Reduction method for studying localized solutions of neural field equations on the Poincaré disk

Grégory Faye 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : We present a reduction method to study localized solutions of an integrodifferential equation defined on the Poincaré disk. This equation arises in a problem of texture perception modeling in the visual cortex. We first derive a partial differential equation which is equivalent to the initial integrodifferential equation and then deduce that localized solutions which are radially symmetric satisfy a fourth order ordinary differential equation.
Type de document :
Article dans une revue
Comptes Rendus de l'Académie des Sciences, Mathématique, Elsevier, 2012, 350 (3-4), pp.161--166. 〈10.1016/j.crma.2012.01.022〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00845587
Contributeur : Pierre Kornprobst <>
Soumis le : mercredi 17 juillet 2013 - 14:13:30
Dernière modification le : vendredi 12 janvier 2018 - 11:32:01

Identifiants

Collections

Citation

Grégory Faye. Reduction method for studying localized solutions of neural field equations on the Poincaré disk. Comptes Rendus de l'Académie des Sciences, Mathématique, Elsevier, 2012, 350 (3-4), pp.161--166. 〈10.1016/j.crma.2012.01.022〉. 〈hal-00845587〉

Partager

Métriques

Consultations de la notice

110