Skip to Main content Skip to Navigation
New interface
Journal articles

Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks.

Jérémie Naudé 1 Bruno Cessac 2 Hugues Berry 3, 4, 5, * Bruno Delord 6, 7 
* Corresponding author
2 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
5 BEAGLE - Artificial Evolution and Computational Biology
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
ISIR - Institut des Systèmes Intelligents et de Robotique
Abstract : Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher-order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics and computational performance have arisen from machine learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multi scale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism insures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unravel principles underlying self-organization around criticality in biological recurrent neural networks.
Complete list of metadata

Cited literature [56 references]  Display  Hide  Download
Contributor : Hugues Berry Connect in order to contact the contributor
Submitted on : Saturday, July 13, 2013 - 11:04:31 PM
Last modification on : Tuesday, October 25, 2022 - 4:21:05 PM
Long-term archiving on: : Monday, October 14, 2013 - 11:25:50 AM


Files produced by the author(s)



Jérémie Naudé, Bruno Cessac, Hugues Berry, Bruno Delord. Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks.. Journal of Neuroscience, 2013, 33 (38), pp.15032-15043. ⟨10.1523/JNEUROSCI.0870-13.2013⟩. ⟨hal-00844218⟩



Record views


Files downloads