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ABSTRACT a function optimisation to obtain a spectral signature. The

In this paper, we use statistical inference and muti-spectr{!i'd Step is evaluating the lesion spatial changes between two

images to quantify the evolution of skin hyper-pigmentationT€asurements, which is the purpose of this paper. To per-
lesions under treatment. We show that statistical inference alo™M this evaluation, we have a series of multi-spectral images
lows getting change maps of the disease which can be usefil S0: ::HSk; ::HSn] taken at timesto; :::t; :::ta]. More-

for dermatologists to analyze the disease evolution. Indeed,&Y€" We have a binary classi cation mabks, de ning the
local change map is obtained by computing the deviation beXO! computed o So during the rst step, and a spectral sig-
tween two multi-spectral images in a region of interest (ROl)__nature that allows the integration of the multi-spectral images

Then, we normalize the obtained map and develop a statidt0 9ray scale imageBo; :::ly;:::ln]. Thereby, we aim to
tical inference framework to quantify the changes. Finally,use the Stat'St'C"f‘I _Pargmetrlc Mapping (SPM) methodology
we propose a criterion that integrates change maps in order %] based on statistical inference to map the changes between

quantify the treatment ef cacy on a patient. lo and each Of, the imgges inside the ROI', ,
The paper is organized as follows. Section 2 describes the

Index Terms— multi-scale analysis, statistical inference, statistical inference to quantify local signi cance of changes.

multi-spectral image, skin, hyper-pigmentation. Section 3 proposes a homogeneity criterion to integrate a
change map into a scalar criterion. Finally, we demonstrate
1. INTRODUCTION experimental results on patients whose lesions of melasma

have a decreasing severity.
In dermatology, spectral information is used to quantify the
severity of pigmentation lesions like melasma. To this end,
spectro-colorimeters allow the measurement of an average 2. STATISTICAL INFERENCE

spectrum on a small skin area. Such measurements can be

repeated to get an evolution curve per patient, or to do stati€&Cr SKin pigmentation analysis, dermatologists can be inter-
ested by both height and low intensity changes inside a le-

tical analysis of a treatment ef cacy on a group of patients.*: , :
The lack of spatial information about the lesion is the wealo"- In fact, we are interested to evaluate if a treatment affect

point of spectro-colorimeters. To overcome this limit wef[he pathological area by decreasing the pigmentation in local-

propose to use multi-spectral images. Multi-spectral image€d Spots, or affect large areas. To this end we propose to

are series of gray scale frames taken at different wavelengthidSe statistical inference. Such a methodology was used for

For hyper-pigmentation, the range of the wavelengths is trorfMRI studies on brain activity [4] to detect small intensity but

400 nm to 900 nm. spatially consistent changes and height intensity changes with
To characterize hyper-pigmentation lesions, we decom? muIti-scaI_e analysi_s called SPM. We_ adgpt this framework

pose the image analysis into three steps: the rst step is th€ OUr SPeci c_detecnon problem considering a change map

lesion segmentation. This segmentation can be done maf€ N€dbyCik = I To.

ually, with methods based on physical model [1], on CIE

L a bdecomposition [1], or on independent componentanal2 1. Change map normalisation

ysis (ICA) [2]. We proposed a method based on support vec-

tor machine (SVM) in [2]. The second step is to design aStatistical inference is a mathematical model for highly cor-

spectral signature of the lesion. Such a signature can be eri¢lated Gaussian random eld. Two transformations are then

pirical, for example the Luminance of the CIEa bdecom- need forCy to t the model. First, we smootiCy with a

position, or a spectrum obtained by physical analysis [1]. W&aussian convolution [ter to increase it spatial correlation.

proposed in [3] a statistical approach based on ICA and oBecond, the ROl oy denotec[:li‘/Ipo is de ned by a unique



class on a radiometric image. Thi@ " histogram can be Algorithm 1 Statistical Map

model as monomodal. We use a histogram speci cation td&Require: |g, I, My,

transformC," " histogram into a Gaussian distribution. We 1: Ck = Ik Io

center and reduce the obtained distribution to standardize it2: Smooth and normaliz€y to getC{ (see section 2.1)
In the following we will denoteC} the normalized change 3: Choose a familyJ = ug; i un,

map. 4: fori =1 tony do

5. Compute the connected components ahgve

6: for each connected componetd
7

8

9

2.2. Change map thresholdin
g P g CalculateP (RS0 2 F) with eq. 9

Cl satis es the conditions to apply the Gaussian eld theory end for

[5]. An important characteristic of a Gaussian dfdof size . end for

S is the DT (Differential Topology) characteristic de ned by: 10: Merge the obtained connected clusters obtained with the
family U to getSM;,

x 1
(A= D DD (A (1)
k=
° normal distribution,
where the excursion sé{, is de ned by: Z,
Lox2
Ay =fs2 S:F(s) ug; ) E(N\)=S (2)2ze 2 =S( u (6)

u

whereu is a given threshold) the dimension of the eld and then,
k (Ay) the number of points 2 A, satisfying the condi-

tions: (@)F(s) = u, (b) Fl)(s) = 0;8i 2 [1;,D 1], (c)

F(®)(s)> 0and (d)thgD 1) (D 1)matrix of second . _ _

order partial derivatives of F(s) has exactly k negative eigen] Nus, the number of pixels in a region above the threshold

values. In the above expressioR$!) denotes thé deriva- U has an exponential distribution with the parametgr=

tive of F. In the 2D case (i.eD = 2), for a given threshold 1=E(RE® 2 F). We can then write the probability of a region

u, the expectation of the DT characteristic of a centred anfRa° t0 appear in a realization of the Gaussian eld by:

reduced Gaussian eld can be written as [5]:

L @)

ER®2F)= ———————
(2 )z] jzue =z

, P(RS 2 F)= e uSo—eM- @®

E (a,) = S )% & Sue 27 3) S ) '
Finally, for a region olC} above the threshold with the

maximum intensiti and the spatial exteiSy, the probabil-

ity of C} to be a realisation df is [6]:

with S the area of the eld, the2 2 correlation matrix of
the eld derivatives, and 2 = E(F?).

In order to estimate the likelihood of a pixel 6f and its
neighborhood under the Gaussian eld assumption, we com-
pare its characteristic at a thresholdo the DT characteris-

tic. Two parameters can be used to compute this statistic: the Thereby, to detect changes betwégmndl « we de ne a
maximum intensity and the spatial extent of the considererfiam”y ofn ’thresholdsU = fuy: 2 up, g For eachy;, CN
u - 1y YNy Y 1y K

neighborhood above. is segmented into regions denol@ﬁf?s °. This segmentation

N Letxo denote the maximum intensity 6&‘{‘{0, a rggion of is obtained by a connected components analysis of the class
Cy above the thresholal. The likelihood of this region under 4 oq by the pixels o) above the threshold: . Then, we

P(RX®S° 2 F)= min(P(RX 2 F);P(R}° 2 F)): (9)

the Gaussian eld assumption is [6]: assign a probability? (RXS¢ 2 F) to each regiorRX%So,
E (A.)  Xo v2 %3 The superposition of the obtained regions for each threshold
P(RI°2F)= E XO) =587 ¢ (4)  givesSMy,, a statistical map of the changes (Figs. 2 and 3).
Au

The algorithm 1 summarizes the procedure for obtaining

Let Sy denote the spatial extent 850, a region ofc)¥ ~ SMu betweenl o andl for a given patient.
above the threshold. The expectation for this region under

the Gaussian eld assumption is [6] 2.3. Rare event hypothesis
S _ E(Ny) . The statistical approach proposed above makes the rare events
E(RS2F)= E (a) () hypothesis. In studied images, a large region of the ROI can

change if the disease decreases signi cantly. Thus, if we ap-
whereE(N,) is the expectation to haud, pixels above the ply the methodology described above, only a small amount of
thresholdu in the random eldF. As F follows a standard the changes will be quanti ed and the resulting homogeneity



1

criterion will be dif cult to analyze. We then introduce the

normalisation: e

08r

1 X L

Nge — Ne Ne Ne 07

Ftk=d0 - Ftk=0 + ’\Tr CIo(Ftr=o C‘o(FM:o) sl

r=to

(10) nst

whereN, is the number of time measurements betwegen nal

andtc. ¢, (F{°) (respectively ¢ (F'¢)) denotes the 0l

average pixel intensity in the interest areaFdron (respec- nat

tively Ft’\ffo) delimited byC;,. If the normalised data with nif
Eq. (10) does not respect the rare event hypothesis, the calcu- 05 . i . . n -

lated statistics by Eq. (9) will then be biased. Nevertheless,

we do not use the absolute values of these statistics but thqillfg_ 1. Time sequences df for patients whose pathology
spatial repartition. spatially decrease by more thaf% X-axis: time in weeks
(to=1,t1 =4,t, =8,t3 =12), Y-axis: H value.
3. CHANGE CRITERION

The homogeneity maM;, can be integrated into a scalar thresholds family has been manually selected on a subset of
criterion in order to get a treatment ef cacy quanti cation. To images. Figs. 2 and 3 show two examples of obtained maps
do so, we rtde ne afunctiorf s(p) that represents the spatial for two patients' time series. Fig. 2 corresponds to a patient
repartition of the changes by: where dermatologist diagnoses a signi cant change whereas
) Fig. 3 corresponds to a patient whose diagnosis reveals few
cardfx : SMy, (X) pg
; (11) changes. As one can see, the proposed method allows us to
cardf SMy, g detect precisely the areas where a change appears. Moreover,

fs(p) is an increasing function frof®; 1]to [0; 1]. As the in-  We can distinguish at an earlier stage non signi cant changes
terpretation of s(p) is not straightforward, we prefer to work (in red) that can become signi cant later (in blue). We ran
with £ (s) that is the inverse function d&(p). A linear in- the computation oH ona series pf 22 patients under a treat-
terpolation is used to calculaté (s) with a regular sampling ment. The clinical analysis of this population concludes that

alongs. f{ (s) is also an increasing function froff; 1] to the treatment had globally an effect. In the population of 22
[0;1]. Then, an integration dff (s) to a scalaH;, is com- patients, we observed that for 7 patients the criteHois not
) . L) Kk

. interpretable. Indeed, for ve patients less thHdo of the
puted by: 7 . )
1 o _ ROI changes at timg, = 8 ortz = 12 and for two patients
Hiy, =2 jf{ (s) sids: (12)  there were less that0%of the ROI that change in all the time
_ 0 ) sequence. For the others fteen patients (see Fig. 1) we ob-
Hy, 2 [0;1] represents the area between the funcfipfs)  serve an global growth dfl with time. For most patients (in

and the identity functiotd(s) = s. Id corresponds to the j,e) main changes occurred in the second measurement time
most_heteroge_neous repartition that can be expected. The[q, = 4, and for 4 patients (in red), main changes occurred
the higherH,, is, the more homogeneous changes are. Wg, timet, = 8. These results show that the homogeneity

use the Riemann integral to calculéde, with discrete data. citerion gives relevant interpretation of disease progression
The homogeneity measure of Eq. (12) makes sense only Wh%fﬂjring treatment.

some changes appear in the image betwigeandt,. We
estimated that, if less thaD% of the ROI change betwedg
andly, the criterionH,, cannot be interpreted. 5. CONCLUSION

fs(p) =

4. EXPERIMENTAL RESULTS In this paper, we adapt the SPM methodology to skin lesion
analysis. Associated with a classi cation and a spectral sig-
This section shows results obtained by the proposed methathture, it gives a precise map of the changes appearing dur-
on patients taken from a clinical study involving melasma. Weng the treatment phase. For an individual patient, the pro-
used the method proposed in [3] to obtain the spectral signgosed method gives a spatial analysis of the changes. As
ture that givesx, and used a SVM classi cation to calculate the proposed method is automatic, the severity estimation is
Mp,. Then, the images seri¢g, ... |, were co-registered more robust in a time sequence than a human inspection. For
with the algorithm proposed in [7]. To smodilh we use a13 the change detection to succeed, both co-registration between
pixel diameter Gaussian kernel. The chosen family of threshtime measurements and classi cation of the ROI should be
olds isU = [1;1.5;2;2:5; 3] for all studied images. This accurate.



(b) @ (b)

(d) (©) (d)

(e) ) (e) ®

Fig. 2. Change maps obtained for a patient whose pathologkig. 3. Change maps obtained for a patient whose pathology
decreased during the treatment period. a,c,e) equalised diffatecreased during the treatment period. a,c,e) equalised differ-
ence images on the spectral feature maps between each tigrece image on the spectral feature maps between each time
ty, t, ettz andto. b,d,f) homogeneity mapSM;, for the t;, tp ettsz andty. b,d,f) homogeneity mapSM;, for the
three timet 1, t, etts using the normalisation of Eq. (10). three timety, t, etts using the normalisation of Eq. (10).

6. ACKNOWLEDGEMENT J. Zerubia, “Estimation of an optimal spectral band com-
bination to evaluate skin disease treatment ef cacy using
The authors would like to thank Dr. Philippe Martel and Ms. multi-spectral images,” ifProc. IEEE International Con-
Anne-Sophie Dugaret for interesting discussions, and Gal- ference on Image Processing (IC|MBrussels, Belgium,
derma R&D for partial funding and for providing the data. September 2011.

[4] K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and
W.D. Penny, Eds. Statistical Parametric Mapping: The

[1] G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z Analysis of Functional Brain ImagesAcademic Press,
. N. , B. Z. , N. , Zo 007

7. REFERENCES

Beer, “In vivo measurement of skin erythema and pig-
mentation: new means of implementation of diffuse re{5] R.J. Alder,The Geometry of Random Fie|d&/iley, 1981.
ectance spectroscopy with a commercial instrument,”

British Journal of Dermato|0gyvo| 159, pp. 683_690, [6] J.B. POline, K.J. WOfSley, A.C. EvanS, and K.J. FriSton,
2008. “Combining spatial extent and peak intensity to test for

activations in functional imaging,’Neurolmage vol. 5,
[2] S. Prigent, X. Descombes, D. Zugaj, P. Martel, and  np. 2, pp. 83-96, 1997.

J. Zerubia, “Multi-spectral image analysis for skin pig- _ _
mentation classi cation,” inProc. IEEE International [7] A. Myronenko and X. Song, ‘“Intensity-based image

Conference on Image Processing (ICIRjong-Kong, registration by minimizing residual complexity,IEEE
China, September 2010. Trans. on Medical Imagingvol. 29, no. 11, pp. 1882-
1891, 2010.

[3] S. Prigent, D. Zugaj, X. Descombes, P. Martel, and



