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Camera Localization using Mutual Inf ormation-based Multiplane
Tracking

BertrandDelabarre,Eric Marchand

Abstract— This paper deals with densevisual tracking robust
towards sceneperturbations using 3D information to provide
a space-timecoherency. The proposedmethod is basedon an
piecewise-planarscenesvisual tracking algorithm which aims to
minimize an error betweenan observed image and a reference
template by estimating the parameters of a rigid 3D transfor-
mation taking into acount the relative positionsof the planesin
the scene.The major drawback of this approch stemsfr om the
registration function usedto perform the minimization (the sum
of squared differ ences)as it is very poorly robust towards scene
variations. In this paper, the tracking processis adaptedto take
into account two more complex registration functions. First,
the sum of conditional variance. Since it is invariant to global
illumination variations, the proposedalgorithm is robust with
relation to those conditions whilst keeping a low computation
complexity. Then, the mutual information is considered. In that
casethe complexity is greater but so is the robustnesstowards
non global illumination variations, specularities or occlusions.
The proposedapproaches,after being described,are tested on
differ ent scenesunder varying illumination conditions to assess
their respective ef�ciency.

I . INTRODUCTION

Visual tracking is a fundamentalstepof roboticsvision.
Its �eld of applicationis vast, including for examplevisual
servoing [5], poseestimation[4] or augmentedreality [6]. Vi-
sualtrackingapproachescanbe divided in several branches.
It is possiblefor instanceto differenciateapproachesbased
on visual featuresextractedfrom the imagessuch as key-
points or lines and densemethodsalso called template-
basedregistration methodsrelying on a templateextracted
from a referenceimage. This paper deals with the latter
category. Whenperformingsuchvisual tracking,the goal is
to optimizea registrationfunctionrepresentingthedifference
or similarity betweena referencetemplateand the current
image.Several works have focusedon different registration
functions from the most simple, the sum of squareddif-
ferences(SSD) [2], which comparesthe luminanceof each
pixel andis thereforevery poorly robust to variationsof the
sceneto sophisticatedones suchas the mutual information
(MI) [8], [7], very robust towards sceneperturbationsbut
quite complex to implement.Otherfunctionshave alsobeen
consideredwhich canbe put in betweenthe two previously
namedsuchas the sum of conditionalvariance(SCV) [14]
or the normalisedcrosscorrelation(NCC) [15]. They both
are easier to use than the MI and more robust to global
illumination variationsthantheSSD.Thoseapproacheslead
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to visual tracking algorithmsoptimizing, for most of them,
the parametersof a 2D displacement(translation, af�ne
motion,homography) in the imageframeasin [2], [8], [14]
but can also be basedon a rigid 3D displacementas in [3]
or even on the parametersof a cameraposeas in [4].
The aim of this paper is to introduce a visual tracking
processrobust towardsscenevariationssuchasillumination
variations(global or local) andocclusionswhile integrating
theEuclideanconstraintsof theobservedscenesoasto keep
spatialcoherency betweenthe followed templateplanes.To
that end, the optimization is performedon SE(3), a space
wherethoseconstraintsareknown. The proposedalgorithm
is basedon the approachintroducedby the authorsof [3]
which is adaptedto both the SCV andMI. Our main contri-
bution is to improve the approachproposedin [3] to more
robust andcomplex similarity functionsandthe useof SCV
andMI in a3D optimizationschemeto trackcomplex objects
with appearingor disappearingfacescontrary to what was
donein [14] and[8] whoonly considered2D displacementin
theimage.Theuseof theSCV in thealgorithmshouldallow
robustnesstowardsglobal illumination variationswhich are
frequent in real life scenes,in particular exterior scenes,
while keepingcomputationtime low as the only difference
with theSSDis theactualisationof thereferencetemplateat
eachnew frame.A versionusing the mutual information is
also considered,as the invarianceof MI towards all kinds
of sceneperturbationssuch as specularitiesor occlusions
should insure a greater robustnessof the tracking. The
main drawback shouldbe the complexity of integrating the
registration function into the algorithm. Both approaches
optimize the parametersof the 3D displacementin SE(3)
which allows, in addition of keepinga spatialcoherency of
the scene,to directly gatherthe displacementof the camera
without any further computation.
The paperis organizedasfollows. First, the main principles
of differential templatetracking are recalledand the algo-
rithm usedin [3] is introduced.The two other considered
registrationfunctionsarethenexpressedandtheir integration
into the algorithmaredetailled.Finally, experimentalresults
are shown that validate the approachin different environ-
ments.

II . DIFFERENTIAL TEMPLATE TRACKING

Differential templatetracking[2] is a classof approaches
basedon the optimizationof an imageregistrationfunction.
They aim to estimatethe displacementp of a templateI �

(that is a set of pixels) in an image sequence.To de�ne
the templateI � , the usualmethodis to extract it from the



�rst imageof the sequence.Then, consideringa difference
function f , the problemcanbe written as:

p̂ = argmin
p

f (I � ; w(I t ; p)) : (1)

In that case,the goal is to �nd the displacementp̂ that
minimizes the differencebetweenthe templateI � and the
current image in the sequenceI t warped with relation to
the last known displacementp. Pleasenote that the global
warpof the imagew(I t ; p) is usedasan abuseof theproper
notationw(x; p) representingthepositionof a singlewarped
point x.

L'espacedesparamètresx à estimerest variablepuisque
T (x) peutThe dimensionandnatureof the displacementp
is variable as it can be usedto representseveral types of
transformationsT (p). For example, the approachbrought
on in [11], [2] began consideringonly simple translations
leadingto p 2 R2. Later on, other modelswere considered
suchas af�ne transformationin [9] giving p 2 R6, homo-
graphiesasin [2] creatingp 2 SL(3) or even [3] leadingto
p 2 SE(3).

III . MULTI-PLANA R SCENE TRACKING

To considera multiplane tracking approach,the choice
has been made to optimize displacamentparametersof a
camerapose in SE(3). This allows to keep a space-time
coherency, astheEuclideanconstraintsareconstantandeasy
to determinein a 3D space.Thefollowing sectionwill recall
the methodologyintroducedin [3] to performsucha visual
tracking.

A. Notations

Therigid 3D transformationbetweentwo framesT (r ) can
be expressedasa homogeneousmatrix:

T (r ) =
�
R t
0 1

�
(2)

wherer arethesix parametersof a 3D displacement,R is a
rotationmatrix (R 2 SO(3)) andt is a translationvector(t 2
R3). Let usthende�ne H (T (r )) thehomography linking the
projectionof a planein eachframe:

H (T (r )) = R + tn �>
d (3)

wheren �
d � = n

d� is the ratio betweenthe unitary normal to
the plane in the origin frame and d� the distancebetween
the planeand the origin of the frame.Let us note that one

can divide H (T (r )) by 3

q
1 + t > Rn �>

d in order to have
a normalisedhomography. This homography can also be
expressedin the cameraframe:

G(r ) = KH (T (r ))K � 1 (4)

whereK is the matrix containing the intrinsic parametersof
the camera:

K =

2

4
px 0 u0

0 py v0

0 0 1

3

5 : (5)

The transformationcan thereforebe written in the image
frameas:

x2 = G(r )x1 (6)

with x1=(u1; v1; 1)> and x2=(u2; v2; 1)> respectively the
origin point and the resulting point of the transformation.
This canalsobe expressedusinga warp function:

x2 = w(x1; G(r )) = w(x1; r ): (7)

Givenequation(7) it is alsopossibleto �nd theoriginalpoint
from the warpedonewith:

x1 = w� 1(x2; r ) = w(x2; r � 1)

= G(r ) � 1x1:
(8)

B. Tracking algorithm

The authorsof [3] have proposeda methodthat includes
euclideanconstraintsbetweenseveralplanesinto thetracking
task. In order to do that, the optimisation is done on 6
parametersrepresentinga 3D transformationin SE(3) using
the sum of squareddifferences(SSD) as the registration
function. Let us considera templateI � of size Nx pixels
representingthe projectionof a planein the 3D frame.The
trackingprocessthenconsistsin �nding theparametersof the
transformationT (r )k 2 SE(3) traducingthe displacement
of the consideredsceneat the iteration k. Consideringan
inversecompositionalapproach[1], thegoalof theoptimiza-
tion is to �nd theoptimal incrementof parameters� r which
veri�es 8x i 2 I :

I (w(x i ; r k � 1)) = I � (w� 1(x i ; � r ))

= I � (G(� r ) � 1x):
(9)

The 3D transformationT (r ) being the samefor evey plane
in the scenethe processcan thereforetrack several planes
in a uniqueoptimizationloop, thedifferencebetweenplanes
coming from the different matricesG inducedby � r . For
the reminderof this paperthe warp associatedto a planel
will benotedwl . Theoptimal incrementof parametersc� r is
obtainedby minimizing the SSDbetweenthe currentimage
warpedwith the displacementparameterscomputedat the
lastframer andthetemplatewarpedwith currentparameters
c� r :

c� r = argmin
� r

X

l

N x lX

i =1

h
I � (wl (x i ; � r )) �

I (wl (x i ; r k � 1))
i 2

:

(10)

The displacementis subsequentlyupdatedas follows:

T (r )k  T (r )k � 1T (c� r ) � 1: (11)

To perform this minimization as was proposedin [1] in
SL(3) and [3] in SE(3), let us start by expressingthe �rst
orderTaylor expansionassociatedto the chosenregistration
function:

SSD(� r ) =
X

l

N x lX

i =1

�
I � (wl (x i ; � r )) � I (wl (x i ; r k � 1))

� 2

(12)



which is de�ned as:

SSD(� r ) '
X

l

N x lX

i =1

�
I � (x i ) � I (wl (x i ; r k � 1))

� 2

+ J(� r )� r

(13)

whereJ(� r ) is the Jacobianmatrix of SSD(� r ).
Decomposingthe Jacobianmatrix thanksto the different

transformationsappliedto eachpixel gives:

J(� r ) =
@I �

@wl

@wl

@K
@K
@T

@T
@x

@x
@� r

= J I � Jw l JK JT Jx (� r )
(14)

leadingto [3]:

c� r = � (J I � Jw l JK JT Jx (0))+ SSD(0): (15)

Let us note that an ESM approachcan also be chosento
perform the optimization as it was chosenin [3]. In this
eventuality, the updateof the displacementis given by:

c� r = �
��

J I + J I �

2

�
Jw l JK JT Jx (0)

� +

SSD(0): (16)

TheproblemwhenusingtheSSDastheregistrationfunction
of a trackingprocessis the fact that it is not adaptedto the
perturbationsthat are usually undergoneby real life scenes
suchasillumination variationsor occlusions.This is why in
this paperthesumof conditionalvarianceis usedto enhance
the robustnessof the approach.

C. Sumof conditionnalvariance

In [14], it hasbeenproposeda trackingalgorithmbasedon
thesumof conditionnalvariance(SCV) for 2D homography
estimation.TheSCV is a template-baseddifferencefunction
but rather than using the raw template I � as the SSD,
it is adaptedat each step of the tracking processto the
illumination conditionsof the current image I , creatingan
adaptedtemplateÎ thanksto an expectationoperatorE:

Î (x) = E(I (x) j I � (x)) : (17)

This operator computes,for eachgrey level in I � , anadapted
one which re�ects the changesthe templatewould undergo
given the currentillumination conditionsof I :

Î (j ) =
X

i

i
pII � (i ; j )

pI � (j )
(18)

wherepI � and pII � are respectively the probability density
function and joint probability densityfunction of I � and I :

pII � (i; j ) = P(I (x) = i ; I � (x) = j ) (19)

=
1

Nx

N xX

k=1

� (I (x k ) � i )� (I � (x k ) � j )

where � (u) = 1 if and only if u = 0. From this, the
probability densityfunction of I � is given by:

pI � (j ) =
X

i

pII � (i; j ): (20)

Finally, the differencefunction is given by:

SCV =
N xX

i =1

h
Î (x i ) � I (x i )

i 2
: (21)

The algorithmdescribedearlieron is not impactedby the
choiceof this registrationfunction sincethe only difference
betweenthe SSD and the SCV versions is the need to
computethe adaptedtemplateÎ at eachnew frame in the
sequenceto replaceI � in the equations.

IV. MUTUAL INFORMATION

The SCV is a good compromisewhen trying to perform
visual tracking on sceneswhere the variations of illumi-
nation are global. Nevertheless,as it is not invariant to
local changes,the common scene perturbationsthat are
for exampleocclusionsand specularitiescausethe tracking
processto fail. To handle that, the tracking algorithm has
beenadaptedto use the MI as its registration function to
insure greaterrobustness.To do that, let us �rst introduce
the mutual information and then rede�ne the optimization
processwith relation to the new parametersand adaptedto
the useof several templatesin the samealgorithm.

1) Registration function: The mutual information,asde-
�ned by Shannon[16], representsthequantityof information
shared by two signals. It is not a difference based on
intensitieslike the SSD and SCV but a similarity criterion
basedon the entropiesof the consideredsources:

MI(I ; I � ) = H(I ) + H(I � ) � H(I ; I � ): (22)

The entropy H(I ) is a measureof the randomnessof a
randomvariable.Givena discretevariableI with a dynamic
d, its entropy is given by the following equation:

H(I ) = �
dX

r =0

pI (r ) log (pI (r )) (23)

wherepI (r ) representsthe probability distribution function
of I (theprobabilityfor a givenpixel of I to have anintensity
r ). Following the sameprinciple, the joint entropy H(I ; I � )
of two sourcesI and I � is de�ned by:

H(I ; I � ) = �
dX

r ;t =0

pII � (r; t) log (pII � (r; t)) (24)

wherepII � (r; t) is the joint probability distibution function
of I and I � .

2) Integration into the multiplanetracking algorithm: In
the taskat hand,the two consideredrandomvariablesI and
I � are the chosentemplateand current view as de�ned in
sectionIII-B. The equationof the mutual information (22)
thereforebecomes:

MI(� r ) = MI([
l
wl (I ; r ); [

l
wl (I � ; � r ))

= H([
l
wl (I ; r )) + H([

l
wl (I � ; � r ))

� H([
l
wl (I ; r ); [

l
wl (I � ; � r )) (25)



whereMI([
l
wl (I ; r ); [

l
wl (I � ; � r )) is the themutualinforma-

tion computedon the union of all followed planesprojected
in the image.Once the different entropiesare developped,
the equationcanbe simpli�ed to (see[8] for moredetails):

MI(� r ) =
dX

r ;t =0

pII � (r; t; � r ) log
�

pII � (r; t; � r )
pI (r )pI � (t; � r )

�
: (26)

To computethe neededprobabilities,histogrambinning is
necessaryto insure thederivability of theequation.This also
permitsa smoothercostfunction,enhancingtheoptimization
process,and a fastercomputationtime. First, the image is
scaledfrom its original dynamicd (usually256for grey level
images)to a chosennumberof bins N c:

I (x) = I (x)
(N c � 1)

d � 1
(27)

then the probabilitiesarecomputedusinga kernel function.
Severalkernelfunctionwerediscussedin [8], andthird order
B-splineswerechosen[12], [17]:

pI � (t; � r ) =
1

Nx

N xX

i =0

�
�
t � I � (wl (x i ; � r )

�
) (28)

pI (r ) =
1

Nx

N xX

i =0

�
�
r � I (wl (x i ; r ))

�
(29)

pII � (r ; t; � r ) =
1

Nx

N xX

i =0

�
�
r � I (x i ; r )

�
�

�
t � I � (wl (x i ; � r ))

�

where� is the third orderB-splinefunction.Let usnotethat
from this point,oncetheprobabilitiesarecomputedfrom the
templates,the developmentof the methodis similar to what
wasdonein [8] up to the expressionof the imageJacobian
which representsthe derivation of the image with repesct
to the poseparametersr . The main differencebetweenthe
two �rst registration functions and this one is that, being
a similarity function, the MI must be maximized to an
unknwon value insteadof minimized to zero:

c� r = argmax
� r

MI
�
I (x); I � (wl (x ; � r ))

�
(30)

which means that the optimizationprocesswill be different.
In this paper, the tracking task will be performedas in [8],
by minimizing the Jacobianof the MI:

c� r = � H � 1
M I G >

M I (31)

the Jacobianand the Hessianof the MI beingde�ned as in
the following equation:

G M I =
@MI(wl (I � ; � r ); wl (I ; r ))

@� r
(32)

H M I =
@2MI(wl (I � ; � r ); wl (I ; r ))

@� r 2 : (33)

The probability density functionsbeing derivable thanksto
the B-splinebinning, thosematricescanbe expressedas:

G M I =
X

r ;t

@pII �

@� r

�
1 + log

�
pII �

pI �

��
(34)

H M I =
X

r ;t

@pII �

@� r

> @pII �

@� r

�
1

pII �
�

1
pI �

�

+
@2pII �

@� r 2

�
1 + log

pII �

pI �

�
(35)

with:

@pII �

@� r
=

1
Nx

N xX

i =0

�
�
r � I (wl (x i ; r ))

� @�
�
t � I � (wl (x i ; � r ))

�

@� r

@2pII �

@� r 2
=

1
Nx

N xX

i =0

�
�
r � I (wl (x i ; r ))

� @2 �
�
t � I � (wl (x i ; � r ))

�

@� r 2
:

The derivatives of the B-splinearegiven by:

@� (t � I � (wl (x i ; � r )))
@� r

= �
@�
@t

@I �

@� r

@2�
�
t � I � (wl (x i ; � r ))

�

@� r 2 '
@2�
@r 2

@I �

@� r

>
@I �

@� r
where:

@I �

@� r
= J I � Jw l JK JT Jx (0):

V. EXPERIMENTAL RESULTS

Several experiments have been realized to validate the
proposedapproaches.Themethodologyis thesamefor every
registrationfunction.First,anoriginalposeis computedfrom
the �rst imageof the consideredsequenceby matchingfour
points in the image with their 3D correspondances.That
posecan afterwards be easily updatedwith the results of
the tracking process.Each tracked plane is then projected
thanksto the initial posean the algorithmcanbe initialized.
From that point the tracking can be launchedon the image
sequence.Someoptimizationshave beenimplementedinto
the tracker. First, the three algorithms follow a pyramidal
schemeto increasetheir ef�ciency and robustnesstowards
importantdisplacements.Thetrackersbasedon theSSDand
SCValsouseM-estimators[10], [13] to preventoutliersfrom
perturbingthe optimizationprocess.

A. Empirical convergenceanalysis

A �rst experimentwasrealizedto analysetheconvergence
domainof eachapproachin different conditions.Once the
tracker has been initialised with the �rst frame of the
sequence,it is startedfrom an image in the sequenceand
the pose parametersare set to the correspondingground
truth.Theparametersarethenperturbedwith white Gaussian
noiseon the poseof chosen� andthe tracking is launched.
After the trackingis over, the resultingposeparametersand
the ground truth are comparedand if the error is small
enough,the tracking is consideredsuccessfull.The process
is repeted500 times for eachmethodin eachsituation.The
results are shown on �gure 2. When adding noise to the



Referenceimage Groundtruth � t = 0:002 � t = 0:02 � t = 0:05

Fig. 1. Examplesof startingpositionswith different � t . For all experiments� R = 0:01.
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Fig. 2. From left to right : convergencefrequency in nominal conditions(row 1 of �g. 1), in light varrying conditions(row 2 of �g. 1) and when
conforntedto sepcularities(row 3 of �g. 1).

poseparameters,a � R of 0.01rad is chosenfor the rotations
since their impact is very importanton the poseand � t is
chosenin a rangefrom 0.002 to 0.05 m to seethe impact
of the startingposition(see�gure 1 for examplesof starting
positions).The curves show that mutual information is the
only possiblesolution when confrontedto important scene
variationssuchaslargeocclusionsor specularities.They also
show that in nominalconditionsthe convergencedomainof
bothSCV andMI, whilst not beingasimportantastheSSD,
is very wide which show that both registrationfunctionsare
suitedfor trackingpurposesin that case.

B. Robustnesstowards illumination variations

An experimentwas realized to comparethe three algo-
rithms in conditionswherethe illumination of the sceneis
varying non-linearly. This was doneby turning the light of
a room on and off. The sequencealso containsimportantly
blured imagesdue to fast cameramotion. The resultsare
shown on �gure 4. The SSD method fails at the �rst
illumination variation, which was to be expectedsince the
template is no longer a good referencefor the current
frame.The SCV, adaptingthe templatebeforeeachtracking
iterationsucceededon thesequence,up to a point wherethe
combinationof blurry imagesand illumination variationsis
too importantandthetrackingfails.As for theMI, it reaches

the end of the sequencewithout problems,even where the
SCV failed.Let usnoticethatboththeSCV andMI methods
areimpactedon imageswherethedisplacementis too brutal

Iteration1

Iteration117

Iteration51

Iteration210

Fig. 3. Trackingresultson a scenewith big occlusions.The MI is
a little bit impactedon iteration 210 when the occludingobject is
taken out from the templateareabut the cameraposestayscorrect
(seeattachedvideo).



Iteration1 Iteration13 Iteration84 Iteration119

Fig. 4. Trackingresultson a scenewith illumination variationsusingtheMI basedalgorithm.TheSCV tracksthe templateup to iteration
119whereastheMI is impactedbut recoversat thenext frameandgoeswithout problemsto theendof thesequence(seeattachedvideo).

and the imagetoo blurry, but recover the exact position of
the templateon the next correctimages.

C. Robustnesstowards sceneocclusions

The next experimentationwas done on a scenewhich
containedlarge occlusions.The results for the MI version
of the algoritm can be seenon �gure 3. As expectedboth
theSSDandSCVmethods,althoughM-estimatorswereused
in the estimationprocess,failed to track the templatessince
it was occludedand the tracking failed. But as far as the
MI is concerned,the tracking processcopedwell with the
situationand,even if it was a little bit impactedduring the
occlusions,it recoveredimmediatlyafterandwentto theend
of the sequencewithout any problem.

D. Robustnesstowards specularities

Finally, a test was realizedon a scenewhere specular-
ities impact the followed planes. The results are shown
on �gure 5. The specularitieswere createdby pointing a
light sourceon a re�ective object, creatingbig white areas
and re�ections. Again, the SSD based method was not
able to track the patch correctly and was lost. The SCV
basedmethodalso failed, since the changein illumination
was not a global one andcould not be taken into account
properly. But again, the MI basedalgorithmrealizeda good
trackingprocesswithout any problemsasit is robust in those
conditions.

Iteration1 Iteration64 Iteration162

Fig. 5. Trackingresultson a scenewith specularities.The tracking
is not impacted even with a re�ection and a big white area.
It is impactedon iteration 162 due to the combinationof both
specularityand importantblur but recovers immediatly afterwards
andcontinuesuntill the endof the sequencewithout problems(see
attachedvideo).

VI. CONCLUSION

This paperintroducesa new way to usetwo robust reg-
istration functions for visual tracking.It is a templatebased
differentialtrackingprocessthatcanfollow piecewiseplanar

scenesand keep a space-timecoherency of the followed
templateswhile directly estimatingthe camerapose. It is
shown to be robust in importantly perturbedconditions.
Moreover, it givesa goodway of obtaininga poseestimation
at eachframe without any additionnalcomputation,hence
insuringa betterprecision.Themethodcouldbeextendedto
non-rigid registrationprocessesor future works could allow
a detectionof the scenegeometryto automaticallyadaptit
to any environmentwithout any “a priori”.
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