Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

Jérémy Berthomieu 1 Jean-Charles Faugère 1 Ludovic Perret 1
1 PolSys - Polynomial Systems
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
Abstract : Let $\mathbf{f}=(f_1,\ldots,f_m)$ and $\mathbf{g}=(g_1,\ldots,g_m)$ be two sets of $m\geq 1$ nonlinear polynomials over $\mathbb{K}[x_1,\ldots,x_n]$ ($\mathbb{K}$ being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping $\mathbf{f}$ to $\mathbf{g}$. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space $\mathbb{K}^{n \times n}$ of $n \times n$ matrices over $\mathbb{K}$ and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in $\mathbb{K}^{n \times n}$ for various fields (including finite fields). We then consider \#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when \(\mathbf{f}=(x_1^d,\ldots,x_n^d)\) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.
Type de document :
Article dans une revue
Journal of Complexity, Elsevier, 2015, 31 (4), pp.590--616. <10.1016/j.jco.2015.04.001>
Liste complète des métadonnées

Contributeur : Jérémy Berthomieu <>
Soumis le : mardi 21 avril 2015 - 15:32:27
Dernière modification le : jeudi 3 décembre 2015 - 17:45:41
Document(s) archivé(s) le : lundi 14 septembre 2015 - 11:43:08


Fichiers produits par l'(les) auteur(s)




Jérémy Berthomieu, Jean-Charles Faugère, Ludovic Perret. Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case. Journal of Complexity, Elsevier, 2015, 31 (4), pp.590--616. <10.1016/j.jco.2015.04.001>. <hal-00846041v6>



Consultations de
la notice


Téléchargements du document