C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar images, 2004.

L. Xu, A. Krzyzak, and C. Y. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.3, pp.418-435, 1992.
DOI : 10.1109/21.155943

J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data, IEEE Transactions on Geoscience and Remote Sensing, vol.28, issue.4, pp.540-552, 1990.
DOI : 10.1109/TGRS.1990.572944

S. Foucher, M. Germain, J. Boucher, and G. B. Benie, Multisource classification using ICM and Dempster-Shafer theory, IEEE Transactions on Instrumentation and Measurement, vol.51, issue.2, pp.277-281, 2002.
DOI : 10.1109/19.997824

D. H. Wolpert, Stacked generalization, Neural Networks, vol.5, issue.2, pp.241-259, 1992.
DOI : 10.1016/S0893-6080(05)80023-1

M. Fauvel, J. Chanussot, and J. A. Benediktsson, Decision Fusion for the Classification of Urban Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.10, pp.2828-2838, 2006.
DOI : 10.1109/TGRS.2006.876708

URL : https://hal.archives-ouvertes.fr/hal-00096287

G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, Multiple classifiers applied to multisource remote sensing data, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.10, pp.2291-2299, 2002.
DOI : 10.1109/TGRS.2002.802476

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, pp.226-239, 1998.
DOI : 10.1109/34.667881

R. Gaetano, G. Moser, G. Poggi, G. Scarpa, and S. B. Serpico, Region-Based Classification of Multisensor Optical-SAR Images, IGARSS 2008, 2008 IEEE International Geoscience and Remote Sensing Symposium, pp.81-84, 2008.
DOI : 10.1109/IGARSS.2008.4779661

M. Datcu, F. Melgani, A. Piardi, and S. B. Serpico, Multisource data classification with dependence trees, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.3, pp.609-617, 2002.
DOI : 10.1109/TGRS.2002.1000321

D. B. Hester, H. I. Cakir, A. C. Nelson, and S. Khorram, Per-pixel Classification of High Spatial Resolution Satellite Imagery for Urban Land-cover Mapping, Photogrammetric Engineering & Remote Sensing, vol.74, issue.4, pp.463-471, 2008.
DOI : 10.14358/PERS.74.4.463

F. Yuan, Land???cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modelling, International Journal of Remote Sensing, vol.61, issue.4, pp.1169-1184, 2008.
DOI : 10.1016/S0924-2716(98)00027-6

P. M. Mather and M. Koch, Computer processing of remotely???sensed images ??? An introduction, Geocarto International, vol.2, issue.4, 2011.
DOI : 10.1080/10106048709354125

D. Amarsaikhan and T. Douglas, Data fusion and multisource image classification, International Journal of Remote Sensing, vol.22, issue.17, pp.3529-3539, 2004.
DOI : 10.1016/0034-4257(93)90070-E

M. R. Metwalli, A. H. Nasr, O. S. Allah, S. El-rahaie, and F. E. El-samie, Satellite image fusion based on principal component analysis and high-pass filtering, Journal of the Optical Society of America A, vol.27, issue.6, pp.1385-1394, 2010.
DOI : 10.1364/JOSAA.27.001385

B. Storvik, G. Storvik, and R. Fjortoft, On the Combination of Multisensor Data Using Meta-Gaussian Distributions, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.7, pp.2372-2379, 2009.
DOI : 10.1109/TGRS.2009.2012699

B. Zhukov, D. Oertel, F. Lanzl, and G. , Unmixing-based multisensor multiresolution image fusion, IEEE Transactions on Geoscience and Remote Sensing, vol.37, issue.3, pp.1212-1226, 1999.
DOI : 10.1109/36.763276

V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data, IEEE Geoscience and Remote Sensing Letters, vol.8, issue.1, pp.148-152, 2011.
DOI : 10.1109/LGRS.2010.2053517

URL : https://hal.archives-ouvertes.fr/inria-00503893

G. Celeux, D. Chauveau, and J. Diebolt, Stochastic versions of the em algorithm: an experimental study in the mixture case, Journal of Statistical Computation and Simulation, vol.67, issue.4, pp.287-314, 1996.
DOI : 10.1214/aos/1176346060

URL : https://hal.archives-ouvertes.fr/hal-00693519

H. Li, W. Hong, Y. Wu, and P. Fan, On the empirical-statistical modeling of SAR images with generalized gamma distribution, IEEE J. Sel. Top. Signal Process, vol.5, issue.3, pp.386-397, 2011.

C. Tison, J. Nicolas, F. Tupin, and H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.10, pp.2046-2057, 2004.
DOI : 10.1109/TGRS.2004.834630

URL : https://hal.archives-ouvertes.fr/hal-00556167

R. B. Nelsen, An introduction to copulas, 2006.
DOI : 10.1007/978-1-4757-3076-0

V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, Supervised High-Resolution Dual-Polarization SAR Image Classification by Finite Mixtures and Copulas, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.3, pp.554-566, 2011.
DOI : 10.1109/JSTSP.2010.2103925

URL : https://hal.archives-ouvertes.fr/inria-00562326

C. Graffigne, F. Heitz, P. Perez, F. Preteux, M. Sigelle et al., <title>Hierarchical Markov random field models applied to image analysis: a review</title>, Neural, Morphological, and Stochastic Methods in Image and Signal Processing, pp.2-17, 1995.
DOI : 10.1117/12.216341

P. Fieguth, Statistical image processing and multidimensional modeling, 2011.
DOI : 10.1007/978-1-4419-7294-1

J. Laferte, P. Perez, and F. Heitz, Discrete Markov image modeling and inference on the quadtree, IEEE Transactions on Image Processing, vol.9, issue.3, pp.390-404, 2000.
DOI : 10.1109/83.826777

M. A. Figueiredo and A. K. Jain, Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.381-396, 2002.
DOI : 10.1109/34.990138

I. Sneddon, The use of integral transforms, 1972.

V. A. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation, IEEE Transactions on Image Processing, vol.22, issue.10, 2013.
DOI : 10.1109/TIP.2013.2262285

URL : https://hal.archives-ouvertes.fr/inria-00605274

D. Huard, G. Evin, and A. Fabre, Bayesian copula selection, Computational Statistics & Data Analysis, vol.51, issue.2, pp.809-822, 2006.
DOI : 10.1016/j.csda.2005.08.010

G. Mercier, G. Moser, and S. B. Serpico, Conditional Copulas for Change Detection in Heterogeneous Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.5, pp.1428-1441, 2008.
DOI : 10.1109/TGRS.2008.916476

I. Kojadinovic and J. Yan, Comparison of three semiparametric methods for estimating dependence parameters in copula models, Insurance: Mathematics and Economics, vol.47, issue.1, pp.52-63, 2010.
DOI : 10.1016/j.insmatheco.2010.03.008

URL : https://hal.archives-ouvertes.fr/hal-00868099

E. Lehmann and J. Romano, Testing statistical hypotheses, 2007.

Z. Kato, M. Berthod, and J. Zerubia, A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification, Graphical Models and Image Processing, vol.58, issue.1, pp.18-37, 1996.
DOI : 10.1006/gmip.1996.0002

URL : https://hal.archives-ouvertes.fr/inria-00074736

E. Fabre, New fast smoothers for multiscale systems, IEEE Transactions on Signal Processing, vol.44, issue.8, pp.1893-1911, 1996.
DOI : 10.1109/78.533711

J. Laferte, F. Heitz, P. Perez, and E. Fabre, Hierarchical statistical models for the fusion of multiresolution image data, Proceedings of IEEE International Conference on Computer Vision, pp.908-913, 1995.
DOI : 10.1109/ICCV.1995.466839

S. G. Mallat, A wavelet tour of signal processing, 2008.

A. Voisin, V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, Classification of very high resolution SAR images of urban areas, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00631038

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1002/cpa.3160410705

M. Vetterli, J. Kovacevic, and V. K. Goyal, Fourier and wavelet signal processing, 2013.

M. R. Luettgen, W. Karl, and A. S. Willsky, Efficient multiscale regularization with applications to the computation of optical flow, IEEE Transactions on Image Processing, vol.3, issue.1, pp.41-64, 1994.
DOI : 10.1109/83.265979

C. Bouman and M. Shapiro, A multiscale random field model for Bayesian image segmentation, IEEE Transactions on Image Processing, vol.3, issue.2, pp.162-177, 1994.
DOI : 10.1109/83.277898

J. Marroquin, S. Mitter, and T. Poggio, Probabilistic Solution of Ill-Posed Problems in Computational Vision, Journal of the American Statistical Association, vol.18, issue.397, pp.76-89, 1987.
DOI : 10.1080/01621459.1987.10478393

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, The Annals of Mathematical Statistics, vol.41, issue.1, pp.164-171, 1970.
DOI : 10.1214/aoms/1177697196

M. Berthod, Z. Kato, S. Yu, and J. Zerubia, Bayesian image classification using Markov random fields, Image and Vision Computing, vol.14, issue.4, pp.285-295, 1996.
DOI : 10.1016/0262-8856(95)01072-6

URL : https://hal.archives-ouvertes.fr/hal-01087878

J. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Royal Stat. Soc. Ser. B, vol.36, issue.2, pp.192-236, 1974.

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell, vol.6, issue.6, pp.721-741, 1984.

P. C. Smits and S. G. Dellepiane, Synthetic aperture radar image segmentation by a detail preserving Markov random field approach, IEEE Transactions on Geoscience and Remote Sensing, vol.35, issue.4, pp.844-857, 1997.
DOI : 10.1109/36.602527

P. Zhong, F. Liu, and R. Wang, A New MRF Framework with Dual Adaptive Contexts for Image Segmentation, 2007 International Conference on Computational Intelligence and Security (CIS 2007), pp.351-355, 2007.
DOI : 10.1109/CIS.2007.192

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

S. B. Serpico and G. Moser, Weight Parameter Optimization by the Ho&ndash;Kashyap Algorithm in MRF Models for Supervised Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.12, pp.3695-3705, 2006.
DOI : 10.1109/TGRS.2006.881118

G. Moser, S. B. Serpico, M. D. Martino, and D. Coppolino, Automatic partially supervised classification of multitemporal remotely sensed images, Image and Signal Processing for Remote Sensing X, pp.126-137, 2004.
DOI : 10.1117/12.567968

A. K. Jain, Fundamentals of digital image processing, 1988.

A. Vladimir, . Krylovm, and . Sc, he was collaborating with the Ariana team at INRIA as a visiting student, and in 2011?2012 he was a postdoctoral fellow with Ariana and Ayin teams at INRIA Since 2012 he is a research associate with the Dept His research interests are in the field of statistical signal processing and pattern recognition applied to medical and remote sensing imagery, Ph.D.) degree in statistics both from the Lomonosov Moscow State University, 2007.

G. Moser, degree (summa cum laude) in telecommunications engineering and the Ph.D. degree in space sciences and engineering from the University of Genoa Since 2010, he has been an Assistant Professor of telecommunications at the University of Genoa. Since 2001, he has cooperated with the Image Processing and Pattern Recognition for Remote Sensing (IPRS) laboratory of the University of Genoa, working with the Ariana research group on the problem of SAR data modeling. Dr. Moser has been an Associate Editor of IEEE Geoscience and Remote Sensing Letters and Pattern Recognition Letters since, he was a visiting student at the Institut National de Recherche en Informatique et en Automatique (INRIA) He was the recipient of the Best Paper Award at the 2010 IEEE Workshop on Hyperspectral Image and Signal Processing. He has been a reviewer for several international journals, 2001.

S. B. Serpico, 08) received the Laurea degree in electronic engineering and the Doctorate from the University of Genoa, Italy, in 1982 and 1989, respectively. Full Professor of telecommunications at the Polytechnic School of the University of Genoa, he is the Head of the Image Processing and Pattern Recognition for Remote Sensing (IPRS) laboratory of the

. Dr, Zerubia is currently a member of the IEEE IVMSP TC and was a member of the IEEE BISP TC (SP Society) from, 2004.