N

N
N

HAL

open science

FreeRec: an Anonymous and Distributed
Personalization Architecture

Antoine Boutet, Davide Frey, Arnaud Jégou, Anne-Marie Kermarrec,

Heverson Borba Ribeiro

» To cite this version:

Antoine Boutet, Davide Frey, Arnaud Jégou, Anne-Marie Kermarrec, Heverson Borba Ribeiro.
FreeRec: an Anonymous and Distributed Personalization Architecture.

pp-20. hal-00844813

HAL Id: hal-00844813
https://inria.hal.science/hal-00844813
Submitted on 16 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Technical Report] 2013,

https://inria.hal.science/hal-00844813
https://hal.archives-ouvertes.fr

FreeRec: an Anonymous and Distributed
Personalization Architecture

Antoine Boutet!, Davide Frey!, Arnaud Jégou', Anne-Marie Kermarrec!:2,

and Heverson B. Ribeiro?

1 INRIA Rennes, France
antoine.boutet@inria.fr, davide.frey@inria.fr, arnaud. jegou@inria.fr,
anne-marie.kermarrec@inria.fr, heverson.ribeiro@inria.fr

2 EPFL, Switzerland

Abstract. We present and evaluate FREEREC, an anonymous decentral-
ized peer-to-peer architecture, designed to bring personalization while
protecting the privacy of its users. FREEREC’s decentralized approach
makes it independent of any entity wishing to collect personal data
about users. At the same time, its onion-routing-like gossip-based overlay
protocols effectively hide the association between users and their inter-
est profiles without affecting the quality of personalization. The core
of FREEREC consists of three layers of overlay protocols: the bottom
layer, RPS, consists of a standard random peer sampling protocol ensur-
ing connectivity; the middle layer, PRPS, introduces anonymity by hid-
ing users behind anonymous proxy chains, providing mutual anonymity;
finally, the top clustering layer identifies for each anonymous user, a
set of anonymous nearest neighbors. We demonstrate the effectiveness
of FREEREC by building a decentralized and anonymous content dis-
semination system. Our evaluation by simulation and through extensive
PlanetLab experiments show that FREEREC effectively decouples users
from their profiles without hampering the quality of personalized content
delivery.

1 Introduction

The Web 2.0 has transformed the way users interact with the Internet. Users are
no longer pure consumers, but they now generate a large portion of the avail-
able content. As a result, personalized services have become a requirement for
most online applications. While personalization and social applications greatly
enhance user experience, they amplify the Internet’s inherent privacy risks and
concerns. For instance, personalization in a social application can reveal po-
tentially embarrassing information directly to friends, family, and colleagues.
In addition, users publishing controversial or prohibited information on social
platforms can easily be identified and located through their IP addresses.

The reason for the privacy risks associated with personalized services lies
in their inevitable dependence on personal data. As another example, consider
one of the most common forms of personalized services: recommendation. A

II

common technology providing this service is user-based Collaborative Filtering
(CF) [25]. This paradigm leverages interest similarities to identify correlations
between the preferences of different users. While users are not generally aware
of who else shares their own interests, their centralized implementation requires
service providers to store accurate information about the interests of users. This
clashes with the need to protect personal data.

Anonymity services provide an attractive way to overcome the privacy issues
associated with personalized services. They hide the real identity (i.e. IP ad-
dress) of a user through pseudonym (e.g. IP address of another node). Several
such solutions are available on the Internet [1] and offer users the possibility
to navigate anonymously behind a proxy. However, the use of a single proxy is
vulnerable to adversaries that can observe traffic going in and out of the proxy.
Distributed solutions, such as Tor [11] provide better guarantees. Nonetheless,
they do not eradicate the concentration of personal data within the servers of
a single provider. Decentralized personalization based on the P2P paradigm [5,
8] addresses the issue of concentrated data while providing naturally scalability.
Yet, they remain vulnerable to the presence of malicious users.

Clearly anonymity alone does not protect users privacy, nor does decentral-
ization alone. In this work, we seek to address these issues by combining the
benefits of decentralized personalization and anonymity. The result is FREEREC,
an anonymous and distributed personalization architecture. Our solution imple-
ments a distributed user-based (CF) scheme through an anonymous and interest-
based topology and uses the resulting overlay to recommend items to users.
Unlike existing decentralized personalization platforms, FREEREC protects the
interest profiles stored at every node by means of anonymous exchanges with
other peers. This makes FREEREC a generic personalization architecture that
can be leveraged to build a number of distributed applications that may benefit
from recommendation services.

FRrREEREC builds anonymous chains of nodes by relying on three layers of gos-
sip protocols providing mutual anonymity. A standard random-peer-sampling
protocol provides nodes with the members of their anonymous chains. A sec-
ond private peer-sampling protocol uses these chains to provide each node with
an anonymous sample of the network. A top clustering layer implements a de-
centralized collaborative-filtering overlay by creating decentralized clusters of
anonymous profiles. This layered architecture makes FREEREC self organizing
and capable to adapt to the arrival and departure of nodes and to changes in
the interests of users. We evaluate FREEREC using both simulation and a real
deployment on PlanetLab. Our results on a news-personalization use case show
that users are able to effectively receive and publish content even in presence of
path failure with reasonable overhead.

The rest of the paper is organized as follows: Section2 presents our system
models and Section3 details our solution. Experiment setup is presented in Sec-
tion 4 while FREEREC is extensively evaluated in Section 5. Related works are
introduced in Section 6 and Section 7 concludes our paper.

111

2 System models

2.1 Recommendation system

We consider a decentralized user-based collaborative filtering (CF) system [5, 8].
Such systems build interest-based overlay networks by clustering nodes according
to the similarity among their interest profiles 3. This task relies on two proto-
cols: a random peer sampling (RPS) and a clustering protocol (CLUSTERING).
The RPS [27] protocol ensures connectivity by providing each node with a con-
tinuously changing random sample of the graph. This comes in the form of a
view data structure: a list of references to other nodes. Each entry in a view
consists of (i) a node’s IP address and port, (ii) a profile describing the node’s
interests, and (i) a timestamp indicating when the associated profile was gen-
erated. While the RPS allows nodes to continuously discover new nodes, the
CLUSTERING protocol identifies, at each node, the k-nearest neighbors in term
of interests, and ensures connectivity between the node and this neighborhood.

Periodically, each protocol selects the node in its view with the oldest times-
tamp and sends it a message containing its profile with half of its view for the RPS
and its entire view in case of the clustering protocol (standard parameters [15,
28]). In the RPS, the receiving node renews its view by keeping a random sample
of the union of its own view and the received one. In the clustering protocol,
instead, it computes the union of its own and the received view, and selects
the nodes whose profiles are closest to its own according to a similarity metric.
Several similarity metrics have been proposed [26], we use the well known cosine
similarity metric in this paper.

2.2 Adversary

We consider adversaries following the Honest-But-Curious model [12] where ma-
licious nodes can collude to extract information from the system but are not
able to cheat in the protocol (i.e. forge, modify, replay or drop messages). As a
consequence, adversaries can monitor all exchanges where they are involved. The
goal of the adversaries is to break the unlinkability between an interest profile
and its real owner.

3 FreeRec

Our anonymous personalization architecture extends the model described in Sec-
tion 2 to achieve anonymity by executing gossip exchanges through onion-like
encryption chains: the prozy chains. The proxy chain of a node n is a sequence
starting with n and containing [other nodes as depicted in Figure 1. We refer
to node n, the first node in the chain, as its initiator. The last, p, is the chain’s
proxy, (or n’s proxy), while the remaining ones are intermediate nodes. Messages
can travel along the chain in two directions: forward, from the initiator to the

3 We use the term node to refer both to a user and to her machine.

v

proxy; or backward, the other way around. The proxy acts as a placeholder for
n, hiding n’s identity in all the gossip exchanges that include n’s interest profile.

Proxy chains effectively hide the very fact two nodes are communicating.
Two nodes n and m can learn their respective profiles without knowing their
respective identities. Moreover, their profiles are hidden from all other nodes
in the chains. A node n that wishes to send a message to another node builds
a sequence of encryption layers around it, including the corresponding routing
information. Each of the nodes along its proxy chain removes one of these layers
and sends the inner encrypted layer to the next hop indicated in the message.
The process continues until the destination node’s proxy. At this point, the
message goes through the destination chain in the backward direction using
routing information and encryption keys maintained by each node in the chain.
Each of these, starting from the proxy, adds one encryption layer and routes the
message until it arrives at the destination node, which removes all the layers.

In previous work [?], we considered chains of variable lengths between a
minimum and a maximum sizes (m and M) following the example of [30,29)].
While variable-length chains provide additional security in a setting where a
source wishes to hide the fact that it is sending a message, they turn out to be
counterproductive in a setting like ours. FREEREC aims at hiding the association
between a node and its interest profiles. As we show in Section 5.4, a chain of
fixed size [protects this association significantly better than a variable-size chain
with the same average length: [= %

3.1 Chain-Based Routing

We now present the data structures that allow nodes to build, maintain, and use
proxy chains.

Chain and Message Keys. The onion-like encryption process outlined above
relies on three types of keys: two sets of public/private key pairs, and one set of
secret keys. First, each node, n, maintains a key pair, (K, k,)*, called message
key pair. Nodes use it to send and receive encrypted messages through proxy
chains to and from any other node while preventing the proxies and the other
chain nodes from accessing the content of this communication.

Each node also maintains a second key pair: the chain key pair, (Cy,cy).
While the message key pair hides the content of a message from the nodes in the
chain, the chain key pair makes it possible to construct the onion-like encryption
layers when traversing the chain in the forward direction.

Finally, each node, n, generates and dispatches a secret key, s}, to each node,
1, in its own proxy chain. Nodes use this key to add onion layers to messages
that travel along the chain in the backward direction, i.e. towards n. The use of
onion-like encryption in the forward and backward directions causes messages
to change at each hop, thus preventing external observers from recognizing the

4 We use uppercase characters for public keys and lowercase for private or secret keys.

v

messages in a proxy chain. We summarize the roles of the three types of keys in
Table 1, and provide details about their distribution in Section 3.3.

Data Structures and Routing IDs. To route messages along proxy chains
we use a combination of source and hop-by-hop routing. Each node maintains
information about the members of its own proxy chain in a CHAINTABLE. This
data structure is essentially a list: each entry consists of the identifier of a node,
and of its associated public chain key. The information in the table allows the
initiator of a chain to encrypt messages in onion layers.

The destination proxy, however, cannot use source routing to reach the des-
tination node: a node may in fact act as a proxy or an intermediate node in
multiple proxy chains. To route backwards along the chain, we therefore use a
set of ROUTINGIDS as depicted in Figure 2. For routing purposes, all the nodes
in a chain could use the same ROUTINGID to identify their next hops. However,
this would easily allow colluding nodes to verify if they are part of the same
chain. We therefore associate a unique (with high probability) ROUTINGID with
each link in a chain. The proxy ROUTINGID (e.g. p, and p, in Figures 1 and 2)
serves as a pseudonym for the destination node, while the remaining ones (r;;
in the figures) enable backward routing on the destination chain.

Nodes store the ROUTINGIDS of the chains they belong to in a ROUTINGTABLE.
With reference to Figure 2, let node p be a proxy in the chain of node b. p’s ROUT-
INGTABLE contains an entry indexed by b’s proxy ROUTINGID (p, in the figure).
This entry contains (i) p’s secret key for the chain (sg), (ii) the identifier of the
previous node in the chain (v), (iii) the public chain key of v (C,), and (iv) the
ROUTINGID of the link between p and v (rp,). Intermediate chain nodes also
have an analogous entry in their routing tables, but indexed by the ROUTINGID
of the link to the next node in the chain. Node v therefore has an entry indexed
by 7, and containing (i) v’s secret key for the chain (s%), (ii) the identifier of z,

(ili) z’s public chain key (C,), and (iv) the ROUTINGID of the link to z (7,y).

M1 = Cx(s} JTax.fxy,a,Ca,y,M2))
M2 = Cy(s§,5y.lyq.X.Cx,q.M3))
M3 = CCI(Sa ;rifq,pa fYrCyr T T))

Fig. 1: Prozy chain creation.

VI

(Chycn) Chain key pair of node n |c,, private key, C,, public key

(Kn,kn) | Message key pair of node n |k, private key, K, public key

sy, Secret key generated by node z and shared with node n
RPS Random peers sampling |@Qip, timestamp, C,
PRPS Random proxies sampling |Q@ip, timestamp, ROUTINGID, C,,, profile, K,

CLUSTERING|Interest-based neighborhoods|@ip, timestamp, ROUTINGID, C,,, profile, K,

| RT | ROUTINGTABLE [rpo] [s0, 2, Cz, 120

|

Table 1: Data structures maintained on a node v, followed by p and preceded by z in
b’s chain.

3.2 FreeRec Three-Layer Architecture

Our goal in building proxy chains is to enable the architecture described in
Section 2 to operate anonymously. To make this possible, we replace the two
protocols of Section 2 with a three-layer architecture. We introduce a RPS pro-
tocol layer, which provides each node with a sample of the network from which
to choose the members of its proxy chain. The RPS operates like a normal peer
sampling protocol with one addition: it associates each node n with the informa-
tion required for creating the chains. This comprises only the node’s IP address,
its public chain key C),, and a timestamp. Interest profiles do not appear in the
RPS views: they are protected by the anonymous PRPS layer.

The PrRPS (Proxied Random Peer Sampling) uses the information provided
by the RPS to build a proxy chain for each node. It then exploits these chains in
gossip exchanges thereby providing each node with a random sample of anony-
mous nodes. In doing this, it also allows nodes to learn about the necessary
information to route messages anonymously to other nodes. Consider a PRPS
view containing an entry for node b. The entry does not include b’s IP address
and port. Rather, it is identified by b’s proxy ROUTINGID (p,). In addition, it
contains the IP address and port of b’s proxy (p), p’s public chain key (C,), b’s
public message key (Kj), and b’s interest profile.

PRPS views allow nodes to learn about the anonymous information referring
to another node without being able to associate it with the node’s precise iden-
tity. Nodes exchange views like in a standard RPS. However, they channel all view
exchanges through their proxy chains. The PRPS thus replaces the RPS protocol
of the architecture of Section 2, thus enabling anonymous profile exchanges.

The PRPS serves as a basis for the top layer of our architecture: a CLUSTERING
protocol, like the one in Section 2. However, unlike in Section 2, the clustering
protocol also performs all its view exchanges using the proxy chains built by
the PRPS layer. This allows our architecture to build decentralized personalized
services in a completely anonymous manner.

VII

3.3 Protocol Details

In the remainder of this section, we provide additional details about how the
PRPS protocol manages chains and encrypted routing.

Building Proxy Chains. A node a can start building its proxy chain once
its RPS view is filled with a random set of nodes. Specifically, a first determines
how many other nodes should be in its chain by extracting a random number &
from m to M included. Then it extracts k nodes from its RPS view and it sets the
first extracted node as a proxy p and the remaining ones (if any) as intermediate
nodes 7 in the order they were extracted. a builds a create-chain message as
described on Figure 1.

The message consists of concentric onion layers. Each layer is a CREATECHAIN
message encrypted with the chain key of one of the nodes that will constitute the
chain. The innermost message, M3 in the figure, is encrypted with the proxy’s
chain key and contains (i) the proxy’s secret key (sg), (ii) the proxy ROUTINGID
for the chain (p, in the figure), and (iii) the ROUTINGID for the link between
the proxy and the last intermediate node (r,, in the figure), (iv) the previous
node’s IP address and port (y), and (v) its public chain key (C,).

After creating M3, the initiator creates a message for the last intermediate
node in the chain (y in the figure). This message contains (i) the previously
encrypted message for the proxy (M3), (ii) the next node’s IP address (the IP
address of the proxy ¢ in this case) and port (g), (iii) node y’s secret key (sg), (iv)
the ROUTINGID of the link between y and the next node in the chain (r,4), (v) the
ROUTINGID of the link between y and the previous node in the chain (rs,), (vi)
the previous node’s IP address and port (z), and (vii) its public chain key (C,).
The initiator encrypts M2 with y’s chain key and then it repeats the process
by adding a layer for each of the nodes it selected for its chain, the last of these
being the one closest to the initiator itself, = in the figure. The initiator then
sends the outermost message to this node initiating the chain-creation process.

Each node receiving a CREATECHAIN message decrypts it and uses its content
to update the information in its routing table. It then forwards the encrypted
inner-layer message to the next node in the chain, which operates analogously.
The proxy performs the same operations except that it does not forward the
message further. If a chain node is already part of another chain with the same
ROUTINGID, it replies with an error message to the initiator, which will recreate
the chain using a different ROUTINGID.

Sending Messages through Chains FreeRec achieves mutual anonymity:
when two nodes exchange messages, both the sender and the receiver are anony-
mous. Nodes use their proxy chains to send and receive encrypted messages as
part of the PRPS and CLUSTERING protocols. Consider the example in Figure 2.
Node a is sending a message m to a node with proxy p (not knowing b’s id),
public message key K}, and proxy ROUTINGID p,. Node a will have discovered
this node, which happens to be b, through PRPS or CLUSTERING exchanges. As

VIII

a result, the association between b’s identity and p, K} or py is unknown to a as
well as to every other node in the system. The process unfolds as follows.

Fig. 2: Message exchange between nodes a and b: a knows b’s profile, the identity of p,
but not the identity of b. Node b knows a’s profile, the identity of q, but not the identity
of a. Nodes in the chain cannot access a’s or b’s profile.

First, a encrypts m using the destination node’s public message key yield-
ing Kj(m). Then it prepares the first layer of its onion message. Specifically, a
includes Kp(m), and the destination’s proxy incoming ROUTINGID, pj in the fig-
ure. Then it encrypts the resulting message with the destination proxy’s public
chain key, yielding M4 in the figure. Node a continues the creation of the onion
message by adding one layer from each of the nodes in its own chain, starting
from the proxy. The first of these layers, M3 is encrypted with the proxy’s public
chain key, and contains both M4 and the address of M4’s target: the destination
node’s proxy. The subsequent one, M2 contains M3 and the address of M3’s
target, ¢ in the figure. In general, consider a node n that is followed by a node
m in a proxy chain. The corresponding onion layer will be encrypted with n’s
public chain key and will contain the IP address and port of m together with
the immediate inner onion layer encrypted with m’s public chain key. In the case
of the figure, the outermost onion layer (M1) will be encrypted with node z’s
public chain key and will contain M2 and the IP address and port of node y.

After creating M1, node a sends it to x, which starts peeling off the first
layer. It first decrypts the message using its private chain key and then forwards
the contained encrypted message (M2) to the node indicated in M1 (y). Upon
receiving the corresponding onion layer, each node in the chain proceeds analo-
gously until the source node’s proxy (q) forwards the innermost layer (M4) to
the destination’s proxy (p). This completes the first part of the routing process.

The destination’s proxy (p) initiates the second part. It decrypts M4 and
retrieves its content: a ROUTINGID, pp, and an encrypted message for the des-
tination node (Kj,(m)). p first looks up pp in its routing table and it retrieves
(i) the associated secret key (sg), (ii) the address and port of the previous node
in the destination chain (v), and (iii) the ROUTINGID of the link leading to

IX

this node (ryp). It then encrypts Kj(m) using the retrieved secret key, yield-
ing (sb(Ky(m))). Finally it builds a message containing sb(Kp(m)), and the
ROUTINGID of the link to the previous node in the destination chain (r,p). It
encrypts this message using v’s public chain key, yielding M5, and sends it to v.

When v receives M5, it decrypts it using its private chain key and retrieves
sb(Ky(m)) and the ROUTINGID of its link to p (7). It looks up this ROUTINGID
in its routing table and retrieves its own secret key s%, the IP address and port
of the previous node in the chain (z), z’s public chain key, and the ROUTINGID of
the link leading to it (r.,). Node v encrypts s (Ky(m)) using s’ and places it in
a message together with the retrieved ROUTINGID. It then further encrypts this
message with z’s public chain key and sends it to z. This process repeats at each
of the intermediate nodes in the chain. Each adds an onion layer by encrypting
the content of the message with its secret key and then wraps the result into a
message with the routing information for the previous node in the chain.

When the destination node (b) receives the final message, it first decrypts
it using its private chain key. Then it starts peeling off each of the onion layer
added by the nodes in its proxy chain. To do so, it uses the secret keys it stored
in its CHAINTABLE, starting with the one associated with the first intermediate
node. After decrypting the layer added by its proxy, it obtains Kj(m), which
it further decrypts using its own private message key, ultimately retrieving the
original message m.

Initialization For this process to work, the source of a message must not only
have built its proxy chain, but it must also have the necessary information about
the destination node. This consists of the destination node’s public message key
(Kp), and of its proxy’s IP address, public chain key (C},), and ROUTINGID
(pp). During normal operation, nodes obtain this information through PRPS ex-
changes. However, this poses a problem during initialization when the PRPS view
of a node is still empty.

Consider a node n with an empty PRPS view. The first time n establishes
a proxy chain, it sends a PRPS view containing only its information to all the
nodes in its RPS view. The corresponding messages go through the proxy chain
of n until its proxy and then go directly to their targets. Consider a target node
t receiving one such message. If ¢ is a proxy for another node m, then it forwards
the message to m along m’s proxy chain. Otherwise ¢ caches the message until it
becomes a proxy for some other node. When a node m receives the initialization
message forwarded by its proxy, it adds its content to its PRPS view.

In principle, the target node ¢ could also add the information received from
n to its own PRPS view. However, this would weaken the protocol’s anonymity
guarantees. An attacker n could send its entry to only one target node t. If it
subsequently received a message from a proxy p, it could conclude that p is likely
to be the proxy of t.

Changing proxy Nodes change their proxy chains periodically. This provides
several benefits. It sustains anonymity over time by limiting the impact of at-

X

tackers that may corrupt a node’s proxy. It provides protection from attackers
that may guess a node’s keys. Moreover, it allows a node to react to path failures
in its chain as a result of churn.

To change proxy chain, a node repeats the chain creation process every t1
time units. Once it has established a new anonymous path, it informs all the
nodes in its PRPS and CLUSTERING view of its new proxy. To keep track of these
changes, all proxies and intermediate nodes associate a timer 2 with each of the
entries in their routing tables. When 2 expires, they delete the corresponding
entry. Nodes choose the timer value so that ¢2 > ¢1 + ¢ where § is an upper
bound on the time required to create a chain.

After a node has set up a new chain, it initiates a PRPS exchange with
all nodes in its PRPS view and a CLUSTERING exchange with all those in its
CLUSTERING view. A node that receives a fresher PRPS entry with the same
proxy ROUTINGID as an existing entry (i.e. entry pointing to the same destina-
tion node) updates this entry with the new proxy identifier, proxy chain key,
message key, and profile.

An important side effect of changing proxies is that the minimum length of
the chain m should be at least as large as 1. If m = 0, then a node n would be its
own proxy with probability 1/M. An attacker could easily exploit the fact that
this is significantly larger than the probability of choosing a random proxy. For
m > 1, a node that serves in n’s proxy chain for several times could still observe
that n appears as a previous chain node more often than others. Yet, inferring
this information would require n to choose the attacker as the first node in its
chain for several times. This makes the attack for m > 1 very unlikely to succeed
in practice.

4 Experimental setup

We evaluated FREEREC in the context of a news-personalization use case. We
combine FREEREC with a gossip-based dissemination protocol to recommend
news items to a population of users. A user interest profile contains the news
items she received and liked. When a user generates an item or expresses a
positive opinion on a received item, she forwards it to her neighborhood in
FREEREC’s anonymous interest-based topology. Gossip frequency in all protocols
is set to one per simulation cycle and of one every 2s in PlanetLab.

4.1 Dataset.

We use a real dataset: we conducted a survey on around 250 news items (selected
randomly from a set of RSS feeds on various topics). We exposed the item list to
around 100 colleagues and relatives and gathered their reactions (like/dislike) to
each news item. This provided us with a small but real dataset of users exposed
to exactly the same news items. To scale our system, we generated 5 instances
of each user and news item in the experiments. The resulting dataset gathers
1235 news items for 530 users. We inject each item into the system at a random
time instant by selecting a random source node.

XI

4.2 Metrics.

We evaluate FREEREC along two metrics of performance and quality. Firstly we
measure the overhead of the system in terms of the network traffic it generates.
For simulations, we compute the total number of sent messages, the number
of messages which have not reached its destination due to message loss and the
number of hops for messages. For our PlanetLab deployment, we instead measure
the average consumed bandwidth and the latency to receive a message. Secondly,
to assess the impact of FREEREC on the quality of the recommendation, we
compute recall and precision. Both measures are in [0, 1]. For an item, a recall
of 1 means that all interested users have received the item. Yet, this measure
does not account for spam since a trivial way to ensure a maximum recall is to
send all news items to all users. This is precisely what precision accounts for.
A precision of 1 means that the news item has reached only the users that are
interested in it. An important challenge in information retrieval is to provide
a good trade-off between these two metrics. This is expressed by the F1-Score,
defined as the harmonic mean of precision and recall [26].

| {interested wusers} N {reached users} |
| {reached users}|

Precision =

| {interested users} N {reached users} |
| {interested users} |

Recall =

Fl— Score — 2 pre(?is:ion - recall
precision + recall

5 Results

We carried out an extensive evaluation of FREEREC by simulation and by de-
ploying its implementation on PlanetLab. We present the results by analysing
the overhead, the impact of proxy changes, the latency, and the probability for
a proxy chain to be compromized by a set of colluding nodes.

5.1 Overhead analysis

We start by considering the overhead of the proxy chain in terms of number of
messages. Clearly the longer the chain, the more anonymous the system. This
cost is a function of the length of the proxy chain: the more the intermediate
nodes in the chain, the higher the cost. Figure 3 depicts the number of messages
according to the size of the proxy chain with a neighborhood fixed at 25. Results
(Fig. 3(a)) show that a chain with only one proxy without intermediate nodes
(i.e. size=2) brings a three-fold increase in the number of messages. This is
because a message needs to go through two proxies (i.e. 3 hops) to reach its

XII

destination. Further adding intermediate nodes in the proxy chain proportionally
increases the number of hops and the number of messages. Fig. 3(a) shows the
overhead in PlanetLab of the two protocols RPS ans PRPS in terms of bandwidth
consumption. We observe that the RPS overhead remains stable regardless of
the size of the proxy chains for RPS exchanges carry only information about
chain keys while PRPS carries the encrypted messages. For this reason, the cost
of PRPS increases linearly with the length of the chain. ®

o , .

3 140 PRPS ——
= 3 120 DPRS
2 3
s < 100
=3 [0}
2 3 80
(=) {=
2 5 OOf
S £ 407
2 2 207

5

o 0

3 4 5 6 7 8
Proxy chain size Proxy chain size (number of hops)
(a) Simulation (b) Deployment

Fig. 3: Overhead according to the size of the proxy chain, in function of number of
messages and bandwidth consumption for simulation and PlanetLab deployment.

5.2 The impact of proxy changes

To remain anonymous over time, nodes periodically renew their proxy chains.
After setting up a new chain, a node advertises the information about its new
proxy through PRPS and CLUSTERING exchanges. However, propagating this in-
formation takes time and some nodes only learn about the new proxy after
several cycles. During this interval, a node that is unaware of the proxy change
will send its messages to the old proxy. Consequently, messages will correctly
go through the source node’s possibly-new proxy chain, but they will reach the
destination node’s old proxy chain. If any of the nodes in this chain has already
removed the corresponding entries from its routing table, it will silently discard
the message.

As explained in Section 3.3, nodes remove entries from their routing tables &
time units after the creation of the new chain. During this time, the nodes in the
old chain can still forward information backwards towards the chain owner. This
leaves some time for the propagation of the new chain’s information, but it does
not eliminate the possibility of losing messages. Figure 4 evaluates the impact

> CLUSTERING is not shown for it has a similar behaviour as PRPS with a bandwidth
consumption exactly twice as much as that of the PRPS due to the larger gossip
size.

XIII

of this aspect in the context of our news-dissemination testbed as a function of
the size of the CLUSTERING view, with 6 = 10 cycles.

Figure 4a shows that the impact of message loss on the F1-Score is limited.
When nodes change proxy every 60 cycles (i.e. t1=60), performance is almost
indistinguishable from the stable case where nodes keep the same proxy over the
whole experiment. When the chain changes more frequently (smaller values of
t1) the percentage loss in F1-Score is slightly higher, but it remains lower than
11%.

To analyze more precisely this F1-Score reduction, precision and recall are
depicted in Figure 4b and Figure 4c, respectively. Proxy change decreases the
recall which means that users can miss interesting news items during this proxy
change process. When nodes change proxies every 40 cycles (i.e. three times in
the experiment), the recall decreases up to 18% for a size of neighborhood of 50.
The augmentation of the precision according to the frequency of proxy change is
a side effect of this message loss. System model described in Section 2.1 implies
redundancy as shown in [8]. As users are clustered according to their interests
(i.e. high clustering coefficient), an item liked by users in a neighborhood has
more chance to be received several times by their neighbors than an item that
arouses less interest. As a consequence, message loss is more likely to reduce the
impact of disliked items than liked ones on the global precision (while decreasing
the F1-Score as shown in Figure 4a).

Figure 4d completes these results by comparing the number of received mes-
sages without proxy change with different values of t1. Clearly message loss
increases with the frequency of proxy changes. When nodes change proxies ev-
ery 40 cycles the number of lost messages is one fourth of the total number of
messages.

5.3 Latency analysis

Figure 5 analyzes latency in our PlanetLab deployment (PL). The plot shows the
time required by the PRPS protocol to establish a proxy chain, and by a message
exchange that uses the chains both on the source and on the destination side.
In the case of chain creation (CC), latency results from key generation, encryp-
tion/decryption operations, and message transmission. In the case of message
exchanges (ME), there are only encryption/decryption operations and message
transmission; yet messages have to travel for twice as many hops as in the case
of chain creation.

The time required to create the proxy chain increases significantly with its
size, while time required for exchanging messages increases only slightly. More-
over, creating the chain takes approximately two to three times as long as for-
warding a message (40s vs 15s with 8-hop chains), even though forwarded mes-
sages have to travel for twice as many hops. This clearly shows that latency
results mainly from computational cost. To understand the reasons for this seem-
ingly poor performance, we ran the same test by instantiating all the nodes on a
local server (LS). In this case, both operations complete in less than 3s, and ex-
changing messages does take longer than creating chains. This confirms that the

XIV

0.6 0.7
05| 085 1
e 0.6 1
o 047] § 055
S 03 2 o5
%] - o .
Lol - & 045)
: without change 04l without change
9 t1=60 : t1=60
011 y; t=4Q o] 035 | T T, p—
0 L L L L L wt1 =2wo L L 0 3 L L L L L tw1 =2wo L L
0 5 10 15 20 25 30 35 40 45 50 "0 5 10 15 20 25 30 35 40 45 50
Size of the neighborhood Size of the neighborhood
(a) F1-Score (b) Precision
7 — ————————
0 5 6 wihtout change
0.6 | = 5 change t1=60
=3 change t1=40Q -
0.5 g 4 change t1=20
T 04 2
o S 3
& 03} 8
0.2t without change ;"J) 2
t1=60 b
01 4 H=40 o] g
o =~ t1=20 2
0 5 10 15 20 25 30 35 40 45 50
Size of the neighborhood Size of the neighborhood
(c) Recall (d) Message loss

Fig. 4: F1-Score, precision, recall and message received according to various proxy chain
change timeout (simulations).

high latency exhibited in a PlanetLab setting results mainly from long processing
times when performing cryptographic operations on overloaded machines.®

5.4 Attacks

As described in Section 2.2, we consider an adversary model with Honest-But-
Curious malicious nodes trying to identify the owner of a specific profile. In
FrREEREC, this mapping between users and profiles is hidden behind anony-
mous proxy chains, providing mutual anonymity between users exchanging their
profiles. Neither a proxy nor intermediate relays in a proxy chain are able to
know the identity of the source of the chain but are only aware about the pre-
vious and/or the next relay in the chain. However, the anonymity might be
broken if the adversary controls all nodes acting as relays in a proxy chain (i.e.
all segments of the chain). Indeed, in this case, malicious nodes can retrieve the
identity of the owner of a profile served by a proxy by following the proxy chain
until its source. To do that, adversary has to be sure it controls all relays of the
chain from the source to the proxy. As a result, for a chain size C', the adversary
needs to control at least C'— 1 nodes otherwise it is impossible for him to control

5 PlanetLab machines are notoriously overloaded.

XV

% 40000

£ 35000

°

£ 30000 f

@ 25000

8 20000 f

£ 15000 |
g 10000 .

§ 5000

< 0

3 4 5 6 7 8
Proxy chain size (number of hops)

Fig. 5: Latency of chain creation and message forwarding (deployment).

all nodes in the proxy chain. In the rest of this section, we refer to the number
of intermediate relay nodes that must be controlled in a successful attack as
c=1—-1.

Expected success rate We start our analysis by comparing the resilience of our
deterministic-length chain, [, with that of a variable-length chain as presented
in [?]. We do this by proving the following simple property.

Property 1. Attackers wishing to associate nodes with their profiles will have a
higher expectation of succeeding with in a system using variable-length chains
with an average of ¢ intermediate nodes than in one using fixed-sized ones with
exactly ¢ intermediate nodes.

Proof. Let us consider a system of N nodes with F' - N attackers. Also, let us
assume that N >> F'- N so that the probability of having an attacker in a chain
is independent of the number of attacker it already contains.

Under these assumptions, a coalition of attackers will compromise a fixed-
chain protocol if they manage to control all the ¢ intermediate nodes in a chain.
This happens with a probability of success of ps s, = F¢ because the probability
of having an attacker in a chain is equal to the fraction F' of attackers in the
system.

In the case of a variable-chain protocol, however, the length of the chain is no
longer a constant ¢, but a random variable C' with expectation E(C) = ¢. We can
thus compute, the probability of a successful attack as ps yor = Zim Pr(C =
i)\ F' = E(F°).

Because F'” is a convex function, Jensen’s inequality implies that E(F¢) >
FP©) and thus E(FC) > F°. The expected number of successful attacks with
a variable chain is therefore at least as high as that obtained in the presence of
a fixed chain.

In the following section, we integrate this qualitative result, with a numerical
analysis of the associated probabilities.

XVI

Fixed chain size Figure 6 plots the probability of a successful attack in the
case of a fixed size proxy chain in the presence of colluding attackers. The x-axis
shows the fraction of colluding nodes in the system, while the y-axis shows the
probability for a proxy chain to be controlled by the colluders. As described
above, an attack is successful with probability p, s, = F ¢. For example, with
10% of colluders and a C = 6, the probability that the attackers fully control
one’s chain is 107%, and the node can on average regenerate a new proxy chain
1,000, 000 times before its chain becomes compromised.

Probability to control a proxy chain

0 0.1 0.2 0.3 0.4 0.5
Fraction of attackers in the systen

Fig. 6: Probability of a proxy chain being compromised by a set of attackers.

Static, chain size =6 ——
Dynamic, chain size in [2:10]
Static, chain size = 10
0.05 | Dynamic, chain size in [6:14]

Probability of attack success
o
=9
8

[0.1 0.2 0.3 0.4 0.5
Fraction of attacker

Fig. 7: Comparison of the attack effectiveness on fized and variable chain size.

Variable chain size The case with variable chain sizes is a bit more complex.
Every time a node has to build a new chain, she selects the chain size uniformly
at random in [m : M], not including the proxy. In this situation, the attackers can
only match a user with her profile with certainty when they are max attackers
in a row in a chain. Otherwise, there is a probability that a sequence of attackers
only controls a subset of a chain, and that the attackers are surrounded by a
random node and a random profile.

XVII

As we observed in the proof of Property 1, we can compute the probability
of success of an attack, as the expectation E(F¢) where C is a random variable.
Because the number of intermediate nodes in the chain C' is uniformly distributed
between M — 1 and m — 1, we have the following probability of success.

FC

Ps,var = m
Figure 7 plots this probability and compares it with the probability of success in the
fixed case. As implied by Property 1, variable chain sizes invariably favor attackers that
wish to associate a profile with its owner. This may seem counter-intuitive, but results
from the very nature of FREEREC. A system that only wishes to hide the sender of a
message may actually benefit from a variable chain. Yet, in the case of FREEREC, we
aim to protect the association between a profile and its owner. The presence of cases in
which the chain size is smaller than Ifavors attackers more than the presence of cases
with larger chain sizes.

Despite the clear advantage of fixed chains, both Property 1 and Figure 7 hide an
important aspect of the choice between fixed and variable chain sizes. With a fixed
chain size, attackers have a very low probability to control an entire chain. Yet, when
they do so, they can be confident that they have found an association between a node
and the corresponding profile. With a variable chain size, on the other hand, attackers
have no way to tell for sure whether they have made a correct guess unless they control
a chain of M nodes. They are therefore forced to make imperfect guesses. This results
in a higher expected success rate than in the fixed-chain case, but at the cost of some
number of false predictions. Attackers can nonetheless increase the confidence of such
predictions by relying on their ability to control the same chain multiple times.

To evaluate this aspect, we model the probability P(G). that a set of ¢ attack-

ers make a good guess. To this end, we define the events Ch. = {c intermediate
nodes in the chain} and M. = {# of consecutive malicious nodes =c}. Then
P (M.|Che) P(Che) Fe
P(G)e =P (Che|M.) = = =
P(M.) chngP(MC |Chs)
FC

T a2 X Fex (1= F) 4 (s—c—1) x F x (1— F)?

This yields the probability of making a good guess over all chain sizes.

ngch P(G)c x F°
ZWSCSM Fe

By iterating over multiple guesses we obtain the probability of correctly guessing the
endpoints of a chain after seeing it n times (proof omitted for space reasons).

P(G)"

P(Q)" + BRE

P(G) =

Confidence =

Figure 8 plots the number of chain renewals that a coalition of attackers require
to achieve a confidence of 0.999 in their prediction. For a given average chain size, the
static chain resists much better than the dynamic one, particularly with a low fraction
of colluding nodes. Yet, as the colluding fraction increases, both static and dynamic
versions converges toward the same value.

XVIII

1e+14

Static, chain size = 6 ———
Dynamic, chain size in [2:10]

Te+12 Static, chain size = 10 e
- Dynamic, chain size in [6:14]

1e+10

1e+08

1e+06

10000

100 -

Avg. num. of chain changes to find the profile of a use

0 0.1 0.2 0.3 0.4 0.5
Fraction of attacker

Fig. 8: Time required to achieve 0.999 confidence in a prediction.

6 Related Work

While personalization greatly enhances user experience, it raises privacy risks and
concerns. Several collaborative-filtering approaches [21,22] have tried to preserve the
privacy of sensitive data address by applying randomized masking and distortion tech-
niques to user profiles. However, [13,17] show that privacy-sensitive information can
be separated from such random distortion. To overcome this limitation, [7] uses noise
that is not random but depends on the interest of users. This limits the amount of
information exchanged between users to coarse-grained user profiles that only reveal
the least sensitive information. Other decentralized approaches such as [9, 10, 20] ex-
ploit homomorphic encryption in a P2P environment. [14], in turn, addresses privacy
by trust where participants exchange information and profile only across trusted con-
tent producer/consumer pairs. [2] proposes a differentially private protocol to measure
the similarity between profiles. While differential privacy provides a strong notion of
privacy, [19] highlights its important trade-off between privacy and accuracy.

A number of authors have proposed to address privacy by means of anonymity.
Some, like [4] achieve receiver anonymity using group communication primitives like
broadcasting, multicasting, and flooding. Others [11] focus on sender anonymity and
relay messages from a node along a single anonymous path formed by nodes within the
infrastructure.

Onion routing belongs to the latter group. It uses chains of router nodes that pack
messages into onions: recursively encrypted data structures that contain the necessary
routing information at each layer. When receiving an onion, a router removes a layer
by decrypting it with its private key. At this point, it discovers either that it is the
destination of the message, or the identity of the next router in the onion’s forwarding
path. . Tor [11] uses this model but cannot be readily integrated with decentralized
personalization services.

Some authors have already suggested the integration of gossip and anonymous
services. The work in [24] uses gossip protocols to improve the robustness of trust-based
overlays to provide privacy-preserving data dissemination. More precisely, it creates and
maintains additional anonymous links on top of an existing social overlay. Similarly,
[23] relies on gossip protocols to supports confidential communications and private
group membership. This solution leverages existing multi-hops paths to circumvent
network limitations such as NAT and firewalls to form anonymous channel. Neither
however combines anonymity with personalization. Gossple [5] does this to some extent
and builds a fully decentralized anonymous collaborative network. Its gossip-on-behalf

XIX

protocol hides the association between a user and her profile. Yet, in Gossple, a proxy
controls some of the node’s data structures. This is a significant disadvantage if the
proxy wishes to censor specific information. In FREEREC, on the other hand, a proxy
can at most drop messages randomly as it has no way to access their content.

Other works on gossip-based protocols have focused on tolerating byzantine faults
such as BAR gossip [18], the secure peer sampling [16], Brahms [6] or PuppetCast [3].
In this work, we do not consider that nodes can act as active adversary by operat-
ing maliciously in the protocol. In case of malicious nodes cheating in the protocol,
FREEREC could leverage one of these solutions to tolerate byzantine nodes. Finally,
some authors [30,29] have suggested to address churn by replacing each onion router
with a group of nodes. Such a technique could easily be integrated with our solution.

7 Conclusions

We presented FREEREC, a decentralized architecture for building anonymous personal-
ized services. FREEREC equips nodes with bidirectional onion-routing-like proxy chains
that allow nodes to exchange their interest profiles without ever revealing their iden-
tities. FREEREC’s core consists of three layers of gossip protocols. The bottom one
is a standard random-peer-sampling protocol that provides nodes with the necessary
information to build their proxy chains. The middle layer, the PRPS, constitutes the
main contribution of this work and is an augmented RPS protocol: it builds and main-
tains proxy chains and uses them to provide each node with a continuously changing
anonymous sample of the network. The top layer completes the picture by providing
each node with a cluster of anonymous interest profiles that most closely resemble its
own. We extensively evaluated FREEREC in several ways: through simulations, with
a planetlab deployment, and through a probabilistic analysis. Our results show its
effectiveness in combining privacy with effective recommendations.

References

1. Anonymous surfing solution http://anonymouse.org/.
2. M. Alaggan, S. Gambs, and A-M. Kermarrec. BLIP: Non-interactive Differentially-
Private Similarity Computation on Bloom Filters. In SSS, 2012.
3. A. Bakker and M. van Steen. Puppetcast: A secure peer sampling protocol. In
EC2ND, 2008.
4. N. Bansod, A. Malgi, B. K. Choi, and J. Mayo. Muon: Epidemic based mutual
anonymity in unstructured p2p networks. Comput. Netw., 2008.
5. M. Bertier, D. Frey, R. Guerraoui, A.M. Kermarrec, and V. Leroy. The gossple
anonymous social network. In Middleware, 2010.
6. E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms: byzantine
resilient random membership sampling. In PODC, 2008.
7. A. Boutet, D. Frey, R. Guerraoui, A. Jegou, and A.-M. Kermarrec. Privacy-
preserving distributed collaborative filtering. In Activity Report, 2013.
8. A. Boutet, D. Frey, R. Guerraoui, A. Jegou, and A.-M. Kermarrec. Whatsup
decentralized instant news recommender. In IPDPS, 2013.
9. J. Canny. Collaborative filtering with privacy. In SP, 2002.
10. J. Canny. Collaborative filtering with privacy via factor analysis. In SIGIR, 2002.

XX

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion
router. In USENIX Security Symposium, 2004.

O. Goldreich. Cryptography and cryptographic protocols. Distrib. Comput., 2003.
Z. Huang, W. Du, and B. Chen. Deriving private information from randomized
data. In SIGMOD, 2005.

S. Isaacman, S. Ioannidis, A. Chaintreau, and M. Martonosi. Distributed rating
prediction in user generated content streams. In RecSys, 2011.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M.v. Steen. Gossip-
based peer sampling. TOCS, 2007.

G. P. Jesi, A. Montresor, and M. van Steen. Secure peer sampling. Comput. Netw.,
2010.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving
properties of random data perturbation techniques. In ICDM, 2003.

H. C. Li, A. Clement, E. L. Wong, J. Napper, 1. Roy, L. Alvisi, and M. Dahlin.
Bar gossip. In OSDI, 2006.

A. Machanavajjhala, A. Korolova, and A. D. Sarma. Personalized social recom-
mendations: accurate or private. VLDB, 2011.

B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: toward a personal recom-
mender system. TOIS, 2004.

H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized
perturbation techniques. In ICDM, 2003.

H. Polat and W. Du. Svd-based collaborative filtering with privacy. In SAC, 2005.
V. Schiavoni, E. Riviere, and P. Felber. Whisper: Middleware for confidential
communication in large-scale networks. In ICDCS, 2011.

A. Singh, G. Urdaneta, M. van Steen, and R. Vitenberg. Robust overlays for
privacy-preserving data dissemination over a social graph. In ICDCS, 2012.

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009.

C. J. van Rijsbergen. Information retrieval. Butterworth, 1979.

S. Voulgaris, D. Gavidia, and M. v. Steen. Cyclon: inexpensive membership man-
agement for unstructured p2p overlays. Journal of Network and Systems Manage-
ment, 2005.

S. Voulgaris and M. v. Steen. Epidemic-style management of semantic overlays for
content-based searching. In Furo-Par, 2005.

Y. Zhu and Y. Hu. Tap: A novel tunneling approach for anonymity in structured
p2p systems. In ICPP, 2004.

L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cashmere: resilient anonymous
routing. In NSDI, 2005.

