Reduction method for studying localized solutions of neural field equations on the Poincaré disk

Grégory Faye 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : We present a reduction method to study localized solutions of an integrodifferential equation defined on the Poincaré disk. This equation arises in a problem of texture perception modeling in the visual cortex. We first derive a partial differential equation which is equivalent to the initial integrodifferential equation and then deduce that localized solutions which are radially symmetric satisfy a fourth order ordinary differential equation.
Type de document :
Article dans une revue
Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2012, 350 (3-4), pp.161--166. 〈10.1016/j.crma.2012.01.022〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00845587
Contributeur : Pierre Kornprobst <>
Soumis le : mercredi 17 juillet 2013 - 14:13:30
Dernière modification le : lundi 10 septembre 2018 - 10:28:06

Identifiants

Collections

Citation

Grégory Faye. Reduction method for studying localized solutions of neural field equations on the Poincaré disk. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2012, 350 (3-4), pp.161--166. 〈10.1016/j.crma.2012.01.022〉. 〈hal-00845587〉

Partager

Métriques

Consultations de la notice

128