Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks.

Jérémie Naudé 1 Bruno Cessac 2 Hugues Berry 3, 4, 5, * Bruno Delord 6
* Auteur correspondant
2 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
5 BEAGLE - Artificial Evolution and Computational Biology
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive, CarMeN - Cardiovasculaire, métabolisme, diabétologie et nutrition
Abstract : Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher-order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics and computational performance have arisen from machine learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multi scale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism insures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unravel principles underlying self-organization around criticality in biological recurrent neural networks.
Type de document :
Article dans une revue
Journal of Neuroscience, Society for Neuroscience, 2013, 33 (38), pp.15032-15043. 〈10.1523/JNEUROSCI.0870-13.2013〉
Liste complète des métadonnées

Littérature citée [56 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00844218
Contributeur : Hugues Berry <>
Soumis le : samedi 13 juillet 2013 - 23:04:31
Dernière modification le : vendredi 16 novembre 2018 - 02:04:40
Document(s) archivé(s) le : lundi 14 octobre 2013 - 11:25:50

Fichier

JN_Naude2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jérémie Naudé, Bruno Cessac, Hugues Berry, Bruno Delord. Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks.. Journal of Neuroscience, Society for Neuroscience, 2013, 33 (38), pp.15032-15043. 〈10.1523/JNEUROSCI.0870-13.2013〉. 〈hal-00844218〉

Partager

Métriques

Consultations de la notice

1619

Téléchargements de fichiers

188