Online Tracking Parameter Adaptation based on Evaluation

Abstract : Parameter tuning is a common issue for many tracking algorithms. In order to solve this problem, this paper proposes an online parameter tuning to adapt a tracking algorithm to various scene contexts. In an offline training phase, this approach learns how to tune the tracker parameters to cope with different contexts. In the online control phase, once the tracking quality is evaluated as not good enough, the proposed approach computes the current context and tunes the tracking parameters using the learned values. The experimental results show that the proposed approach improves the performance of the tracking algorithm and outperforms recent state of the art trackers. This paper brings two contributions: (1) an online tracking evaluation, and (2) a method to adapt online tracking parameters to scene contexts.
Type de document :
Communication dans un congrès
IEEE International Conference on Advanced Video and Signal-based Surveillance, Aug 2013, Krakow, Poland. 2013
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00846920
Contributeur : Duc Phu Chau <>
Soumis le : lundi 22 juillet 2013 - 11:08:48
Dernière modification le : jeudi 11 janvier 2018 - 16:20:38
Document(s) archivé(s) le : mercredi 5 avril 2017 - 15:46:24

Fichiers

paper_AVSS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00846920, version 1
  • ARXIV : 1307.5653

Collections

Citation

Duc Phu Chau, Julien Badie, François Bremond, Monique Thonnat. Online Tracking Parameter Adaptation based on Evaluation. IEEE International Conference on Advanced Video and Signal-based Surveillance, Aug 2013, Krakow, Poland. 2013. 〈hal-00846920〉

Partager

Métriques

Consultations de la notice

296

Téléchargements de fichiers

135