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ABSTRACT

The visual 3D reconstruction of transparent objects in unstructured

scenes is challenging due to the complex image formation principles

underlying their visual appearance. Most state-of-the-art reconstruc-

tion methods ignore this problem and assume Lambertian reflection.

Yet, transparent objects are relevant scene information for applica-

tions in intelligent robotics (such as grasping) or virtual reality. In

this work, we present an approach to detect non-planar transparent

objects, like bottles or glasses, by specifically searching for geom-

etry inconsistencies caused by refraction or reflection. Depth infor-

mation is acquired using a Kinect sensor, which is moved within the

scene in order to acquire multiple views. The individual measure-

ments are combined into a 3D volume, yielding the objects’ loca-

tion and a rough shape estimate. Results are presented using various

household objects made of glass or plastic.

Index Terms— Computer Vision, 3D Reconstruction, Trans-

parency Detection

1. INTRODUCTION

Visual geometry reconstruction of unstructured domestic or indus-

trial scenes is an important problem for applications in virtual reality,

3D video or robotics. With the advent of the Kinect sensor, which

provides scene depth information using a projected pseudo-random

IR pattern, more reliable, accurate and fast methods for 3D recon-

struction have been proposed, such as KinectFusion [1]. Typically,

these methods build high-quality 3D models by fusing multiple mea-

surements and thus reducing sensor noise.

Transparent objects, however, cannot be reconstructed with

methods which assume a consistent appearance of the observed 3D

structure for different viewpoints. Regardless of whether an active

visual 3D sensing technique or a passive stereo camera is used –

the appearance of transparent objects depends on multiple factors

such as the background behind the object, viewing angle, object

geometry and local reflectance. The image formation model is more

complex than for diffusely reflecting (Lambertian) surfaces, which

are assumed by many existing reconstruction methods.

We propose an algorithm that searches the depth map acquired

by a depth camera for inconsistency effects caused by transparent

objects. Consistent scene parts are filtered out. The result of our

method hence complements existing approaches for 3D reconstruc-

tion of Lambertian objects. The scene must be acquired from mul-

tiple views, for instance by moving the camera along a trajectory.

Inconsistent regions are accumulated along the trajectory, which al-

lows us to reconstruct the 3D position and a rough shape estimate

of the transparent region. The proposed method detects objects with

a smooth, curved surface exhibiting dominant refractive effects and,

with limitations, surfaces with specular reflection.

Fig. 1: Left: A partly transparent bottle in front of a wall is ob-

served by the Kinect. Center: The corresponding pointcloud (ren-

dered above the viewpoint of the real camera) is correct around the

label, whereas the transparent bottleneck is missing. Instead, this

part of the object distorts the background by refraction, clearly visi-

ble in the top view (right).

2. RELATED WORK

Lysenkov et al. propose in [2] a Kinect-based detection method

for transparent objects which takes advantage of the fact that many

transparent objects appear as holes in the depth map (no/invalid data)

with this sensor. These holes are used as candidates for transparent

objects and serve as an initialization for a segmentation algorithm

which is used to extract contours in the RGB image. Objects and

their poses are detected in the image by comparing the region with

pre-learned models. Our method, in contrast, processes “valid”

measurements from the sensor and does not rely on holes, which are

also caused by many other effects (see below). Furthermore, we do

not rely on pre-learned object models.

Other recent approaches for the detection of transparent objects

work with transparency features that model the appearance as an ad-

ditive combination of patches [3] or rely on the partial absorption in

transparent material, measured from two viewpoints with an active

sensor [4]. In [5], an overview of methods for the reconstruction of

specular and transparent objects using various sensors and setups is

given. Several groups of image formation principles (such as dif-

fuse reflection, refraction, scattering) are identified and used to clas-

sify the different approaches. It can be noted that the presented ap-

proaches all address very specific problems (concerning object type,

sensor, setup) and that a general framework for the perception of ob-

jects with non-Lambertian reflection – to the best of our knowledge

– is not available.

Additionally, the proposed method relies on a pose estimator in

order to allow for projections between different views. Many sys-

tems exist for this problem, but ideally the pose estimate is based



on the same (visual) sensor in order to obtain synchronous results.

Here, a visual tracker is used which estimates the camera pose from

the entire grayscale image, ensuring a high accuracy [6]. The tracker

relies on a model which consists of several 2.5D reference views and

can be learned online or offline. For initialization, a search in the

reference views is performed. Special markers are not needed. The

approach selects salient and robust pixels in the image, which allows

for real-time operation and ensures stability to partly changing or

dynamic scenes.

3. EFFECTS OF TRANSPARENCY

Image formation for transparent objects is based on a multitude of

effects, as discussed in [5]. In this work we mainly exploit the “lens

effect” caused by refraction of light passing through a curved trans-

parent object. This is the dominant effect for clear, smooth materi-

als hit by light rays with a non-acute incident angle. Looking at a

transparent object, an image of the background is observed which is

distorted by refraction of the light ray as it passes through the air-

surface boundaries of the transparent object. In this distorted image,

depth estimation methods detect a “virtual object” whose depth is

shifted from the real depth of the background, see Fig. 1. The depth

distortion depends on a multitude of variables, such as the real depth

of the background, angle and position of the refracting surfaces (i.e.

pose and geometry of the transparent object), camera position, re-

fraction index and thickness of the material. As the main purpose

of our approach is to find unknown transparent objects, only very

weak assumptions about their geometry can be made. Therefore, it

is impossible to predict or model the expected background distor-

tion. For instance, even a bottle refracts a light ray four times on its

inner and outer surfaces. Due to these considerations, we do not try

to model the expected distortion, but rather focus on detecting any

background distortion. This approach is also more robust when in-

correct or no depth data are measured, and it can deal with additional

depth distortion effects like specular reflection.

For active sensors, such as the Kinect, refraction on the object

does not only occur for incoming light rays (traveling towards the

camera), but also for outgoing light rays (from the projector). Like

that, an already distorted pattern may be projected onto the back-

ground. Depending on camera-projector baseline and scene geome-

try, refraction at the transparent object may affect the measurement

in three ways: Distortion of incoming rays, of outgoing rays or in

both directions. In addition, due to the strength of the projected rays,

a significant portion is reflected on the transparent surface, leading

to specularities in the IR image.

The Kinect sensor requires the projected pattern to be intact in a

certain local neighborhood for successful matching. This is the case

if refraction along a smooth surface is the dominant effect. How-

ever, if the pattern is distorted by too many effects – such as diffuse

reflectance, attenuations or sub-surface scattering – pattern matching

will fail, yielding an invalid depth (or hole in the depth map). Objects

exhibit different dominant effects in different regions of the surface

and depending on the camera pose. In a single view, the depth image

of the transparent object is often “sparse”, i.e. (distorted) depth data

are only available in some areas. Thus, measurements from multiple

viewpoints must be combined.

4. METHOD FOR TRANSPARENCY DETECTION

The detection method is based on a search for geometry distortions

caused by transparent objects. These distortions are geometrically
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Fig. 2: Proposed setup: While the sensor is moving around a trans-

parent object (blue) in the scene, a background model is generated

and compared to the current observation.

inconsistent from different viewpoints, as they depend on multiple

variables discussed above. The sensor is moved along a trajectory

which should ensure a broad coverage of viewpoints onto the rele-

vant scene parts (space of interest, Fig. 2). On a robot, this step could

be performed during navigation or while positioning the arm. Dur-

ing the movement, the expected, stable scene geometry is predicted

from past measurements (background model) and compared to the

current observation.

4.1. Local Background Model

A local scene model, yielding a geometry estimate along with a re-

liability measure, is built based on depth maps taken from multiple

viewpoints. These viewpoints are located on the sensor trajectory,

close to the current observation both in time and space. We work

with 8 views roughly 0.02m apart along a distance of 0.2m. Com-

pared to a global model, this approach offers several advantages:

The model is generated online, there is no need for a separate, time-

consuming exploration step, changes in the scene cause only local

distortions and there is no need for global geometric consistency.

There are a number of error sources, which must be dealt with

by the model. First of all, the Kinect sensor exhibits a certain noise

level over time and space. Under ideal conditions (e.g. a bright

matt planar surface), as shown in [7], the noise can be modeled by a

Gaussian with standard deviation σk dependent on depth z (in me-

ters). Furthermore, there are small tracking and calibration errors

which are dominant for small depths and modeled by observation

as a Gaussian with σt. Together, these components determine the

standard deviation of the expected minimum sensor noise Nσs
:

σs(z) =
q

σ2
k + σ2

t =

s

„

1

2
2.9 · 10−3z2

«2

+ 0.012 (1)

On the other hand, scene parts such as edges, fine structures or

certain material types exhibit a much higher noise level. For in-

stance, depth edges are depicted frazzled and flicker between back-

ground and foreground over time due to the matching neighborhood

used by the sensor. In other cases, the sensor yields mostly invalid

data. This is the case for surfaces hit by the projected rays with

a very acute angle, some active light sources, surfaces with a very

low albedo, scene parts which are beyond the measurement range as

well as for transparent materials. Even though the (few) valid obser-

vations of these scene regions might be consistent, their reliability is

low. Finally, errors may be caused by jumps in the estimated pose or

losses-of-track which temporarily invalidate all measurements.



A model for each current viewpoint c = v0 is built from depth

maps taken nearby at vi, . . . vj with j > i, i > 0. Depth maps are

projected into the view c, see Fig. 2, using poses obtained by the

tracker (Sec. 2). Hence, (j − i + 1) measurements are available

for each depth pixel whereof some provide invalid data, leaving a

lower number of valid measurements denoted n. Assuming a Gaus-

sian distribution, a mean depth Dc and a standard deviation σ̂c can

be estimated with a maximum likelihood estimator. The estimation

bias of σ̂c is corrected by σc =
q

n
n−1

σ̂c. As n is quite low, it is

infeasible to estimate more complex models – such as a Gaussian

mixture model – even though they might be more realistic.

The observed Gaussian distribution Nσc
is compared to the ex-

pected error model Nσs
given by Eqn. (1). Reliable regions in the

scene exhibit a standard deviation σc which is lower or equal to the

expected error. The reliability is quantified with a score determined

by comparison of the two distributions using the squared Hellinger

distance. This distance is commonly used to quantify the similarity

between two probability distributions, see [8]. For two Gaussians

with equal mean, it is calculated according to H2 = 1 −
q

2σ1σ2

σ2

1
+σ2

2

.

The reliability score is evaluated per pixel as follows:

Rc = ℓ
`

1 − wH
2
´

= ℓ

»

1 − w

„

1 −
r

2σsσ′
c

σ2
s + σ2′

c

«–

if n ≥ 3

(2)

with σ
′
c = max (σc, σs)

The value of the score is 1 for reliable regions where σc ≤ σs

and 0 for n < 3 or very unreliable regions. The weight w is chosen

such that Rc drops to 0 for σc ≈ 4σs. Function ℓ limits the lower

bound of the score value to 0 in case of large errors. An erosion

operation is applied to the reliability image Rc in order to add a

margin to the unstable regions.

The views vi, . . . vj are taken in a dense fashion from the recent

sensor trajectory. A gap of about 16cm is maintained between the

closest view vi and the current view v0 in order to avoid model dis-

tortions in the same image area as in the current observation, caused

by the transparent object itself. For instance, assume the camera

turns around the space of interest, as depicted in Fig. 2. The most re-

cent views are distorted by the transparent object in almost the same

image area as where the object is currently seen. Older views, on the

other hand, provide a valid estimate of the current background, as

the distortion from a transparent object is projected to other image

regions, see the “shadow” in Fig. 3 (center).

The model for the current view consists of
`

Dc, σ
′
c, Rc

´

, which

is a straight-forward and sufficient representation of the expected

scene geometry at the current viewpoint, merging information from

past views vi, . . . vj . It can be directly compared to the depth map

at c = v0. Processing of depth maps is fast, especially compared

to operations on volumetric or point-based data. While many scene

reconstruction methods try to find the best guess in noisy data, we

need to suppress any unstable regions, in order to allow for a reliable

rating of the current observation.

4.2. Detection of Transparency

Transparency is detected by comparing the current depth observa-

tion z to the scene model while moving the sensor around the space

of interest. The comparison is performed at regular intervals (such

as 2cm) and should be carried out over a preferably large range of

Fig. 3: Model depth Dc (left), reliability Rc (center) and cropped

error image Ec (right), all shown in the current view v0. The model

is generated from past views taken right of v0, leaving a region of

low reliability that appears as a shadow left of the object. This scene

is also shown in Fig. 4a.

different viewpoints. Given the model
`

Dc, σ
′
c, Rc

´

and the obser-

vation z′ =
˛

˛z − Dc

˛

˛, an error signal is derived from the probability

p
`˛

˛Z ∼ Nσ′

c

˛

˛ > z′
´

= 1 − erf
“

z′

√
2σ′

c

”

, which identifies observa-

tions that contradict with the model. Noise is suppressed and sta-

bility is increased by only considering high probabilities, using a

mapping of p ⊂ [θ, 1.0] → [0, 1] and p < θ → 0 with θ = 0.9.

Together with the model reliability Rc this yields the error signal:

Ec = O · Rc · ℓ
»

1

1 − θ

„

1 − erf

„

z′

√
2σ′

c

«

− θ

«–

(3)

The boolean term O determines whether the observed 3D point

was already in the field of view during model generation. Like that,

an object which suddenly comes into view of the camera does not

trigger an error. A large error signal identifies geometric inconsis-

tency caused by transparent objects, see Fig. 3: The model predicts

the depth Dc of the bottleneck with a high certainty Rc at the back-

ground, which is not confirmed by the current observation. Thus,

this region triggers a large error signal Ec. The error signal does

not trigger on inconsistent regions caused by static effect other than

transparency or specular reflection, as those regions are assigned a

low value of Rc during model generation. Moving objects, however,

would result in a large value of Ec. Yet, there is some tolerance

to this case, as the error will not concentrate in a certain region of

space. In general, however, we assume static scenes.

If a large error signal is found, no assumptions can be made

about the real depth at the affected pixel. Each pixel corresponds to

a ray in space, and all we know is that there is something unreliable

along that ray. Therefore, we reverse-project the 2D error signal into

a 3D “transparency volume” which covers the space of interest, us-

ing the known intrinsic and extrinsic camera parameters. While the

camera moves along its trajectory, error rays with Ec > 0 are cast

into the volume, accumulating at voxels in or near the unreliable ob-

ject. If enough viewpoints are integrated, ideally, the convex hull

of the object is regenerated within the transparency volume. For a

good location and rough shape estimate of the object, the viewing

angles of the space of interest should cover 90◦ or more. Measure-

ments with large erroneous regions are ignored, as they are typically

caused by scene movements or tracking errors.

Clusters of high values in the transparency volume correspond

to a single object or a connected transparent part within that object.

The edge voxels of a cluster are used to generate a pointcloud which

shows the rough shape of the object.



(a) Bottle-G (b) (c) (d) OctoMap (e) Bottle-B (f) (g) Wine glass (h)

(i) Beer glass (j) (k) Cups (l) (m) Mirror (n)

Fig. 4: The proposed approach is tested for a typical office scene with 6 different objects depicted in (a), (e), (g), (i), (k) and (m). Detected

transparent parts are visualized as yellow pointclouds, together with colored raw data from the sensor. Non-transparent parts of the bottles

in (b), (c) and (f), such as the labels, are visible in the raw pointcloud. The upper transparent parts, however, are measured incorrectly and

distort the background (see area near the plant in (c)). (d): A 3D model of the scene built with OctoMap [9] is shown in red, see text. (n): The

mirror shows the opposite wall (bright blue area), which is also detected as a geometric inconsistency.

5. EXPERIMENTS AND RESULTS

The method is evaluated in a cluttered office scene. Different trans-

parent objects made of glass or plastic are placed onto the table, and

depth maps are acquired along a trajectory. The space of interest

covers the space on and above the table and is set to 1m3. The cam-

era pose is estimated continuously using the tracker from [6]. As the

tracker offers an online learning mode, it is not required to build any

model of the scene beforehand.

Reconstruction results are shown in Fig. 4. The detected trans-

parent regions are depicted as yellow “transparency” pointclouds,

together with a registered colored pointcloud obtained directly from

the Kinect. As the viewpoint is not equal to the camera position,

there are unknown areas which appear in black. The two bottles in

4a) and 4e) exhibit surface areas with Lambertian reflection at the

label which are measured correctly by the Kinect. Our method ac-

curately finds the transparent parts above the label. The objects in

4e) and 4g) exhibit relatively fine transparent structures which are

too small for detection – only the larger parts are reconstructed. Fur-

thermore, an example of specular reflection is shown in Fig. 4n).

Here, the sensor measures the depth of the scene shown in the mir-

ror, which is also geometrically inconsistent.

Finally, in Fig. 4d) we show the result of an existing approach

for the reconstruction of 3D models called OctoMap [9] as a red

pointcloud. The approach combines multiple views to reconstruct

Lambertian scenes in a compact volumetric representation. Here,

we work with a voxel resolution of 5mm and the camera pose is

taken from the above-mentioned tracker. The scene is accurately

reconstructed, including the opaque label of the bottle. However, the

transparent part of the bottle is missing. The detected transparency

(yellow pointcloud) complements the 3D model of the scene.

Our approach is implemented in C++ using the ROS framework

[10] and tested on a modern Intel i7 machine with 4 real cores. Equa-

tions (2) and (3) are approximated by a quadratic polynomial for

faster processing. The measured runtime for model generation and

detection is 180ms for 8 model views and 250ms on average for

processing of the transparency volume running in a parallel thread.

Using the suggested frame distance of 2cm, realtime processing is

possible for a motion speed around 8 cm

s
. The tracker [6] runs in

parallel at camera framerate, partly using the GPU.

6. CONCLUSION

In this work, a method to reconstruct transparent objects such as

bottles or glasses in unstructured environments is presented. The

approach is based on identifying inconsistent depth measurements

while moving a visual depth sensor around the scene. These incon-

sistencies are caused by refractive (or reflective) effects on the sur-

faces of the objects. Experiments are presented, showing that a lo-

cation and rough shape estimate can be acquired for various objects

made of glass or plastics. Detection is limited to transparent objects

with smooth and curved surfaces where refractive effects dominate.

In future work, the results of this approach will be fused with ex-

isting 3D reconstruction methods. Like that, transparent objects can

be more accurately represented as a connected entity in the scene

model. Additionally, it can be avoided that reconstructed 3D mod-

els are distorted by transparency. Furthermore, it will be evaluated

whether refraction effects can be detected on a lower level, using the

raw IR images from the Kinect.
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