M. Alkire, A. Hudetz, and G. Tononi, Consciousness and Anesthesia, Science, vol.322, issue.5903, pp.876-880, 2008.
DOI : 10.1126/science.1149213

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

A. Angelucci and P. Bressloff, Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons, Prog. Brain Res, vol.154, pp.93-121, 2006.
DOI : 10.1016/S0079-6123(06)54005-1

I. Bojak and D. Liley, Modeling the effects of anesthesia on the electroencephalogram, Physical Review E, vol.71, issue.4, 2005.
DOI : 10.1103/PhysRevE.71.041902

M. Boly, R. Moran, M. Murphy, P. Boveroux, M. A. Bruno et al., Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss of Consciousness, Journal of Neuroscience, vol.32, issue.20, pp.7082-7090, 2012.
DOI : 10.1523/JNEUROSCI.3769-11.2012

S. Ching, A. Cimenser, P. L. Purdon, E. N. Brown, and N. J. Kopell, Thalamocortical model for a propofol-induced ??-rhythm associated with loss of consciousness, Proceedings of the National Academy of Sciences, vol.107, issue.52, pp.22665-22670, 2010.
DOI : 10.1073/pnas.1017069108

A. Cimenser, P. L. Purdon, E. T. Pierce, J. L. Walsh, A. F. Salazar-gomez et al., Tracking brain states under general anesthesia by using global coherence analysis, Proceedings of the National Academy of Sciences, vol.108, issue.21, pp.8832-8837, 2011.
DOI : 10.1073/pnas.1017041108

S. Coombes, N. Venkov, L. Shiau, I. Bojak, D. Liley et al., Modeling electrocortical activity through improved local approximations of integral neural field equations, Physical Review E, vol.76, issue.5, pp.51901-051908, 2007.
DOI : 10.1103/PhysRevE.76.051901

G. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Reports on Progress in Physics, vol.61, issue.4, 1998.
DOI : 10.1088/0034-4885/61/4/002

G. Ermentrout and J. Cowan, A mathematical theory of visual hallucination patterns, Biological Cybernetics, vol.135, issue.Suppl. 247, pp.137-150, 1979.
DOI : 10.1007/BF00336965

N. Franks and W. Lieb, Molecular and cellular mechanisms of general anaesthesia, Nature, vol.367, issue.6464, pp.607-614, 1994.
DOI : 10.1038/367607a0

P. Fries, Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation, Annual Review of Neuroscience, vol.32, issue.1, pp.209-224, 2009.
DOI : 10.1146/annurev.neuro.051508.135603

L. D. Gugino, R. J. Chabot, L. S. Prichep, E. R. John, V. Formanek et al., Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane, British Journal of Anaesthesia, vol.87, issue.3, pp.421-428, 2001.
DOI : 10.1093/bja/87.3.421

R. Hindriks and M. J. Van-putten, Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms, NeuroImage, vol.60, issue.4, pp.2323-2344, 2012.
DOI : 10.1016/j.neuroimage.2012.02.042

A. Hutt, Additive noise may change the stability of nonlinear systems, EPL (Europhysics Letters), vol.84, issue.3, p.3400334003, 2008.
DOI : 10.1209/0295-5075/84/34003

URL : https://hal.archives-ouvertes.fr/inria-00401522

A. Hutt, Sleep and Anesthesia: Neural Correlates in Theory and Experiment, Series in Computational Neuroscience, 2011.
DOI : 10.1007/978-1-4614-0173-5

URL : https://hal.archives-ouvertes.fr/hal-00644324

A. Hutt, The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia, Cognitive Neurodynamics, vol.63, issue.1, pp.227-237, 2012.
DOI : 10.1007/s11571-011-9182-9

URL : https://hal.archives-ouvertes.fr/hal-00640064

A. Hutt and A. Longtin, Effects of the anesthetic agent propofol on neural populations, Cognitive Neurodynamics, vol.12, issue.7, pp.37-59, 2009.
DOI : 10.1007/s11571-009-9092-2

URL : https://hal.archives-ouvertes.fr/inria-00434443

A. Hutt, A. Longtin, and L. Schimansky-geier, Additive Global Noise Delays Turing Bifurcations, Physical Review Letters, vol.98, issue.23, 2007.
DOI : 10.1103/PhysRevLett.98.230601

URL : https://hal.archives-ouvertes.fr/inria-00401534

A. Kitamura, W. Marszalec, J. Yeh, and T. Narahashi, Effects of Halothane and Propofol on Excitatory and Inhibitory Synaptic Transmission in Rat Cortical Neurons, Journal of Pharmacology and Experimental Therapeutics, vol.304, issue.1, 2002.
DOI : 10.1124/jpet.102.043273

C. Koch, Biophysics of Computation, 1999.

K. Kuizenga, J. Wierda, and C. Kalkman, Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane, British Journal of Anaesthesia, vol.86, issue.3, pp.354-360, 2001.
DOI : 10.1093/bja/86.3.354

D. Liley and I. Bojak, Understanding the transition to seizure by modeling the epileptiform activity of general anaesthetic agents, J. Clin. Neurophysiol, vol.22, pp.300-313, 2005.

M. M. Mccarthy, E. N. Brown, and N. Kopell, Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofolinduced paradoxical excitation, 2008.

M. Murphy, M. Bruno, B. A. Riedner, P. Boveroux, Q. Noirhomme et al., Propofol anesthesia and sleep: a high-density eeg study, Sleep, vol.34, pp.283-291, 2011.

B. Orser, Extrasynaptic gabaa receptors are critical targets for sedative-hypnotic drugs, J. Clin. Sleep Med, vol.2, pp.12-18, 2006.

L. Schwabe, K. Obermayer, A. Angelucci, and P. Bressloff, The Role of Feedback in Shaping the Extra-Classical Receptive Field of Cortical Neurons: A Recurrent Network Model, Journal of Neuroscience, vol.26, issue.36, pp.9117-9126, 2006.
DOI : 10.1523/JNEUROSCI.1253-06.2006

E. Spaak, M. Bonnefond, A. Maier, D. A. Leopold, and O. Jensen, Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex, Current Biology, vol.22, issue.24, pp.2313-2318, 2012.
DOI : 10.1016/j.cub.2012.10.020