contact, and finally a continuous contact zone between the pole
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Figure 9: Comparisons between our rod model (SSC) and previous models SH and DER, in terms of accuracy and efficiency.

and the remainder of the rod. In the unfavorable case (p > p.), the
curve rolls on itself and loses its grip.

We simulated such a 2D frictionless growth process with our own
rod model coupled to a (penalty-based) contact solver, and were
able to capture all these phenomena accurately (see Figure 10a).
We especially retrieved the critical value p. = 3.3 up to a 1% preci-
sion, using only N =5 clothoidal elements. In the 3D case, the con-
figuration of a twining plant is modeled in [Goriely and Neukirch
2006] as a generalized helix with non-uniform pitch. We simulated
the growth of our rod model in 3D (see Figure 10b) and indeed
observed at any stage of the growing process a variation in pitch
along the centerline, especially emphasized near the tip. Note that
we have been using only N = 10 clothoidal elements for the full
simulation generating 5 loops around the pole.
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Figure 10: Twining plant. (a): 2D experiment capturing the thresh-
old for twining, and corresponding curvature profiles. (b): 3D ex-
periment, with N = 10 clothoidal elements. Observe the variation
in pitch near the tip.

Realistic and stylized hair animation Our rod model was
seamlessly coupled with the frictional contact solver presented
in [Daviet et al. 2011]. To illustrate the versatility of our model, we
simulated various hair scenarios involving hair-body and hair-hair
contacts with Coulomb friction (¢ = 0.2). We first animated two
hairstyles made of 662 rods with 4 elements per rod: one smooth,
and the other highly curly. Note that in the second case, due to
the strong entangling between fibers — correctly taken into ac-
count by the frictional solver —, we reproduced the bulk, quasi-
rigid motion characteristic of fuzzy hair. We also designed and
animated an aesthetic curly hair inspired from SIGGRAPH’s An-
imation Mother [CGSociety 2008] using 100 rods and 1 up to 4
clothoidal elements per rod (only 1.55 element per rod on average).

Results are shown in Figure 11 and in the accompanying video.
This example captures well each strand’s own nonlinear dynamics,
as well as the strong, frictional entangling between strands.

Figure 11: Aesthetic simulation of a stylized hair, with 100 super
space clothoids made of 1.55 clothoidal elements on average.

8.3 Towards the animation of curled surfaces

Finally, though assumptions for a thin elastic rod do not strictly
hold anymore, we found that with an exaggerate flat and long cross-
section, our primitive was able to generate rich shapes and motion
for a small surface in a very efficient way, by using only two or even
one single element. We used this interesting feature to simulate in
real-time the geometry and motion of a curled ribbon, a poster and
a rolled parchment (see Figures 1 and 12). These simple but strik-
ing examples illustrate the particular richness of our space clothoid
element, both in terms of geometry and mechanical deformation.
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Figure 12: Rolled parchment and poster, simulated as one single
clothoidal element with an exaggerate flat and long cross-section.

Conclusion

We have introduced a high-order rod primitive based on 3D
clothoidal elements. Accurate and fast spatial discretization is
achieved thanks to a new formal-like integrator based on power se-
ries and adapted to floating-point arithmetic. Our model is success-
fully applied to the simulation of straight as well as highly curly
strands like curled ribbons, plants and hair, with a very low number
of elements. We also thoroughly compare our new rod model to
the most relevant ones in graphics, and show that our model offers



a better trade-off in terms of spatial accuracy, richness of motion,
and efficiency. Such a study is particularly difficult in the dynamic
settings as time-stepping schemes are of low order, and greatly vary
from one model to the other. In the future, we would like to refine
this study by increasing the order of accuracy of the time-stepping
schemes as well as better preserving energy. Finally, we believe
that extending our new high-order rod primitive to plates and shells
would allow one to efficiently and accurately simulate the deforma-
tions of detailed geometric surfaces like cloth folds and wrinkles.
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