
�>���G �A�/�, �?���H�@�y�y�3�9�R�9�e�y

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�y�3�9�R�9�e�y

�a�m�#�K�B�i�i�2�/ �Q�M �R �P�+�i �k�y�R�j

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�m�H�i�B�@�b�+���H�2 ���M���H�v�b�B�b �Q�7 �b�F�B�M �?�v�T�2�`�@�T�B�;�K�2�M�i���i�B�Q�M �2�p�Q�H�m�i�B�Q�M
�a�v�H�p���B�M �S�`�B�;�2�M�i�- �s���p�B�2�` �.�2�b�+�Q�K�#�2�b�- �.�B�/�B�2�` �w�m�;���D�- �G���m�`�2�M�i �S�2�i�B�i�- �C�Q�b�B���M�2

�w�2�`�m�#�B��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a�v�H�p���B�M �S�`�B�;�2�M�i�- �s���p�B�2�` �.�2�b�+�Q�K�#�2�b�- �.�B�/�B�2�` �w�m�;���D�- �G���m�`�2�M�i �S�2�i�B�i�- �C�Q�b�B���M�2 �w�2�`�m�#�B���X �J�m�H�i�B�@�b�+���H�2 ���M���H�v�b�B�b
�Q�7 �b�F�B�M �?�v�T�2�`�@�T�B�;�K�2�M�i���i�B�Q�M �2�p�Q�H�m�i�B�Q�M�X �A�*�A�S �@ �A�M�i�2�`�M���i�B�Q�M���H �*�Q�M�7�X �Q�M �A�K���;�2 �S�`�Q�+�2�b�b�B�M�;�- �a�2�T �k�y�R�j�-
�J�2�H�#�Q�m�`�M�2�- ���m�b�i�`���H�B���X �A�1�1�1�- �k�y�R�j�X �I�?���H�@�y�y�3�9�R�9�e�y�=

https://hal.inria.fr/hal-00841460
https://hal.archives-ouvertes.fr


MULTI-SCALE ANALYSIS OF SKIN HYPER-PIGMENTATION EVOLUTION

Sylvain Prigent1, Xavier Descombes1, Didier Zugaj2, Laurent Petit2, Josiane Zerubia1

1INRIA/I3S, 2004 route des Lucioles, BP93, 06902 Sophia Antipolis, Cedex, France
email: Sylvain.Prigent@inria.fr, Xavier.Descombes@inria.fr, Josiane.Zerubia@inria.fr

2Galderma R&D, 2400 Route des Colles, BP87, 06902 Sophia-Antipolis, Cedex, France
email: Didier.Zugaj@galderma.com, Laurent.Petit@galderma.com

ABSTRACT

In this paper, we use statistical inference and muti-spectral
images to quantify the evolution of skin hyper-pigmentation
lesions under treatment. We show that statistical inference al-
lows getting change maps of the disease which can be useful
for dermatologists to analyze the disease evolution. Indeed, a
local change map is obtained by computing the deviation be-
tween two multi-spectral images in a region of interest (ROI).
Then, we normalize the obtained map and develop a statis-
tical inference framework to quantify the changes. Finally,
we propose a criterion that integrates change maps in order to
quantify the treatment ef�cacy on a patient.

Index Terms— multi-scale analysis, statistical inference,
multi-spectral image, skin, hyper-pigmentation.

1. INTRODUCTION

In dermatology, spectral information is used to quantify the
severity of pigmentation lesions like melasma. To this end,
spectro-colorimeters allow the measurement of an average
spectrum on a small skin area. Such measurements can be
repeated to get an evolution curve per patient, or to do statis-
tical analysis of a treatment ef�cacy on a group of patients.
The lack of spatial information about the lesion is the weak
point of spectro-colorimeters. To overcome this limit we
propose to use multi-spectral images. Multi-spectral images
are series of gray scale frames taken at different wavelengths.
For hyper-pigmentation, the range of the wavelengths is from
400 nm to 900 nm.

To characterize hyper-pigmentation lesions, we decom-
pose the image analysis into three steps: the �rst step is the
lesion segmentation. This segmentation can be done man-
ually, with methods based on physical model [1], on CIE
L � a� bdecomposition [1], or on independent component anal-
ysis (ICA) [2]. We proposed a method based on support vec-
tor machine (SVM) in [2]. The second step is to design a
spectral signature of the lesion. Such a signature can be em-
pirical, for example the Luminance of the CIEL � a� bdecom-
position, or a spectrum obtained by physical analysis [1]. We
proposed in [3] a statistical approach based on ICA and on

a function optimisation to obtain a spectral signature. The
third step is evaluating the lesion spatial changes between two
measurements, which is the purpose of this paper. To per-
form this evaluation, we have a series of multi-spectral images
[HS0; :::HSk ; :::HSn ] taken at times[t0; :::tk ; :::tn ]. More-
over, we have a binary classi�cation maskM p0 de�ning the
ROI computed onHS0 during the �rst step, and a spectral sig-
nature that allows the integration of the multi-spectral images
into gray scale images[I 0; :::I k ; :::I n ]. Thereby, we aim to
use the Statistical Parametric Mapping (SPM) methodology
[4] based on statistical inference to map the changes between
I 0 and each of theI k images inside the ROI.

The paper is organized as follows. Section 2 describes the
statistical inference to quantify local signi�cance of changes.
Section 3 proposes a homogeneity criterion to integrate a
change map into a scalar criterion. Finally, we demonstrate
experimental results on patients whose lesions of melasma
have a decreasing severity.

2. STATISTICAL INFERENCE

For skin pigmentation analysis, dermatologists can be inter-
ested by both height and low intensity changes inside a le-
sion. In fact, we are interested to evaluate if a treatment affect
the pathological area by decreasing the pigmentation in local-
ized spots, or affect large areas. To this end we propose to
use statistical inference. Such a methodology was used for
fMRI studies on brain activity [4] to detect small intensity but
spatially consistent changes and height intensity changes with
a multi-scale analysis called SPM. We adapt this framework
to our speci�c detection problem considering a change map
de�ned byCk = I k � I 0.

2.1. Change map normalisation

Statistical inference is a mathematical model for highly cor-
related Gaussian random �eld. Two transformations are then
need forCk to �t the model. First, we smoothCk with a
Gaussian convolution �lter to increase it spatial correlation.
Second, the ROI ofCk denotedC

M p 0
k is de�ned by a unique



class on a radiometric image. Thus,C
M p 0
k histogram can be

model as monomodal. We use a histogram speci�cation to
transformC

M p 0
k histogram into a Gaussian distribution. We

center and reduce the obtained distribution to standardize it.
In the following we will denoteCN

k the normalized change
map.

2.2. Change map thresholding

CN
k satis�es the conditions to apply the Gaussian �eld theory

[5]. An important characteristic of a Gaussian �eldF of size
S is the DT (Differential Topology) characteristic de�ned by:

� (Au ) = ( � 1)(D � 1)
D � 1X

k=0

(� 1)k � k (Au ); (1)

where the excursion setAu is de�ned by:

Au = f s 2 S; F(s) � ug; (2)

whereu is a given threshold,D the dimension of the �eld and
� k (Au ) the number of pointss 2 Au satisfying the condi-
tions: (a)F (s) = u, (b) F ( i ) (s) = 0 ; 8i 2 [1; D � 1], (c)
F (D ) (s) > 0 and (d) the(D � 1) � (D � 1) matrix of second
order partial derivatives of F(s) has exactly k negative eigen-
values. In the above expressions,F ( i ) denotes thei th deriva-
tive of F . In the 2D case (i.e.D = 2 ), for a given threshold
u, the expectation of the DT characteristic of a centred and
reduced Gaussian �eld can be written as [5]:

E� (A u ) = S(2� )
3
2 j� j

1
2 � � 3ue� u 2

2 � 2 (3)

with S the area of the �eld,� the2 � 2 correlation matrix of
the �eld derivatives, and� 2 = E(F 2).

In order to estimate the likelihood of a pixel ofCN
k and its

neighborhood under the Gaussian �eld assumption, we com-
pare its characteristic at a thresholdu to the DT characteris-
tic. Two parameters can be used to compute this statistic: the
maximum intensity and the spatial extent of the considered
neighborhood aboveu.

Let x0 denote the maximum intensity ofRx 0
u , a region of

CN
k above the thresholdu. The likelihood of this region under

the Gaussian �eld assumption is [6]:

P(Rx 0
u 2 F ) =

E� (A x 0 )

E� (A u )
=

x0

u
e

u 2 � x 2
0

2 : (4)

Let S0 denote the spatial extent ofRS0
u , a region ofCN

k
above the thresholdu. The expectation for this region under
the Gaussian �eld assumption is [6]

E(RS0
u 2 F ) =

E(Nu )
E� (A u )

; (5)

whereE(Nu ) is the expectation to haveNu pixels above the
thresholdu in the random �eldF . As F follows a standard

Algorithm 1 Statistical Map
Require: I 0, I k , M p0

1: Ck = I k � I 0

2: Smooth and normalizeCk to getCN
k (see section 2.1)

3: Choose a familyU = u1; :::; un u

4: for i = 1 to nu do
5: Compute the connected components aboveui

6: for each connected componentdo
7: CalculateP(Rx 0 ;S0

u 2 F ) with eq. 9
8: end for
9: end for

10: Merge the obtained connected clusters obtained with the
family U to getSM t k

normal distribution,

E(Nu ) = S
Z 1

u
(2� )

1
2 e� x 2

2 = S�( � u) (6)

then,

E(RS0
u 2 F ) =

�( � u)

(2� )
3
2 j� j

1
2 ue� u 2

2

: (7)

Thus, the number of pixels in a region above the threshold
u has an exponential distribution with the parameter� u =
1=E(RS0

u 2 F ). We can then write the probability of a region
RS0

u to appear in a realization of the Gaussian �eld by:

P(RS0
u 2 F ) = e� � u S0 = e

(2 � )
3
2 j � j

1
2 S 0 ue

� u 2
2

�( � u ) : (8)

Finally, for a region ofCN
k above the thresholdu with the

maximum intensityx0 and the spatial extentS0, the probabil-
ity of CN

k to be a realisation ofF is [6]:

P(Rx 0 ;S0
u 2 F ) = min (P(Rx 0

u 2 F ); P(RS0
u 2 F )) : (9)

Thereby, to detect changes betweenI 0 andI k we de�ne a
family of nu thresholdsU = f u1; :::; un u g. For eachui , CN

k
is segmented into regions denotedRxo;S 0

u i
. This segmentation

is obtained by a connected components analysis of the class
de�ned by the pixels ofCN

k above the thresholdui . Then, we
assign a probabilityP(Rxo;S 0

u i
2 F ) to each regionRxo;S 0

u i
.

The superposition of the obtained regions for each threshold
givesSM t k , a statistical map of the changes (Figs. 2 and 3).

The algorithm 1 summarizes the procedure for obtaining
SM t k betweenI 0 andI k for a given patient.

2.3. Rare event hypothesis

The statistical approach proposed above makes the rare events
hypothesis. In studied images, a large region of the ROI can
change if the disease decreases signi�cantly. Thus, if we ap-
ply the methodology described above, only a small amount of
the changes will be quanti�ed and the resulting homogeneity



criterion will be dif�cult to analyze. We then introduce the
normalisation:

F N d e
t k= 0

= F Ne
t k= 0

+
1

N r

t kX

r = t 0

�
� C t 0

(F Ne
t r= 0

) � � C t 0
(F Ne

t 1= 0
)
�

(10)
whereN r is the number of time measurements betweent0

and tk . � C t 0
(F Ne

t r= 0
) (respectively� C t 0

(F Ne
t 1= 0

)) denotes the

average pixel intensity in the interest area ofF Ne
t r= 0

(respec-

tively F Ne
t 1= 0

) delimited byCt 0 . If the normalised data with
Eq. (10) does not respect the rare event hypothesis, the calcu-
lated statistics by Eq. (9) will then be biased. Nevertheless,
we do not use the absolute values of these statistics but their
spatial repartition.

3. CHANGE CRITERION

The homogeneity mapSM t k can be integrated into a scalar
criterion in order to get a treatment ef�cacy quanti�cation. To
do so, we �rt de�ne a functionf s(p) that represents the spatial
repartition of the changes by:

f s(p) =
cardf x : SM t k (x) � pg

cardf SM t k g
: (11)

f s(p) is an increasing function from[0; 1] to [0; 1]. As the in-
terpretation off s(p) is not straightforward, we prefer to work
with f p

t k
(s) that is the inverse function off s(p). A linear in-

terpolation is used to calculatef p
t k

(s) with a regular sampling
alongs. f p

t k
(s) is also an increasing function from[0; 1] to

[0; 1]. Then, an integration off p
t k

(s) to a scalarH t k is com-
puted by:

H t k = 2
Z 1

0
jf p

t k
(s) � sjds: (12)

H t k 2 [0; 1] represents the area between the functionf p
t k

(s)
and the identity functionId (s) = s. Id corresponds to the
most heterogeneous repartition that can be expected. Then,
the higherH t k is, the more homogeneous changes are. We
use the Riemann integral to calculateH t k with discrete data.
The homogeneity measure of Eq. (12) makes sense only when
some changes appear in the image betweent0 and tk . We
estimated that, if less that10%of the ROI change betweenI 0

andI k , the criterionH t k cannot be interpreted.

4. EXPERIMENTAL RESULTS

This section shows results obtained by the proposed method
on patients taken from a clinical study involving melasma. We
used the method proposed in [3] to obtain the spectral signa-
ture that givesI k , and used a SVM classi�cation to calculate
M p0 . Then, the images seriesI 0, ... I n were co-registered
with the algorithm proposed in [7]. To smoothCk we use a 13
pixel diameter Gaussian kernel. The chosen family of thresh-
olds is U = [1 ; 1:5; 2; 2:5; 3] for all studied images. This

Fig. 1. Time sequences ofH for patients whose pathology
spatially decrease by more than10%. X-axis: time in weeks
(t0 = 1 , t1 = 4 , t2 = 8 , t3 = 12), Y-axis: H value.

thresholds family has been manually selected on a subset of
images. Figs. 2 and 3 show two examples of obtained maps
for two patients' time series. Fig. 2 corresponds to a patient
where dermatologist diagnoses a signi�cant change whereas
Fig. 3 corresponds to a patient whose diagnosis reveals few
changes. As one can see, the proposed method allows us to
detect precisely the areas where a change appears. Moreover,
we can distinguish at an earlier stage non signi�cant changes
(in red) that can become signi�cant later (in blue). We ran
the computation ofH on a series of 22 patients under a treat-
ment. The clinical analysis of this population concludes that
the treatment had globally an effect. In the population of 22
patients, we observed that for 7 patients the criterionH is not
interpretable. Indeed, for �ve patients less than10% of the
ROI changes at timet2 = 8 or t3 = 12 and for two patients
there were less than10%of the ROI that change in all the time
sequence. For the others �fteen patients (see Fig. 1) we ob-
serve an global growth ofH with time. For most patients (in
blue) main changes occurred in the second measurement time
t1 = 4 , and for 4 patients (in red), main changes occurred
in time t2 = 8 . These results show that the homogeneity
criterion gives relevant interpretation of disease progression
during treatment.

5. CONCLUSION

In this paper, we adapt the SPM methodology to skin lesion
analysis. Associated with a classi�cation and a spectral sig-
nature, it gives a precise map of the changes appearing dur-
ing the treatment phase. For an individual patient, the pro-
posed method gives a spatial analysis of the changes. As
the proposed method is automatic, the severity estimation is
more robust in a time sequence than a human inspection. For
the change detection to succeed, both co-registration between
time measurements and classi�cation of the ROI should be
accurate.



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Change maps obtained for a patient whose pathology
decreased during the treatment period. a,c,e) equalised differ-
ence images on the spectral feature maps between each time
t1, t2 et t3 and t0. b,d,f) homogeneity mapsSM t k for the
three timet1, t2 et t3 using the normalisation of Eq. (10).
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