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K
ernel-based methods provide a rich and elegant 
framework for developing nonparametric detection 
procedures for signal processing. Several recently 
proposed procedures can be simply described using 
basic concepts of reproducing kernel Hilbert space 

(RKHS) embeddings of probability distributions, mainly mean 
elements and covariance operators. We propose a unified view of 
these tools and draw relationships with information divergences 
between distributions.

INTRODUCTION AND CONTEXT
Testing hypotheses of signals is one of the key topics in statisti-
cal signal processing [1]. Popular examples include testing for 
equality of signals/homogeneity, as in speaker verification 
[2]–[4] or change detection [5], [6]. Testing for a change-point 
in a signal is an important problem that arises in many applica-
tions [5]; detecting potential changes can be either the final 
goal, as in surveillance and monitoring applications, or an inter-
mediate step that is required to allow further processing an 
interpretation. In multimedia signal processing, unsupervised 

temporal segmentation can rely on change detection to 
segment the signal into coherent sections either based on 
higher-lever semantic concepts, for instance, by detecting cuts 
in video shot, or based on low-level signal properties, e.g., when 
a signal is segmented into sections on which it can be consid-
ered as stationary.

The most classical approaches for statistical detection of 
changes are parametric in nature, meaning that they rely on 
strong assumptions on the distributional properties of the 
observed signals [5], [7]. Procedures such as the classical 
CuSum statistic or Hotelling’s T2 test assume that the data is 
(possibly multivariate) Gaussian, whereas the 2|  and mutual 
information statistics apply to finite-valued data. These test sta-
tistics are widely used due to their simplicity and strong opti-
mality guarantees in scenarios where the underlying 
distributional assumptions are satisfied. On the other hand, 
there is also a need for alternative methods, which could possi-
bly be less efficient in some specific scenarios but more robust 
in the sense of providing reliable results over larger classes of 
data distributions. These methods are generally known as 
robust test statistics and usually rely on so-called nonparamet-
ric statistical concepts, where the term nonparametric refers 
to the possibility of obtaining performance guarantees that do 
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not depend on an assumed data distribution. For univariate 
data, rank-based statistics used in the well-known Mann-
Whitney/Wilcoxon test [8] are largely recognized as a relevant 
robust alternative for detecting changes that affect the mean 
level of a signal.

However, when considering higher-dimensional data, there 
is no such natural candidate for building robust nonparametric 
change-detection statistics. Another challenging situation is the 
case of structured data, meaning 
data whose mere representation as 
a vector or as a series of scalar val-
ues would result in an important 
loss of information. Typical exam-
ples include graphs, structured 
text (e.g., hypertext with XML or 
HTML markup) but also histo-
grams of (possibly redundant) 
features, which is the dominant paradigm, in particular, in 
computer vision [9] or natural language processing systems 
[10]. During the last two decades, kernel-based methods have 
been popular for supervised classification or regression prob-
lems [10]–[12]. Recently, kernel-based methods were designed 
for hypothesis testing problems, allowing the ability to work 
with high-dimensional and structured data, as soon as a positive 
semidefinite similarity measure (the so-called kernel) can be 
defined [13]–[17].

TEMPORAL SEGMENTATION OF AUDIOVISUAL CONTENT
To illustrate the technical part of this tutorial, we first describe 
the example of temporal segmentation of multimedia signals 
[18]. Temporal segmentation is an important preliminary task 
for archiving audio or audiovisual content in databases while 
allowing for content-based retrieval of the data. Through this 

example, we would like to highlight the potential of kernel-
based methods for change detection.

Temporal segmentation of audiovisual recordings involves 
two modalities [19]: video and audio. Temporal segmentation of 
videos is usually synonym of shot segmentation or scene seg-
mentation, that is, detecting abrupt changes in the video con-
tent. State-of-the-art approaches use first-order derivatives of 
the color-histogram signal [20]–[22], leading to high-detection 

rates for abrupt changes. Such 
approaches are more difficult to 
apply when looking for changes in 
the semantic content of the video. 
On the other hand, most state-of-
the-art approaches for temporal 
segmentation of audio streams, 
usually referred to as audio dia-
rization, rely on supervised learn-

ing methods, and therefore require a significant amount of 
previously annotated training data [23], [22]. In contrast, ker-
nel-based hypothesis tests for change detection can potentially 
be applied to a wide range of audiovisual documents without the 
need to assemble training data.

The data set used in [18] consists of both the audio and video 
recordings of the popular French 1980s talk shows (Le Grand 
Echiquier) of roughly three hours each. The goal is to blindly 
perform a temporal segmentation of the corresponding signals 
into “semantically homogeneous” segments, corresponding to 
different categories of content, such as “movie,” “music,” and 
“interview,” among others (see Figure 1). Audio tracks are 
extracted from MPEG video files, converted to mono, down-
sampled to 16 kHz. The first 12 Mel-frequency cepstral coeffi-
cients (MFCCs), as well as first- and second-order coefficients 
and the 0th order cepstral coefficient are extracted every 10 ms. 

A “bag-of-words”-type representation as 
histograms [9] is then built over windows 
of size 33, eventually giving a signal of 
histograms of 128-dimensional audio 
features. A similar pipeline is adopted for 
the video track, starting from scale-invari-
ant feature transform (SIFT) features [9], 
and yielding a signal of 2,176-dimensional 
feature vectors. Thanks to the preprocess-
ing pipeline, the temporal correlation 
between the features is negligible and the 
segmentation task can be tackled by look-
ing for changes in the probability distri-
bution of the histogram features.

A simple approach for temporal seg-
mentation is to reduce it to a sequence of 
tests for homogeneity between two parts 
of a sliding window over the signal to per-
form change detection. Such approaches 
are attractive because of their scalability, 
as they scale linearly in the length of the 
signals, in contrast to retrospective [FIG1] Temporal segmentation of TV archives: (a) music, (b) applause, and (c) speech.

(a) (b) (c)
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approaches taking the signal as whole and typically scale qua-
dratically in the length of the signals [6], [24]. The main charac-
teristic of the data we consider lies in its high-dimensional and 
structured nature. Each data-point is a 2,048-dimensional fea-
ture vector. Therefore, classical parametric multivariate test sta-
tistics cannot be applied [7]. Typically, these methods will have a 
low detection rate (high Type II error, low power) because there 
are too few samples to estimate the high-dimensional quantities 
appearing in the test statistic. For instance, the Hotelling T2 test 
statistic involves the inverse of an estimate of the covariance 
matrix, and this inverse will be severely ill conditioned in high-
dimensional settings.

A promising nonparametric alternative to parametric 
approaches is offered by kernel-based methods. In contrast to 
parametric approaches, kernel-based methods leverage the 
underlying “smoothness” of the data and rely on a positive 
semidefinite kernel to measure the similarity between observa-
tions possibly living in high-dimensional spaces [11], [10]. 
Indeed, kernel-based methods hinge upon the Hilbertian struc-
ture of the so-called RKHS, the natural function space associ-
ated with these nonparametric approaches [25], [26]. These 
methods work only on dot-products between feature maps of 
the observations in the RKHS associated with the kernel; in 
many situations, these dot-products may be computed directly 
without the need to explicitly compute the high-dimensional 
feature map, an operation often referred to as the “kernel trick.” 
Hence, kernel-based methods can potentially be applied to any 
kind of data, ranging from data living in standard Euclidean 
spaces to data consisting of histograms, chains, trees, or graphs 
[27], [10]. Although we chose change detection in multimedia 
signals as our introductory example, kernel-based methods can 
be applied to a wide range of hypothesis testing problems 
beyond change detection. Promising results of kernel-based 
hypothesis tests were obtained in [18]. Yet, the potential of 
kernel-based approaches for hypothesis testing problems in 
signal processing remains to be fully explored.

We need a machinery of concepts tailored for kernel-based 
approaches to explore kernel-based methods for hypothesis test-
ing. We shall see that these concepts are known as mean ele-
ments and covariance operators [28], [13], and that most 
kernel-based test statistics can be expressed in a simple manner 
using these concepts. But first let us recall the basics of statisti-
cal hypothesis testing and detection.

HYPOTHESIS TESTING AND THE TWO TYPES OF ERROR
In this section, we recall the basic statistical groundwork for 
designing hypothesis tests (detectors) suitable for various signal 
processing applications. The approaches follow directly from the 
theory of hypothesis testing [1], [29]. We start from a simple 
example: testing for homogeneity in distribution. When data 
can only take a finite number of values, the problem is equiva-
lent to comparing empirical probability masses, and 2| -tests 
based on the 2| -distance are typically used. Note that the ker-
nel-based tests will extend both the discrete data setting and the 
continuous Gaussian setting that we present below.

Assume that we observe two samples, that is, two series of 
data-points x , , x, ,n1 1 1 1�  and x , , x, ,n2 1 2 2�  in Rd, whose probabil-
ity distribution function (PDF) are ( , )N 1n R  and ( , ),N 2 2n R
respectively. The notation ( , )N 1n R  denotes here a Gaussian 
PDF with mean 1n  and covariance matrix .1R  We must there-
fore determine if ,1 2n n�  that is, if the two samples come from 
the same PDF (“homogeneity”), or if .1 2�n n  So we have to 
choose between two competing hypotheses, and face the follow-
ing decision problem:
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The hypothesis H0 is referred to as the null hypothesis, and HA 
is the alternative hypothesis. The goal of hypothesis testing and 
detection is to build a statistical decision rule to answer the 
above problem. The decision rule can make two types of error. If 
we decide HA, but H0 is true, we make a Type I error (false-
alarm rate). On the other hand, if we decide H0, but HA is true, 
we make a Type II error (missed-detection rate):
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Consider a test statistic ,Tn  then the decision rule will rely on a 
critical region ( ),R a  where a is the Type I error. The decision 
rule writes as

 � if ( ),T Rn � a  decide ,H0

 � if ( ),T Rn � a  decide .HA

Clearly, the Type I error can be decreased by enlarging the 
acceptance region ( )R a  at the expense of the Type II error. It is 
not possible to reduce both error probabilities simultaneously. 
A typical approach, known as the Neyman-Pearson approach, is 
to hold one probability error fixed, the Type I error, while mini-
mizing the other. In other words, assume that a prescribed 
false-alarm rate, or Type I error, is given. Then, over all critical 
regions ( ) ,R R�a  we chose the one that maximizes the proba-
bility of detection (minimizes the Type II error).

On our working problem, the classical test statistic is the 
so-called Hotelling T2 test statistic [30], [29], defined as

 ( ) ( ),T n n
n n

n
T

W
1 2

1 2
2 1

1
2 1n n n nR� � � ��� � � � �

where 2n�  and 1n�  are the empirical mean vectors of the first and 
second sample, respectively, while WR�  is the within-sample 
pooled covariance matrix

 .n n
n

n n
n
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There are two main ways to determine the critical region for a 
test statistic: 1) large-sample distribution under the null hypothe-
sis and 2) sampling-based approaches such as the bootstrap [29]. 
For instance, the large-sample distribution of Hotelling’s T2 test 
statistic, that is, the distribution when the number of samples 
grows to infinity, is the d

2|  distribution with d degrees of freedom

 .T
D

n d
2|
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Therefore, for any false-alarm rate 
,a  the critical region of the Hotell-

ing’s T2 test can be determined by 
computing the ( )1 a� -quantile 
c1 a�  of its large-sample distribu-
tion, that is, the ( )1 a� -quantile 
of the d

2|  distribution with d 
degrees of freedom, which are 
well known and can easily be 
computed with arbitrary precision with any statistical software.

Another take on this is to use resampling techniques such 
as the bootstrap, which consists of drawing a large number of 
“pseudosamples,” where the two samples are shuffled. Then 
the critical region is computed by looking at the ( )1 a� - 
quantile of the empirical cumulative distribution function 
(CDF) of all these computed values of the test statistic on the 
pseudosamples [31].

To design kernel-based hypothesis tests, the major challenge 
is to derive the large-sample distribution under the null 
hypothesis of the kernel-based test statistic to compute a criti-
cal value [8]. Several kernel-based hypothesis algorithms were 
proposed recently, with successful applications in signal pro-
cessing. Some of these algorithms were studied as hypothesis 
testing procedures, and large-sample distributions were derived. 
Some others were presented using other arguments. We present 
them here under the same unique framework, using simple 
concepts known as mean elements and covariance operators 
[28], [13]. We show that the underlying structure of the RKHS 
on which these test statistics rely is simply the eigenvector basis 
of particular covariance operators, depending on the kernel-
based test statistic considered. We also show that, under the 
alternative hypothesis, these test statistics correspond to consis-
tent estimators of well-known information divergences between 
probability distributions [32].

RKHS EMBEDDINGS
We present here the notions of mean element and covariance 
operators in RKHS. Let us start by recalling the main ideas of 
kernel-based approaches and RKHSs.

Consider a set of data points , , ,x xn1 �  say, for instance, visual 
features of a series of images. The data points live in an input 
space, which is a subspace of Rd but has some structure.

Kernel-based methods work as follows. As soon as one can 
define a dot-product ( , )x xk �  between two data points x and x ,�  
which can be interpreted as a similarity measure between x and 

,x�  one can devise a whole spectrum of statistical methods, kernel-
based methods, working directly on the dot-products ( , )x xk �  

instead of the raw data points x and 
.x�  The only requirement is to be 

given as an input a symmetric 
matrix [ ( , )] ,K x xk ,i j i j n1� � �  called 
the Gram matrix or kernel matrix, 
which should be positive semidefi-
nite. Popular examples of kernel-
based methods are kernel principal 
component analysis (KPCA) [33], 

kernel ridge regression (KRR) [10], and support vector machines 
(SVMs) [11].

The requirement on the Gram matrix is satisfied as soon as the 
kernel ( , )k � �  is symmetric, i.e., ( , ) ( , )k x y k y x�  for all , ,Xx y �  
and positive semidefinite, that is,

 ( , ) ,c c k x x 0i j i j
j

m

i

m

11

�
��
��

for all ,m N *�  for all , , ,Xx xm1 � �  and for all , , .c c Rm1 � �
The simplest kernel is the linear kernel, defined for all 

, Xx y �  by ( , ) .k x y x yT�  It turns out that a positive semidefi-
nite (psd) kernel can always be interpreted as dot-product in a 
Hilbert space ,H  (the RKHS). Thus, for any kernel ( , )k � �  acting 
on ,X  there exists a feature map [ : ]X H�z  such that, for all 

, Xx y �

 ( , ) ( ), ( ) .k x y x y Hz z�

Here, , H� �  denotes the dot-product defined in the RKHS, which 
may be an infinite-dimensional Hilbert space. This remarkable 
property has important consequences. Indeed, one can use “geo-
metrical” intuition to build kernel-based methods, by drawing 
inspiration from classical statistical methods working in finite-
dimensional Euclidean spaces.

Starting from a classical multivariate-statistics method, 
hinging upon computations that can be written as dot-
products , ,x y x yT

Rp �  one can immediately design its 
kernel-based counterpart by replacing all ,x y x yT

Rp �  
by ( ), ( ) ( , ).x y k x yHz z �  However, this is just an heuristic 
to derive new approaches, and a sound interpretation has 
to be developed to check whether the “kernelized” 
counterpart of the classical multivariate method is actually 
meaningful. Table 1 summarizes some usual kernels. For 
measuring similarity of histograms, the so-called 2| -kernel 
applies the Gaussian kernel on top of the 2| -divergence 
between histograms, a well-known divergence between his-
tograms that is more sensitive to differences in the tails 
than the L2-divergence.

MEAN ELEMENT AND COVARIANCE OPERATORS
A natural question is how a probability distribution P is 
represented in an RKHS H  [34]. We show now that infinite-
dimensional counterparts of two fundamental multivariate statis-
tics concepts, mainly the mean vector and the covariance matrix, 
are particularly appropriate for this purpose. These 

[TABLE 1] EXAMPLES OF KERNELS.

KERNEL EXPRESSION 

LINEAR ( , )k x y x yT�
GAUSSIAN ( , ) ( / )expk x y x y 2 2v� � �

2| -KERNEL ( , )
( )

expk x y p q
p q1 d

2

2

1v
� � �

�
� �

� �

� �
� ��

ONE CAN USE GEOMETRICAL 
INTUITION TO BUILD KERNEL-BASED 

METHODS, BY DRAWING 
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RKHS-counterparts of the mean vector and 
the covariance matrix are called the mean ele-
ment and the covariance operator, respec-
tively [35], [28], [13]; see Figure 2. The 
different names emphasize that RKHSs might 
be infinite-dimensional, and that one should 
be careful not to make hasty conclusions by 
simply translating finite-dimensional intu-
itions to RKHSs.

Consider a random variable X taking val-
ues in X  and a probability distribution .P  The 
mean element Pn  associated with X is the 
unique element of the RKHS ,H  such that, for 
all ,Hf �

 , [ ( )].f f XEHP Pn �

Similarly, the covariance operator PR  asso-
ciated with X is the only operator 
[ : ]RH HP ��R  such that, for all , ,Hf g �

 
, Cov ( ( ), ( ))

[ ( ) ( )] , , .

f g f X g X

f X g X f gE
H P

P P

P

P H Hn n

R �

� �

Note that so far we have only focused on population quantities. 
Their empirical counterparts are as expected. Consider a sample 

, ,X Xn1 �  drawn independent and identically distributed (i.i.d.) 
from .P  Then one can estimate Pn  by the empirical mean ele-
ment, defined as the unique element in the RKHS ,H  such that, 
for all ,Hf �

 , ( ) .f n f X1
H i

i

n

1

n �
�

� �

Figure 3 provides a simple illustration of the concept of “mean 
element” in one dimension. Consider, say, five realizations of a 
uniform random variable X in [ , ]X 5 5� �  and a Gaussian 
radial-basis function (RBF) kernel ( , ) ( ( ) ) .expk x y x y2 2� � �  
Then each point x is embedded into a “Gaussian bump” ( , )k x �  in 
the RKHS, plotted with different colors for each data point in 
Figure 3. Then the empirical mean element is a function, corre-
sponding to the black curve, aggregating all the Gaussian bumps 
corresponding to the five data points.

Similarly, the covariance operator is estimated by ,R�  the empir-
ical covariance operator, defined as the unique operator, such 
that, for all , Hf g �

 , ( ) , ( ) , .f g n f X f g X g1
H HH i i

i

n

1

n nR � � �
�

� � �� �� ��

This is where one should refrain from drawing hasty 
conclusions by relying on multivariate Gaussian intuitions. 
In the classical Gaussian multivariate case where ,X Rd�  
the mean vector and the covariance are necessary and suffi-
cient to characterize the probability distribution. In the 
infinite-dimensional case, that is, when ( ) ,Hdim ��  inter-
esting phenomena arise. In particular, the mean element 

plays a more central role. Let us now look at the function 
( )m �  mapping any probability distribution P to its corre-

sponding mean element .Pn  Note that ( )m �  depends on the 
kernel ( , )k � �  associated with .H  For a large class of kernels, 
the function m is injective. Consider two probability distri-
butions P and Q on .X  If for all Hf �

 , , ,f fP Q HHn n�

then

 ,P Q�

as soon as the RKHS H  associated with the kernel ( , )k � �  is 
dense in ( )L P2  for all probability distributions P [36], [37], [13], 

[FIG2] A schematic view of kernel embedding and mean element.
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[38], [39]. It is worthwhile to note that equality of covariance 
operators P QR R�  is implied by ,P Qn n�  in contrast to the 
Gaussian multivariate case.

Another interesting fact is related to the spectrum of the 
covariance operator .PR  The covariance operator is self-
adjoint, positive, and for any complete orthonormal basis 
{ }p p 1} �  of ,H  the sum ,p pp 1 P H} }R�

�
�  is finite and inde-

pendent of the basis { }p p 1} �  of .H  The trace of PR  is then 
defined as

 ( ) , .e eTr Hp p
p 1

P PRR �
�

�
�

The covariance operator is also Hilbert-Schmidt, that is 
pp
2

1
��m�

�
� , where { }p p 1m �  is the (infinite) sequence of 

eigenvalues of .PR  It is more convenient to work in the 
Hilbertian basis { }ep p 1�  of the eigenfunctions of PR

 ( ).e ep p p
p 1

P �mR �
�

�
�

Examples of eigenfunctions are depicted in Figure 4. Consider 
a normal random variable X in ,X R�  and a Gaussian RBF kernel 

( , ) ( ( ) ).expk x y x y2 2� � �  Then, the eigenfunctions of the cor-
responding covariance operator can be expressed analytically 
using Hermite polynomials [40]. The first three eigenfunctions 
are illustrated in Figure 4. The sequence of eigenvalues { }p p 1m �  
can also be expressed analytically, and its decay is polynomial; 
see Figure 5.

The fact that PR  is of bounded trace-norm corresponds to 
.pp 1

��m�
�

�  In other words, there is no such thing as an 
isotropic probability distribution in H  when ( ) .Hdim ��  In 
particular, IHPR �  is impossible in infinite-dimensional 
RKHSs. Probability distributions in H  are indeed highly 
“anisotropic,” that is, the sequence of eigenvalues is decreas-
ing p1 2 � �� � � �m m m  and must satisfy .pp 1

��m�
�

�
Even though the mean-element map is injective, the 

covariance operator is still valuable to normalize test statis-
tics. To illustrate this, let us consider a sample { , , }X Xn1 �  
drawn i.i.d. from P on ,X  with ( , )n R  as the pair of mean ele-
ment and covariance operator, and ( , )n R� �  their empirical coun-
terparts. Denote { }p p 1m �  and { }ep p 1�  the sequence of 
eigenvalues and eigenfunctions, respectively, of the covariance 
operator .R  Let us look at

 , , , , .e p 1Hp � �n n� ��

Simple calculations reveal that for , ,p 1 � ��

 
[ , ]

[ , ] .

e

e

0

Var

E H

H

p

p p

n n

n n m

� �

� �

�

�

Therefore, valuable information is carried in the spectrum of the 
covariance operator ,R encoded in the eigenvalues { }p p 1m �  and the 
eigenfunctions { } .ep p 1�  To build a well-normalized test statistic 
based on these quantities, one needs to know the variance of 

, .e Hpn n��  This variance is actually given by the eigenvalue 
, .eVar Hp pn n m� ��� �  If we want to weigh in a fair manner the 

different test statistics, say, the quantities , e Hpn n��  and 
, e Hqn n��  along the eigenfunctions ep and eq with ,p q�  it is 

essential to rely on the corresponding variances pm  and .qm  Thus, 
the spectrum of covariance operators is crucial to design normal-
ized test statistics.

Equipped with this arsenal of tools, we now present kernel-
based test statistics for detection problems arising in signal 
processing.

KERNEL-BASED HYPOTHESIS TESTING
We start by focusing on our working example: testing for 
homogeneity. We present several kernel-based test statistics, 
and relate them to information divergence functionals. Con-
sider two independent samples , ,x x, ,n1 1 1 1�  and , ,x x, ,n2 1 2 2�  
drawn respectively from probability distributions P1 and .P2  

[FIG4] The first three eigenfunctions ( ), ( ), and ( )e e e1 2 3� � �  of the 
covariance operator corresponding to a marginal probability 
density function ( ) / ( / )expp x x1 2 22r ��  and a Gaussian RBF 
kernel ( , ) ( ( ) ) .expk x y x y2 2� � �
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[FIG5] The spectrum of the covariance operator corresponding 
to a marginal probability density function ( ) / expp x 1 2r�  
( / )x 22�  and a Gaussian RBF kernel ( , ) ( ( ) ) .expk x y x y2 2� � �
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We shall denote by p1 and p2 the corresponding probability 
densities. Testing the homogeneity of the two samples 

, ,x x, ,n1 1 1 1�  and , ,x x, ,n2 1 2 2�  corresponds to deciding between 
the two hypotheses:

 
:

: .

H

H

P P

P PA

0 1 2

1 2�

�

A first test statistic, called the kernel Fisher discriminant analysis 
(KFDA) test statistic [13], is inspired by the Hotelling T2 test statis-
tic that we discussed previously. The test statistic is related to the 
kernel-based methods called KFDA for binary classification [41], 
[11]. The test statistic writes as 

 
, ( )

,

T

d

d

2

I

,

H

n n

n n
n n

W

2

2 1
1

2 1 1

1 2

1 2

1 2 � �n n c n nR

�

� � � ��
�� � � � �� �

where ( , )1 1n R� �  and ( , )2 2n R� �  et WR�  are the empirical covariance 
operators, and c is a positive regularization parameter. The quanti-
ties ( )d d , , ;n n W1 1 1 2 R� c

�  and ( )d d , , ;n n W2 2 1 2 R� c
�  are normalization 

factors

 
( ) : (( ) ),
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d

d
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, , ;

, , ;
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n n W W W

n n W W W

1
1

2
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1 2

1 2

c

c

R R R

R R R

� �

� �
c

c

�

�

� � �

� � �

All quantities involved can be easily computed using the 
kernel trick; see [13] for details.

The KFDA test statistic can be 
calibrated using its large-sample 
distribution under the null hypoth-
esis [13], [42]. There are two main 
asymptotic settings to study its 
large-sample distribution under 
the null: 1) c  is held fixed as the 
sample size goes to infinity and 2) 

0�c  as the sample size goes to 
infinity. For the sake of concise-
ness, we shall only focus on the setting 2), and refer to [42] for a 
thorough discussion.

Under the null hypothesis, with mild conditions on the kernel 
and the spectrum of the covariance operator ,WR  typically that 
the kernel is bounded and that ( ) ,/

p Wp
1 2

1
��m R�

�
�  and assum-

ing that

 ,d d n 0/
2

1
1

1 2 �c c� � �

we have

 ( , ),NT 0 1,
D

n n1 2 �

as , .n n1 2 � �  This result also allows us to understand the role of 
the normalization constants d1 and .d2  Thanks to these normal-
ization constants, the test statistic is well normalized so that its 
large-sample distribution under the null does not depend on the 
probability distributions P1 and .P2

Under the alternative hypothesis, the KFDA test statistic can 
also be shown to be related to a nonparametric version of the 
classical 2|  test-statistic for testing homogeneity of 

discrete distributions [13], [42]. The population version of 
( ) ( ) ,I HW

1
2 1

2
c n nR � ��� � �  that is, the key quantity appearing in 

the KFDA test statistic, actually coincides with the 2| -divergence 
between P1 and .P2

Indeed, under mild assumptions, assuming that P1 and P2 are 
nonsingular, defining / ( ),n n n1 1 2t � �  we have

 ( ) ,
D

D
1 P

P
P

P
HW

1
2 1

2
2

1 2

1 2

2

2

n n
t

R � �
� |

|�

�
�

�
�

where

 ( )
( )

.D p p
p p

1P P1 2
1 2

2 1
2

2

t t
� � �

�
| � � �

As we emphasized before, there are usually two ways to look 
at kernel-based test statistics, a heuristic approach that inspired 
its design, and a sound approach that relates it to a nonpara-
metric estimate of an information divergence. The heuristic way 
to look at the KFDA is to view it as a kernelized version of 
Hotelling’s T2 test statistic. The more sound way is to realize 
that the KFDA test statistic is actually related to a kernel-based 
nonparametric estimate of the 2| -divergence between the two 
probability distributions. Note that when the data are vectors 
and the kernel is linear, the test statistics reduces to the Hotell-
ing’s T2 test statistic, while when the data take finitely many val-
ues, the test statistics is strongly related to the 2|  test statistic, 

which is the method of choice in 
this situation.

Following up along the same 
lines, one can consider other ker-
nel-based test statistics for testing 
homogeneity, corresponding to 
different information divergences 
[32]. For instance, the so-called 
maximum mean discrepancy 
(MMD) test statistic [43], [44] 
writes as

 ( ) .T n n, Hn n 1 2 2 1
2MMD

1 2 n n� � �� �

The MMD can easily be computed using the kernel trick; see 
[43] and [44] for details. Note that it is clearly related to the 
KFDA test statistic, except for the normalization by the inverse 
of the covariance operator. We will see that the eigenvalues of 
the covariance operator will appear in the limiting distribution 
under the null because of the absence of normalization in the 
test statistic.

The MMD test statistic can be calibrated using its large-sample 
distribution under the null hypothesis. Under some mild condi-
tions, such as , ,n n1 2 � �  one can prove that under the null 
hypothesis

 ( ) .T
Y Z

1 1
1

,
D

n n p
p

p p

1

2
MMD

1 2 �
t t t t

m �
�

� �

�

�
� �� ��

where the { }p p 1m �  is the sequence of eigenvalues of ,WR  
, ,Y Yp1 �  are independent normally distributed random 

THERE ARE USUALLY TWO WAYS 
TO LOOK AT KERNEL-BASED TEST 

STATISTICS: A HEURISTIC APPROACH 
INSPIRED BY MULTIVARIATE 

STATISTICS, AND A SOUND ONE THAT 
RELATES IT TO A NONPARAMETRIC 

ESTIMATE OF AN INFORMATION 
DIVERGENCE.
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variables, and the same for , , .Z Zp1 �  In other words, the 
MMD test statistic converges to an infinite linear combina-
tion of 1

2|  with one degree of freedom, with weights corre-
sponding to the eigenvalues of the unknown covariance 
operator .WR

The null distribution of the MMD test statistics can be 
made independent of the kernel when the kernel parameter 
(say, the bandwidth parameter in the Gaussian RBF kernel) 
shrinks to zero as the sample size goes to infinity, or by using 
a variant called the linear-time MMD; see [45] and [15], 
respectively, for more details.

Under the alternative hypothesis, the MMD test statistic 
can also be shown to be a nonparametric version of the L2 
test-statistic for testing homogeneity [45]. Consider the 
“square-root” convolution kernel ( , )� �l  (i.e., a kernel used for 
density estimation [46]) and a kernel ( , )k � �  defined as 

( , ) ( , ) ( , ) .k x y x z y z dzl l� �  Assuming that ( , )� �l  has a 
bandwidth parameter hn where ,n n n2 1 2� �  then the key 
quantity H2 1

2n n�� �  in the MMD test statistic is an empirical 
estimator of

 ( ) .D p pP PL 1 2 2 1
2

2 � �� � �

With appropriate renormalization, convergence in distribution 
can be established [45], [15], assuming that h 0d �n  and 

.nhd � �n  It is worthwhile to note that the L2-divergence test 
statistic, in contrast to the 2| -divergence one, is less sensitive 
to differences in the tails. Several interpretations of the MMD 
test statistic are discussed and reviewed in [38], [15], and 
[47], respectively.

Another test statistic is the kernel density-ratio test statistic 
(KDR) [48], related to a nonparametric estimate of the 
f -divergence between probability distributions (see also [49] for 
related work). Examples of f -divergences include, for instance, 
the Kullback-divergence. The KDR test statistic [48], [50], [16] 
relies on an estimator no�  of the density ratio / ,p p1 2  found by mini-
mizing a convex optimization objective [48]. The estimator no�  
writes as

 ( ),n x1
n i i

i

n

1

o i z�
�

� �

where , , 0n1 � �i i  and { }x , ,i i n n1 1 2�� �  denotes the pooled sample 
{ } { } .x x, , , ,i i n i i n1 1 2 11 2� �� ��  Then the KDR test writes as

 , ( ) .logT n x1
Hn n i

i

n

1

KDR o z�
�

�� ��

Details on computation of the KDR statistic are given in 
[48] and [16]. Under mild assumptions, such as ,n � �  the 
KDR test statistic converges to the Kullback-divergence

 ,T D P Pn 1 2
KDR

KL� � �

where

 .logD p p
p

P P1 2 1
2

1
KL �� �� ��

All in all, several kernel-based test statistics can be under-
stood as nonparametric estimates of well-known information 
divergences, such as the 2| -divergence, the L2-divergence, 
or the Kullback-Leibler divergence, as summarized in 
Table 2.

Kernel-based test statistics related to the above information 
divergences were proposed, such as the KCD test statistic from 
[51]–[53]. The test statistic is in fact close to MMD and could be 
related to

 T , Hn n 2 1
2

1 2 o o� �� � ,

where 1o�  and 2o�  are, respectively, trimmed empirical mean 
elements
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1
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�

�

�

�
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�

�

with the weights { },i i
n

1 1
1a �  and { },i i

n
1 1

2a �  learned by training one-
class SVMs on each sample independently; see [18] for more 
details. A statistical interpretation of one-class SVMs is given in 
[53] and [54].

Other kernel-based estimates of information divergences were 
proposed, which we do not cover here; see, e.g., [36] and [55].

TESTS OF INDEPENDENCE
Kernel-based methods can also be used to design test statistics for 
testing independence. We only quickly review these methods, as 
the principles underlying the test are similar.

Consider two samples { , , }X Xn1 �  and { , , }Y Yn1 �  in two 
different measurable spaces X  and ,Y  drawn i.i.d. under a 
joint probability distributions .P ,X Y  We shall denote by p ,x y 
the corresponding probability density, and by ,px  py the 
corresponding marginal probability densities. Testing the 
independence of the two samples { , , }X Xn1 �  and { , , }Y Yn1 �  
corresponds to deciding between the two hypotheses 

 
:

: ,

H

H

P P

P P
X Y

A X Y

0 �

��

where P PX Y�  means that the random variables X and Y are 
independent of each other. Note that testing for homogeneity 
may be seen as testing for the independence of the observed 
variable and a binary-valued variable indicating from which 
sample it came.

Testing for independence may be naturally cast in the cova-
riance operators framework by considering cross-covariance 

[

[TABLE 2] THE RELATIONSHIPS BETWEEN KERNEL-BASED 
TEST STATISTICS AND INFORMATION DIVERGENCES.

TEST STATISTIC INFORMATION DIVERGENCE 

KFDA [13] 
( )

( )
D p p

p p
1P P1 2

1 2

2 1
2

2 �
t t

� � �
�

| � � �

MMD [43] ( )D p pP PL 1 2 2 1
2

2 � �� � �

KDR [48] logD p p
p

P P1 2 1
2

1
KL �� �� ��
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operators. Given an RKHS H X  on X  and an RKHS H Y  on ,Y  
then the cross-covariance operator :H H,

Y X
X Y
P �R  is the 

only operator so that, for all ( , ) ,H Hf g X Y��

 , ( ( ), ( )) .f g f X g YCov,
H

X Y
P PXR �

For infinite-dimensional kernels where the mean element func-
tion is injective, then the variables X and Y are independent 
if and only if .0,X Y

PR �  It is thus 
natural to define test statistics 
from the empirical estimate ,X Y

PR�  
of ,X Y

PR  obtained by considering 
empirical covariances. This leads 
naturally to the Hilbert Schmidt 
independence criterion (HSIC) 
[17], [56], which is the squared 
Hilbert-Schmidt norm of .,X Y

PR�  This criterion corresponds to 
comparing distributions through D p p p ,L x y x y2 � �  [57]. Alterna-
tively, like for homogeneity testing, to consider tests that reduce 
to traditional tests in the Gaussian and discrete cases, “studenti-
zation” may be performed by considering the regularized cross-
correlation operators

 ( ) ( )I I, / , , /X X X Y Y Y1 2 1 2
P P Pc cR R R� �� �

and its empirical counterpart. The largest singular value is 
the largest kernel canonical correlation [36], [58], while its 
Hilbert-Schmidt norm leads to comparing distributions with 
D p p p ,x y x y2| � �  [59]. Such hypothesis tests for testing inde-
pendence are useful for performing independent component 
analysis (ICA), with applications such as source separation 
[36], [60]. Indeed, most algorithms for ICA optimize a non-
convex objective, and therefore require multiple restarts for 
optimization. Kernel independence tests are valuable for 
checking the quality of obtained solutions with different 
restarts [36], [60].

CALIBRATING KERNEL-BASED TESTS
We now briefly explain more precisely how to calibrate kernel-
based test statistics, that is, how to compute the critical region for 
a prescribed level .a

The first approach is to calibrate the test statistic using the 
limiting distribution under the null hypothesis. Consider a 
test statistic ,Tn  whose large-sample distribution under the 
null hypothesis is a random variable .V Then one can compute 
a critical value c1 a�  that guarantees asymptotically a Type I 
error (false-alarm rate) of a  by computing c1 a�  such that

 (  ) .HP V c is true1 0� a�a�

Sometimes the limiting random variable ,V the random 
variable to which the test statistic converges to under the null, 
depends on some unknown quantities. For instance, the large-
sample distribution of MMD under the null depends on the eigen-
values { }p p 1m �  of the covariance operator. Then, one can usually 

replace the unknown eigenvalues { ( )}p W p 1m R �  by their statisti-
cally consistent estimates { ( )}p W p 1m R �

�  [44], and compute instead 
c1 a�  such that

 ( ({ ( )} ) ) .HP V c  is truep w p 1 1 0�m aR �� a�
�

Other approaches approximate the distribution under the 
null distribution by moment-matching of a parametrized family 

of distributions, say, based on the 
first four moments, and compute 
the critical value from this 
approximate null distribution 
[44]. Such approaches usually 
yield good results in practice but 
lack statistical guarantees. They 
ignore higher-order moments and 

they therefore do not lead to statistically consistent procedures.
The second approach is to calibrate the test statistic using 

resampling techniques. Consider the case of testing for 
homogeneity. Assume that the two samples have same size 
for the sake of clarity. The test statistic is in fact a function of 
the two samples

 ( ),ST gn n�

where { , , }; { , , }x x x xS , , , ,n n n1 1 1 2 1 2� ��  Calibrating the test 
statistics corresponds to finding the quantile at level ( )1 a�  of 
the cumulative distribution function F of the test statistic .Tn  
The idea of sampling-based calibration is to estimate ( ; )c T Fn1 a�  
by ( ; ),c T Fn n1 a�

�  and to approximate ( ; )c T Fn n1 a�
�  using simula-

tions. Hence, we simulate { , , }; { , , }x x x xS*
,

*
,

*
,

*
,

*
n n n1 1 1 2 1 2� ��  from 

Fn
�  and then compute ( ) .ST g* *

n n�  This constitutes one draw 
from the distribution of .Tn  Thus, to simulate “ghost” bootstrap 
samples ,S F*

n n� �  it suffices to draw n2  observations with a 
replacement from , , ; , , .x x x x, , , ,i n i n1 1 2 2� �  This can be summa-
rized by the following diagram, paraphrased from [31]:
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We provide an illustration of the accuracy of the sampling-
based calibration for MMD using a Gaussian RBF kernel with 
bandwidth set to . .0 5 We consider two samples with 100 obser-
vations drawn for a normal distribution. We compare the true 
null distribution, which we can simulate using a large number 
of replications or compute using the limiting null distribu-
tion. We also compute the sampling-based distribution using 
sampling with replacement in these two samples. As Figure 6 
shows, the sampling-based distribution leads to a rather accu-
rate calibration of the test.

KERNEL-BASED METHODS OFFER 
AN ELEGANT SET OF TOOLS 

TO TACKLE THE CHALLENGES 
ARISING IN NEW APPLICATIONS 

OF SIGNAL PROCESSING.
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CONCLUSIONS
Kernel-based methods were used extensively and success-
fully for binary and multiway supervised classification 
problems in signal processing and machine learning. We 
showed how kernel-based methods can also be used for 
detection purpose, to build kernel-based hypothesis test 
statistics. These test statistics can, most of the time, be 
related to well-known information divergences between 
distributions. Therefore, kernel-based methods offer an 
attractive framework to build nonparametric detection pro-
cedures, applicable to a wide range of high-dimensional 
and structured data. Many detection problems were consid-
ered in the signal processing literature, and new detection 
problems arise with new applications. Kernel-based meth-
ods offer an elegant set of tools to tackle these new 
challenges.
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