M. Adimy, H. Bouzahir, and K. Ezzinbi, Local existence and stability for some partial functional differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, vol.48, issue.3, pp.323-348, 2002.
DOI : 10.1016/S0362-546X(00)00184-X

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

C. Koch, Biophysics of Computation: Information Processing in Single Neurons, 1999.

F. M. Atay and A. Hutt, Neural Fields with Distributed Transmission Speeds and Long???Range Feedback Delays, SIAM Journal on Applied Dynamical Systems, vol.5, issue.4, pp.670-698, 2006.
DOI : 10.1137/050629367

P. C. Bressloff and S. Folias, Front Bifurcations in an Excitatory Neural Network, SIAM Journal on Applied Mathematics, vol.65, issue.1, pp.131-151, 2004.
DOI : 10.1137/S0036139903434481

J. Bullier, J. M. Hupe, A. C. James, and P. Girard, Chapter 13 The role of feedback connections in shaping the responses of visual cortical neurons, Prog. Brain Res, vol.134, pp.193-204, 2001.
DOI : 10.1016/S0079-6123(01)34014-1

R. Ben-yishai, R. Bar-or, and H. Sompolinsky, Theory of orientation tuning in visual cortex., Proc. Natl. Acad. Sci, pp.3844-3848, 1995.
DOI : 10.1073/pnas.92.9.3844

S. Coombes, G. J. Lord, and M. Owen, Waves and bumps in neuronal networks with axo-dendritic synaptic interactions, Physica D: Nonlinear Phenomena, vol.178, issue.3-4, pp.219-241, 2003.
DOI : 10.1016/S0167-2789(03)00002-2

S. Coombes and M. Owen, Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function, SIAM Journal on Applied Dynamical Systems, vol.3, issue.4, pp.574-600, 2004.
DOI : 10.1137/040605953

K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup Forum, vol.63, issue.2, p.194, 2001.
DOI : 10.1007/s002330010042

J. W. Evans, Nerve Axon Equations: II Stability at Rest, Indiana University Mathematics Journal, vol.22, issue.1, pp.75-90, 1972.
DOI : 10.1512/iumj.1973.22.22009

URL : http://doi.org/10.1512/iumj.1973.22.22009

J. W. Evans, Nerve Axon Equations: III Stability of the Nerve Impulse, Indiana University Mathematics Journal, vol.22, issue.6, pp.577-593, 1972.
DOI : 10.1512/iumj.1973.22.22048

K. Ezzinbi, Existence and stability for some partial functional differential equations with infinite delay, Electr. J. Diff. Equ, issue.116, pp.2003-2004, 2003.

C. Laing and S. Coombes, The importance of different timings of excitatory and inhibitory pathways in neural field models, Network: Computation in Neural Systems, vol.63, issue.2, pp.151-72, 2006.
DOI : 10.1007/978-1-4757-4067-7

G. B. Ermentrout and J. Mcleod, Synopsis, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.32, issue.03, pp.461-478, 1993.
DOI : 10.1016/0362-546X(78)90015-9

J. W. Evans, Nerve axon equations 877-885; II Stability at rest 75-90; III Stability of the nerve impulse, The stable and the unstable impulse, pp.577-593, 1972.

W. Gerstner and W. Kistler, Spiking Neuron Models, 2002.
DOI : 10.1017/cbo9780511815706

P. Girard, J. Hupe, and J. Bullier, Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities, J. Neurophysiol, vol.85, pp.1328-1331, 2001.

N. Gogolla, I. Galimberti, and P. Caroni, Structural plasticity of axon terminals in the adult, Current Opinion in Neurobiology, vol.17, issue.5, pp.516-524, 2007.
DOI : 10.1016/j.conb.2007.09.002

X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing et al., Spiral Waves in Disinhibited Mammalian Neocortex, Journal of Neuroscience, vol.24, issue.44, pp.9897-9902, 2004.
DOI : 10.1523/JNEUROSCI.2705-04.2004

A. Hutt, Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay, Physical Review E, vol.70, issue.5, p.52902, 2004.
DOI : 10.1103/PhysRevE.70.052902

A. Hutt, Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds, Physical Review E, vol.75, issue.2, p.26214, 2007.
DOI : 10.1103/PhysRevE.75.026214

A. Hutt, Sleep and Anesthesia: Neural correlates in theory and experiment, 2011.
DOI : 10.1007/978-1-4614-0173-5

URL : https://hal.archives-ouvertes.fr/hal-00644324

A. Hutt and F. Atay, Analysis of nonlocal neural fields for both general and gamma-distributed connectivities, Physica D: Nonlinear Phenomena, vol.203, issue.1-2, pp.30-54, 2005.
DOI : 10.1016/j.physd.2005.03.002

A. Hutt and F. Atay, Effects of distributed transmission speeds on propagating activity in neural populations, Physical Review E, vol.73, issue.2, p.21906, 2006.
DOI : 10.1103/PhysRevE.73.021906

A. Hutt, M. Bestehorn, and T. Wennekers, Pattern formation in intracortical neuronal fields, Network: Computation in Neural Systems, vol.14, issue.2, pp.351-368, 2003.
DOI : 10.1088/0954-898X_14_2_310

A. Hutt and A. Longtin, Effects of the anesthetic agent propofol on neural populations, Cognitive Neurodynamics, vol.12, issue.7, pp.37-59, 2009.
DOI : 10.1007/s11571-009-9092-2

URL : https://hal.archives-ouvertes.fr/inria-00434443

A. Hutt and N. Rougier, Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields, Physical Review E, vol.82, issue.5, p.55701, 2010.
DOI : 10.1103/PhysRevE.82.055701

URL : https://hal.archives-ouvertes.fr/inria-00533067

D. Liley and I. Bojak, Understanding the transition to seizure by modeling the epileptiform activity of general anaesthetic agents, J. Clin. Neurophysiol, vol.22, pp.300-313, 2005.

I. Bojak and D. Liley, Axonal Velocity Distributions in Neural Field Equations, PLoS Computational Biology, vol.796, issue.1, p.1000653, 2010.
DOI : 10.1371/journal.pcbi.1000653.s001

URL : http://doi.org/10.1371/journal.pcbi.1000653

D. Liley, P. J. Cadusch, and M. Dafilis, A spatially continuous mean field theory of electrocortical activity, Network: Computation in Neural Systems, vol.12, issue.1, pp.67-113, 2002.
DOI : 10.1088/0954-898X/5/2/005

F. Magpantay and X. Zou, Wave fronts in neuronal fields with nonlocal post-synaptic axonal connections and delayed nonlocal feedback connections, Mathematical Biosciences and Engineering, vol.7, issue.2, pp.421-442, 2010.
DOI : 10.3934/mbe.2010.7.421

D. J. Pinto and G. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks. I. travelling fronts and pulses, II. Lateral inhibition and standing pulses, SIAM J. Appl. Math, pp.62-206, 2001.

J. C. Prechtl, L. B. Cohen, B. Pesaran, P. P. Mitra, and D. Kleinfeld, Visual stimuli induce waves of electrical activity in turtle cortex, Proceedings of the National Academy of Sciences, vol.94, issue.14, pp.7621-7626, 1997.
DOI : 10.1073/pnas.94.14.7621

J. L. Ringo, R. W. Doty, S. Dementer, and P. Simard, Time Is of the Essence: A Conjecture that Hemispheric Specialization Arises from Interhemispheric Conduction Delay, Cerebral Cortex, vol.4, issue.4, pp.331-343, 1994.
DOI : 10.1093/cercor/4.4.331

J. A. Reggia and D. Montgomery, A computational model of visual hallucinations in migraine, Computers in Biology and Medicine, vol.26, issue.2, pp.133-139, 1996.
DOI : 10.1016/0010-4825(95)00051-8

C. J. Rennie, P. A. Robinson, and J. Wright, Unified neurophysical model of EEG spectra and evoked potentials, Biological Cybernetics, vol.86, issue.6, pp.457-471, 2002.
DOI : 10.1007/s00422-002-0310-9

K. A. Richardson, S. J. Schiff, and B. J. Gluckman, Control of Traveling Waves in the Mammalian Cortex, Physical Review Letters, vol.94, issue.2, p.28103, 2005.
DOI : 10.1103/PhysRevLett.94.028103

B. Sandstede, EVANS FUNCTIONS AND NONLINEAR STABILITY OF TRAVELING WAVES IN NEURONAL NETWORK MODELS, International Journal of Bifurcation and Chaos, vol.17, issue.08, pp.2693-2704, 2007.
DOI : 10.1142/S0218127407018695

M. L. Steyn-ross, D. A. Steyn-ross, J. W. Sleigh, and L. Wilcocks, Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. I. A thermodynamics analogy, Physical Review E, vol.64, issue.1, p.11917, 2001.
DOI : 10.1103/PhysRevE.64.011917

H. A. Swadlow, Impulse conduction in the mammalian brain: physiological properties of individual axons monitored for several months, Science, vol.218, issue.4575, pp.911-913, 1982.
DOI : 10.1126/science.7134984

R. Veltz and O. Faugeras, Stability of the stationary solutions of neural field equations with propagation delays, The Journal of Mathematical Neuroscience, vol.1, issue.1, pp.1-28, 2011.
DOI : 10.1186/2190-8567-1-1

URL : https://hal.archives-ouvertes.fr/hal-00784425

H. R. Wilson and J. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, vol.12, issue.2, pp.55-80, 1973.
DOI : 10.1007/BF00288786

T. Wennekers, Orientation Tuning Properties of Simple Cells in Area V1 Derived from an Approximate Analysis of Nonlinear Neural Field Models, Neural Computation, vol.16, issue.8, pp.1721-1747, 2001.
DOI : 10.1007/BF00288786

L. Zhang, How Do Synaptic Coupling and Spatial Temporal Delay Influence Traveling Waves in Nonlinear Nonlocal Neuronal Networks?, SIAM Journal on Applied Dynamical Systems, vol.6, issue.3, pp.597-644, 2007.
DOI : 10.1137/06066789X

L. Zhang, P. Wu, and M. Stoner, Influence of sodium currents on speeds of traveling wave fronts in synaptically coupled neuronal networks, Physica D: Nonlinear Phenomena, vol.239, issue.1-2, pp.9-32, 2010.
DOI : 10.1016/j.physd.2009.09.022

L. Zhang, P. Wu, and M. Stoner, Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience, Discrete and Continuous Dynamical Systems - Series B, vol.16, issue.3, pp.1003-1037, 2011.
DOI : 10.3934/dcdsb.2011.16.1003

N. Hayes, Roots of the Transcendental Equation Associated with a Certain Difference-Differential Equation, Journal of the London Mathematical Society, vol.1, issue.3, p.226232, 1950.
DOI : 10.1112/jlms/s1-25.3.226

M. Schanz and A. Pelster, Synergetic System Analysis for the Delay-Induced Hopf Bifurcation in the Wright Equation, SIAM Journal on Applied Dynamical Systems, vol.2, issue.3, p.277296, 2003.
DOI : 10.1137/S1111111102412802

G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems, Discrete and Continuous Dynamical Systems - Series B, vol.13, issue.2, pp.327-345, 2010.
DOI : 10.3934/dcdsb.2010.13.327

S. Bernard, J. Belair, and M. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay, Discr. Cont. Dyn. Syst. B, vol.1, issue.2, pp.233-256, 2001.