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Abstract

Multi-level discrete models of genetic networks, or the more general piecewise affine differential models,

provide qualitative information on the dynamics of the system, based on a small number of parameters (such as

synthesis and degradation rates). Boolean models also provide qualitative information, but are based simply on

the structure of interconnections. To explore the relationship between the two formalisms, a piecewise affine

differential model and a Boolean model are compared, for the carbon starvation response network in E. coli.

The asymptotic dynamics of both models are shown to be quite similar. This study suggests new tools for

analysis and reduction of biological networks.

1 Introduction

Genetic regulatory networks have been analysed through various different formalisms, in particular continuous

differential models (von Dassow et al, 2000), piecewise affine (PWA) models (Ropers et al, 2006; Grognard

et al, 2007; Chaves et al, 2006), multi-level discrete models (Thomas and D’Ari, 1990; Sánchez and Thieffry,

2001), and Boolean models (Glass and Kauffman, 1973; Glass, 1975; Chaves et al, 2009; Tournier and Chaves,

2009). Each formalism has its advantages and drawbacks, and the combination of different methods may provide

complementary information on the system. In this study the Boolean and PWA formalisms are compared. Many

computational tools are available for the analysis of Boolean models: these can also be used to study PWA

systems, by transforming the continuous system into a discrete system. We propose an algorithmic method to

construct a Boolean model from a piecewise affine model: first, the PWA system gives rise to a multi-level

discrete system, where each variable takes values in a finite set; then the discrete model can be translated into

a Boolean model, by appropriately extending the state space as in, for instance, van Ham (1979) (see Section 2

and Appendix 1).

To illustrate this point of view, we will analyse the PWA model of the carbon starvation response in E.coli

developed in Ropers et al (2006), which was studied mathematically in Grognard et al (2007). The Boolean

model has two attractors that correctly represent the asymptotic behaviour of the piecewise linear system, under

two different input conditions. Following the method developed in Tournier and Chaves (2009), it is possible to

identify a family of “operational interactions” for each attractor: a subset of the original network of interactions

that actively contribute to characterize the dynamics within that attractor. This family of operational interactions,

together with the components involved, constitutes a smaller (Boolean) subsystem of the original system, which

can be used to construct a reduced model of the system of differential equations. The asymptotic dynamics

of the PWA and Boolean models agree in most qualitative aspects (Section 4). In particular, we illustrate the

correspondance between a sliding mode in the PWA model (Grognard et al, 2007) - which may induce chattering

or Zeno behaviour (Zhang et al, 2001) in one of the variables,- and period 2 oscillations in the Boolean model (see

Section 5). These results suggest future applications of Boolean network analysis to model reduction techniques.
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2 Piecewise affine, discrete and Boolean models for genetic networks

To compare the results of discrete and Boolean modelling frameworks, we first discuss a method to transform

a model from one formalism to the other without changing the dynamical behaviour. Throughout the paper,

for a system with n > 0 variables, let xi (i = 1, . . . ,n) denote the continuous variables, Vi the corresponding

discrete variables, each with a discrete set of values Vi ∈ {0,1, . . . ,di} (di ≥ 1). Below we will define also Vi, j

( j = 1, . . . ,di), to be the Boolean variables associated to the multi-level variable Vi.

2.1 From discrete to Boolean models

One way to construct a Boolean (purely binary) model from a discrete (multi-level) model is to generate a set of

binary variables for each multi-level variable (see, for instance, van Ham (1979); Snoussi and Thomas (1993);

Thomas and D’Ari (1990)), satisfying some properties, as stated in H1 and H2 below.

Consider a discrete model Σd = (Ωd ,Fd), with variables V = (V1, . . . ,Vn), state space Ωd = {0,1, . . . ,d1}×
·· · × {0,1, . . . ,dn}, and a map Fd : Ωd → Ωd which defines the state transition table. This map lists all the

possible transitions from each state, and thus defines the possible dynamical trajectories of the system. At each

state V ∈ Ωd , the next possible value for variable i is given by: V +
i = (Fd)i(V ). Throughout this paper we will

consider only asynchronous dynamics, and assume that exactly one variable is updated at any given time (for

more details, see Appendix 1). Thus, the updating rule satisfies:

V + ∈ {W ∈Ωd : ∃k s.t. Wk = (Fd)k(V ) 6= Vk and Wj = Vj, ∀ j 6= k }. (1)

Following previous work on multi-level systems (Snoussi and Thomas, 1993; Thomas and D’Ari, 1990), it will

be assumed that the state transitions satisfy:

H1. Each variable Vi can only switch from its current level to an immediately adjacent level, that is: V +
i ∈

{Vi−1,Vi,Vi +1}, ∀i.

In other words, any variable Vi can only be increased or decreased by one unit at each time. This hypothesis

represents the continuity of the biological variables: the concentration of a given protein cannot evolve from

level d to level d +2 without passing through level d +1.

To construct a Boolean model Σb associated to Σd , the state space will be expanded by adding extra variables.

If a discrete variable Vm takes values in the set {0,1, . . . ,dm}, then, in the Boolean model, dm variables will be

created:

H2. For each Vm ∈ {0,1, . . . ,dm} in the discrete model, generate

Vm,1, . . . ,Vm,dm
∈ {0,1} such that:

Vm = k⇔ [ Vm,1 = · · ·= Vm,k = 1 and Vm,k+1 = · · ·= Vm,dm
= 0 ]. (2)

In particular, note that Vm,k ≥ Vm,k+1, for all k = 1, . . . ,dm− 1, meaning that if Vm is at a certain level, then all

inferior levels must be “filled” as well. This hypothesis requires special attention when constructing the Boolean

model, since we will wish to avoid transitions from a permissible (i.e., satisfying H2) to a forbidden (i.e., not

satisfying H2) state. Our procedure deals with this problem in a natural way (see Appendix 1), and guarantees

that no transitions from permissible to forbidden states take place.

2.2 From piecewise affine to multi-level discrete models

In models of genetic regulatory networks it is common to represent the activation (or inhibition) of one gene

by another by a Heaviside function, that is, if the concentration of the first “gene” is below a certain threshold,

then there is no transcription of the second gene; while above that threshold transcription is fully turned on. This

description gives rise to piecewise affine differential models (Glass and Kauffman, 1973; Glass, 1975). Let θ ∗i
represent the threshold for the activation (resp., inhibition) of xk by xi, and define:

s+(xi,θ
∗
i ) =

{

0, xi < θ ∗i
1, xi > θ ∗i ,
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(resp., s−(xi,θ
∗
i ) = 1− s+(xi,θ

∗
i ))1. These functions are not defined at the threshold points. At these points, the

system of equations is defined as a differential inclusion (Gouzé and Sari, 2002; Casey et al, 2006). To construct

a multi-level discrete model from the PWA model, based on the work of Thomas and D’Ari (1990), we will

consider that the number of levels of a given variable xi, is equal to the number of thresholds which define the

influence of xi on the other variables:

0 < θ 1
i < θ 2

i < · · ·< θ
di
i < +∞.

Define the corresponding multi-level discrete variable by:

Vi =







0, 0≤ xi ≤ θ 1
i

k, θ k
i < xi ≤ θ k+1

i , k = 1, . . . ,di−1

di, θ
di
i < xi < +∞.

(3)

To obtain a transition table (Fd) for the discrete model, the ordering among thresholds is used. Let Vi and V +
i

denote, respectively, the discrete current and updated values for the continuous variable xi. The PWA equation

for xi will take a particular expression for each V (see (5)-(8), for an example), and have a corresponding focal

point x̂ = x̂(V ). Then Vi is updated to evolve towards x̂i, in such a way that hypothesis H1 is satisfied: if x̂i is in

the interval (θ k
i ,θ k+1

i ), then

V +
i = (Fd)i(V )







min{di,Vi +1}, Vi < k,
Vi, Vi = k,
max{0,Vi−1}, Vi > k.

(4)

The state transition table Fd for the discrete system associated to the PWA system can thus be built. The discrete

system evolves according to an asynchronous strategy, following the updating rule (1).

3 Example: the carbon starvation response in E.coli

As an example, the E. coli model developed by Ropers et al. in Ropers et al (2006) and studied in Grognard

et al (2007) will be analysed (see these two references for more details on the biological and modelling aspects).

This model describes the dynamics of a family of genes that regulate the carbon starvation response in E.coli

(Fig. 1): crp (xc), cya (xy), fis (x f ), gyrAB (xg), topA (xt ), and rrn (xr). Nutritional stress is represented by an

input u ∈ {0,1}: u = 0 if carbon is present (no stress), and u = 1 in the absence of carbon.

The vector x = (xc,xy,x f ,xg,xt)
′ ∈ R

5
≥0 denotes the continuous variables, V = (C,Y,F,G,T )′ ∈ Ωd denotes

the corresponding multi-level discrete variables, and Ci, i = 1, . . . ,dc denote the Boolean variables, associated

with crp (similar notation is used for the other network components). The PWA equations are taken from Ropers

et al (2006) and shown in Table 1. To construct a discrete (multi-level) system from the model in Table 1, note

that:

• crp contributes to fis inhibition and its own activation once it reaches threshold θ 1
c ; contributes to cya

inhibition at θ 3
c . Since threshold θ 2

c doesn’t enter into any equations, it will not be considered here;

• cya contributes to fis inhibition and crp activation at θ 1
y ; contributes to its own inhibition at θ 3

y . As before,

the level θ 2
y will not be considered here;

• gyrAB contributes to fis activation at θ 1
g ; inhibits itself and activates topA at θ 2

g ;

• topA influences gyrAB and inhibits itself at θ 1
t ; contributes to fis inhibition at θ 2

t ;

• fis has five threshold concentrations. It inhibits crp promoters 1 and 2 once it reaches lower thresholds θ 1
f

and θ 2
f , activates rrn at threshold θ 3

f , inhibits gyrAB and activates topA at θ 4
f , and inhibits itself at θ 5

f .

1The superscripts “+” or “-” indicate whether the step function is increasing or decreasing. This notation is not related to V + used in

discrete and Boolean systems, which designates the successor of state V . Since s+ and V + are used for different systems (respectively, PWA

and discrete), the notations will not be confused.
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Figure 1: Genetic network, including proteins and regulations that come into play during a nutritional stress

response in E.coli: CRP activation module (Cya, CRP, Fis), DNA Topology module (GyrAB, TopA, Fis), stable

RNA output module (Rrn).

Table 1: Piecewise affine model and parameter inequalities.

ẋc = κ1
c +κ2

c s−(x f ,θ
2
f )s

+(xc,θ
1
c )s+(xy,θ

1
y )s+(u,θu)+κ3

c s−(x f ,θ
1
f )− γcxc

ẋy = κ1
y +κ2

y [1− s+(xc,θ
3
c )s+(xy,θ

3
y )s+(u,θu)]− γyxy

ẋ f = κ1
f [1− s+(xc,θ

1
c )s+(xy,θ

1
y )s+(u,θu)]s

−(x f ,θ
5
f )

+κ2
f s+(xg,θ

1
g )s−(xt ,θ

2
t )s−(x f ,θ

5
f )× [1− s+(xc,θ

1
c )s+(xy,θ

1
y )s+(u,θu)]− γ f x f

ẋg = κ1
g [1− s+(xg,θ

2
g )s−(xt ,θ

1
t )]s−(x f ,θ

4
f )− γgxg

ẋt = κ1
t s+(xg,θ

2
g )s−(xt ,θ

1
t )s+(x f ,θ

4
f )− γtxt

ẋr = κ1
r s+(x f ,θ

3
f )+κ2

r − γrxr

0 < θ 1
c <

κ1
c

γc
<

κ1
c +κ2

c

γc
< θ 2

c < θ 3
c <

κ1
c +κ3

c

γc

0 < θ 1
y <

κ1
y

γy
< θ 2

y < θ 3
y <

κ1
y +κ2

y

γy

0 < θ 1
f <

κ1
f

γ f
< θ 2

f < θ 3
f < θ 4

f < θ 5
f <

κ1
f +κ2

f

γ f

0 < θ 1
g < θ 2

g <
κg

γg

0 < θ 1
t < θ 2

t < κt

γt
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Table 2: Attractors of Boolean model.

Att. C1 C2 Y1 Y2 G1 G2 T1 T2 F1 F2 F3 F4

A1 (U = 1) 1 1 1 ∗ 1 ∗ 0 0 0 0 0 0

A0 (U = 0) 1 0 1 1 ∗ ∗ ∗ 0 1 ∗ ∗ ∗

Since rrn is an output variable (it doesn’t influence any of the other five), we will drop this variable and consider

only four different thresholds for fis. Without loss of generality for the dynamics of the model, one can also

say that rrn is activated once fis is above θ 2
f (or θ 4

f ). Therefore, we will assume that: C,Y,G,T ∈ {0,1,2} and

F ∈ {0,1, . . . ,4}.
To obtain the discrete model from the equations in Table 1, we follow the method indicated above. For

example, consider the equation for xc, which can take only one of four forms:

ẋc = κ1
c − γcxc (5)

ẋc = κ1
c +κ2

c − γcxc (6)

ẋc = κ1
c +κ3

c − γcxc. (7)

ẋc = κ1
c +κ2

c +κ3
c − γcxc (8)

For any state V ∈ Ωd , consider the appropriate equation (5)-(8), together with the inequalities in Table 1. In

cases (5), (6): C+ = C +1 if C = 0, C+ = C if C = 1, and C+ = C−1 if C = 2. In cases (7), (8): C+ = C +1 if

C < 2, and C+ = C if C = 2. The discrete transition tables can be found in the Supplementary Material. As an

example, the table for cya is included in Appendix 2.

Following the method described in Section 2.1, Boolean rules for the E. coli network were constructed (see

Supplementary Material). Analysis of this Boolean model shows that it has two attractors: a strongly connected

component with four states when U = 1, and a strongly connected component with 24 states in the case U = 0.

In Table 2, the fixed coordinates for each attractor are indicated. Following the method used in Tournier and

Chaves (2009), it is possible to computationally identify the “operational interactions” within this attractor, and

the variables associated with these interactions. That will give a subsystem of the original system.

For attractor A1 (U = 1), we obtain: G+
2 = G2 and Y +

2 =Y2. That is, keeping one of the two variables G2 or Y2

fixed, the other can switch between zero and one, generating a fully reversible cycle, 00 ⇌ 10 ⇌ 11 ⇌ 01 ⇌ 00.

(see interpretation in Section 5).

For the attractor A0 (U = 0), the operational subnetwork is depicted in Fig. 2. Several cycles are possible

within attractor A0. The corresponding transition graph is represented in Figs. 4(a) (T1 = 0) and 4(b) (T1 = 1),

and discussed in Section 4.

G+
1 = F3∨G2

G+
2 = F3∧G1∧ (G2∨T1)

T +
1 = F3∧G2∧T1

F+
2 = G1∨F3

F+
3 = (G1∨F4)∧F2

F+
4 = G1∧F3∧F4.

Figure 2: Operational interactions within attractor A0. Shaded regions indicate Boolean variables related to the

same discrete multi-valued variable.

4 Comparison between Boolean and PWA differential models

To compare the two modelling formalisms, we now briefly summarize the results obtained in Grognard et al

(2007) for the model in Table 1, for all sets of parameters satisfying the given inequalities. First, the solutions
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were defined with the help of Filippov’s differential inclusions. Then, the asymptotic dynamics were computed

for the two values of the input. This system exhibits both equilibria (some in the sense of Filippov) and sliding

modes. The latter is a type of solution where one of the variables is fixed at its threshold, for instance xi(t) = θ
j

i

for some i and j, and for t in some interval, while the other variables follow their vector fields. Even though the

PWA system is not defined at thresholds, using Filippov’s method, under some conditions it is possible to define

a special type of solution (see Gouzé and Sari (2002) for more details). In practice (or in numerical simulations),

this sliding motion may give rise to a rapid oscillatory behaviour of the variable xi around its threshold θ
j

i , a

phenomenon also called “chattering”.

For the case U = 1, the asymptotic dynamics of the system in Table 1 satisfies:

• xc(t)→
κ1

c +κ2
c +κ3

c
γc

> θ 3
c > θ 2

c ;

• xy(t) = θ 3
y , in finite time;

• x f (t)→ 0;

• xg(t) = θ 2
g , in finite time;

• xt(t)→ 0.

Therefore, solutions converge to an equilibrium point in the sense of Filippov. In practice, there is are sliding

modes along xg = θ 2
g , and along xy(t) = θ 3

y . This characterization is obtained also with the Boolean model which,

for the case U = 1, converges to attractor A1. In A1 only the values of G2 ∈ {0,1} and Y2 ∈ {0,1} may vary,

and the transitions indeed correspond to a chattering mode in the variables xg and/or xy, between the highest

(G1 = G2 = 1 or Y1 = Y2 = 1) and intermediate (G1 = 1, G2 = 0 or Y1 = 1, Y2 = 0) levels (see also Fig. 5(a)).

The variables C1 = C2 = 1 indicate that xc converges to its highest level, and also T1,2 = 0, F1,2,3,4 = 0, exactly

recovering the piecewise affine asymptotic results for xt and x f .

For the case U = 0, the asymptotic dynamics of the system in Table 1 can be reduced to the equations on xg

and x f (see Fig. 3) with:

• xc(t)→
κ1

c
γc

and xy(t)→
κ1

y +κ2
y

γy
, after some finite time;

• xt(t)≤ θ 1
t and xg(t)≤ θ 2

g , after some finite time;

• Sliding mode along the plane xt = θ 1
t with the solution eventually jumping down to the region xt < θ 1

t ,

and staying there;

• Sliding mode along the line xg = θ 2
g and x f < θ 4

f , with the solution reaching (and leaving) the point xg = θ 2
g

and x f = θ 4
f in finite time;

• Sliding mode along the line xg > θ 1
g and x f = θ 5

f , with the solution reaching (and leaving) the point xg = θ 1
g

and x f = θ 5
f in finite time;

• Damped oscillations around the point xg = θ 1
g and x f = θ 4

f . It is shown that all trajectories will asymptoti-

cally converge to this point, which is an equilibrium in the sense of Filippov.

The interaction graph of the asymptotic system (x f ,xg,xt) obtained in Grognard et al (2007) (see also the

diagram analysis in Tournier and Gouzé (2008)), is recovered in the diagram of operational interactions in Fig. 2.

This graph has one negative loop between G and F , and two positive loops of length 2 and 3. The Boolean model

correctly predicts the levels for xc (intermediate, with C1 = 1, C2 = 0) and xy (highest, with Y1 = 1, Y2 = 1).

The Boolean model also predicts the three sliding modes: the transitions between states 000:110⇌000:100 or

100:110⇌100:100 (Fig. 4(a)), describe a possible chattering behaviour in variable G, which recovers the sliding

mode along the line xg = θ 2
g . Similarly, the sliding mode along x f = θ 5

f is recovered, with the transitions between

states 110:110⇌111:110 or 110:100⇌111:100. Finally, from every state with T1 = 1, a transition is possible to

the corresponding state with T1 = 0, i.e.: abc.de1→abc.de0. This transition is possible in both senses for the

states: 110:111⇌110:110 and 111:111⇌111:110 (the states marked with ∗ in Figs. 4(a) and 4(b)). This captures

the fact that eventually xt ≤ θ 1
t , together with the sliding mode along xt = θ 1

t . For the oscillations in x f ,xg, the
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Figure 3: Asymptotic behaviour of the PWA in the (x f ,xg) plane, for the case U = 0. Thick black lines indicate

sliding modes (cf Grognard et al (2007)).

000:110 → 100:110 → 110:110∗
←
→ 111:110∗

↓ ↑ ↓ ↑ ↓ ↓

000:100 → 100:100 → 110:100
←
→ 111:100

↑ ↑ ↓ ↓
000:000 ← 100:000 ← 110:000 ← 111:000

(a)

000:111∗ → 100:111∗ → 110:111∗
←
→ 111:111∗

↑ ↑ ↓ ↓

000:101∗ → 100:101∗ → 110:101∗
←
→ 111:101∗

↑ ↑ ↓ ↓
000:001∗ ← 100:001∗ ← 110:001∗ ← 111:001∗

(b)

Figure 4: Transition graph within attractor A0, for T1 = 0 (a) and T1 = 1 (b). The state 110:101 represents:

(F2,F3,F4) = (1,1,0) and (G1,G2,T1) = (1,0,1). The star indicates a possible transition to the corresponding

state with opposite T1.

Boolean model predicts the same orientation as that of the PWA model (compare Figs. 4(a) and 3). Note that

these figures can be read as a “phase portrait” of the system, with the period two oscillations corresponding to

the dark solid lines in Fig. 3.

In summary, all the main qualitative asymptotic properties of the PWA system are recovered in its Boolean

counterpart, but some fine-grained aspects of the dynamics are lost. Even though the phase portraits in both

formalisms are identical from a qualitative point of view, the Boolean model loses the fact that the oscillations

are damped, and that the trajectories eventually converge to a fixed point in the sense of Filippov. In Grognard

et al (2007), the demonstration of this convergence was made through a fine analysis of the sliding modes and

computation of a Poincaré map. The Boolean model also loses the information that the lines xg = θ 2
g or x f = θ 5

f

(bold lines in Fig. 3) are in fact “black walls”, which effectivelly prevent trajectories to cross from one side to

the other. This information is, however, only hidden in the Boolean framework and can be uncovered by finer

modelling, to recover the convergence towards singular domains, as shown in the next Section.

5 Sliding modes and period two Boolean oscillations

The attractors of a Boolean model describe the possible asymptotic behaviours of the network and depend on the

model’s size, connectivity, and rules. The attractors in a given network can be counted and classified according

to its qualitative dynamical properties (Bagley and Glass, 1996) but, however, not all attractors represent bio-

logically relevant or even observed behaviour. In our example, we observe several short one-step cycles where

the system may be locked in a period 2 oscillation that might constitute suspicious non-biological behaviour.

Nevertheless, in this case, comparison with the PWA model shows that all the one-step oscillations correspond
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to a given “sliding mode” in the continuous system. The biological significance of these sliding motions can

be related to the phenomenon of homeostasis, where the regulatory network contributes to maintain a biological

species around a given level.

Assume that the Boolean model dynamics has a period 2 oscillation in variable i, whenever the system is in

a subset Rb ∈Ω:

X+
i = Fi(X) = Xi =

{

0, Xi = 1, X ∈ Rb

1, Xi = 0, X ∈ Rb.
(9)

The smallest possible set Rb = {X0,X1}, is such that X0
i = 0 = 1−X1

i , and X0
j = X1

j for all j 6= i. Recall that Xi = 1

(resp., Xi = 0) means that a biological variable xi is above (resp., below) its threshold value θi. We next show

the correspondence between Boolean model (9), which oscillates between the two states “above” and “below”

the threshold, and a PWA system that exhibits a sliding mode solution xi(t) ≡ θi. In fact, this correspondance

illustrates the “chattering” phenomenon: if the real system can only distinguish a small number of qualitative

states (“above” and “below” the threshold), then the closest way to represent a solution of the form xi(t)≡ θi is

to repeateadly switch back and forth between the two qualitative states, thus passing repeatedly through the point

θi.

Consider a region R of the (continuous) state space corresponding to Rb, where variable xi may cross a

threshold value but all other x j ( j 6= i) are in a interval between two thresholds:

R = {x ∈ R
n
≥0 : sign(X j−1/2)x j > θ j, θi− ε < xi < θi + ε}.

Assume further that sign( f j(x)) =const. for all x ∈ R, j 6= i. Following (9) and (4), the PWA equation for xi must

satisfy:

ẋi = fi(x)







< 0, xi > θi,x ∈ R

any, xi = θi,x ∈ R

> 0, xi < θi,x ∈ R

A simple PWA system that satisfies these properties is of the form

ẋi = fi(x) = κis
−(xi,θi)− γixi, x ∈ R,

ẋ j = f j(x), has constant sign ∀ x ∈ R ( j 6= i)

with a negative auto-regulatory function for i, and θi < κi/γi. This system admits no equilibrium with xi 6= θi

(since fi(x) 6= 0), but it admits an equilibrium of Filippov type: x̂i = θi. It is clear that, in R, xi will approach

the point θi in finite time (because κi/γi > θi, and xi(t) = (xi(0)−κi/γi)e
−γit + κi/γi for xi(0) < θi, and xi(t) =

xi(0)e−γit for xi(0) > θi). Assume that the system evolves in R until the variable xi reaches its threshold θi,

at some instant T1. This gives rise to a “sliding mode” solution on R, since xi(t) = θi for t in some interval

[T1,T2], while the other variables increase or decrease until the trajectory leaves R at t = T2 > T1. In theory, we

expect no oscillations in xi, even if, due to the discontinuity in the vector field, numerical simulations may show

oscillations. A comparison can be made with the solution of a continuous vector field ẋi = κiθ
p
i /(θ p

i + x
p
i )− γixi

(p≥ 2), which has a single stable equilibrium, and no damped oscillations.
This correspondence between period 2 oscillations and sliding modes can be further interpreted as follows:

the “back-and-forth” oscillatory behaviour may be the result of the existence of an intermediate variable which
is lacking in the Boolean model. So, introduce a new variable associated with xi as follows: Xi∗ = 0 if xi < θi

and Xi∗ = 1 if xi ≥ θi. In order to define the Boolean dynamics, we construct the following table:

xi Xi∗ Xi X+
i∗ X+

i

< θi 0 0 1 0

= θi 1 0 1 0

> θi 1 1 1 0

The first and third line are straightforward. The second line is interpreted like this: when (Xi∗,Xi) = (1,0),
i.e. when xi = θi, then the two neighbor vector fields are of opposite sign, and therefore force the variable xi to

remain constant.
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To illustrate this, consider the attractor A1, consisting of the reversible transitions in a 2 dimensional space

G2Y2. Note that, fixing either of the variables, the other may have a period 2 oscillation. Introducing one

intermediate variable for each of G2 and Y2, the attractor A1 expands to the form shown in Fig. 5(b) (with

notation G2∗G2 : Y2∗Y2). This diagram represents exactly the Filippov type equilibrium for the case U = 1, where

xg→ θ 2
g and xy→ θ 3

y in finite time. In the Boolean model, both one-step oscillations disappear, and the strongly

connected component containing four states is “decoupled”, giving rise to a Boolean steady state: G+
2∗ = 1,

G+
2 = 0, Y +

2∗ = 1, and Y +
2 = 0.

0:0
←
→ 0:1

↓ ↑ ↓ ↑

1:0
←
→ 1:1
(a)

00:00 → 00:10 ← 00:11

↓ ↓ ↓
10:00 → 10:10 ← 10:11

↑ ↑ ↑
11:00 → 11:10 ← 11:11

(b)

Figure 5: (a) Transition graph within attractor A1. The state 1:0 represents: (G2 : Y2) = (1 : 0). (b) Resolving the

“chattering” behaviour in attractor A1, by adding intermediate variables. The state 10:00 represents: (G2∗G2 :

Y2∗Y2) = (10 : 00).

6 Conclusions

Two formalisms, Boolean and piecewise affine models, were compared in this paper. The analysis shows that

the Boolean model captures most of the asymptotic behaviour of the system, even though the PWA model gives

more details. Namely, the Boolean model correctly reproduces oscillatory behaviour and sliding modes, but it

cannot capture convergence to a given point through damped oscillations, or the fact that a sliding mode along

a given line plays the role of a black wall. This latter problem can be circumvented by noticing that there is a

correspondence between sliding modes and period 2 Boolean cycles, and adding a new variable to more finely

describe the local oscillatory behaviour. Therefore, dynamical behaviour in the Boolean model that might be

considered as non-relevant biologically may in fact contain useful information for analysis of complex systems.

Moreover, for the E. coli network, we have been able to identify a Boolean subsystem corresponding to each

attractor of the full Boolean system. In our case, the dynamics of this asymptotic Boolean system was compared

to the computed asymptotic dynamics of the differential system, and shown to be very similar. More generally,

this reduced Boolean asymptotic system could be again translated into a continuous one, to obtain a reduced

system of the full differential system, hopefully keeping some of the asymptotic properties of the full system.

This offers interesting perspectives for model reduction.

Given the available computational tools for Boolean analysis, based on well known and efficient graph al-

gorithms (see, for instance, Sánchez and Thieffry (2001); Ropers et al (2006); Tournier and Chaves (2009)), the

construction of a Boolean model associated to a PWA system can therefore constitute an undeniable help for the

analysis of genetic regulatory networks.
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APPENDIX

1 Discrete (multi-level) and Boolean

We now sketch an intuitive algorithm that always provides a biologically feasible model consistent with the

multi-level one. Our construction is based on the hypotheses H1 and H2, stated in Section 2.1

Given a discrete model Σd = (Ωd ,Fd), with variables V = (V1, . . . ,VM) and state space Ωd = {0,1, . . . ,d1}×
·· ·× {0,1, . . . ,dM} let Fd(V ) denote the synchronous successor of V and V [t + 1] = Fd,asyn(V [t]) represent the

asynchronous dynamics, where Fd,asyn(V ) takes values in the set (1).
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Assume that each of the M discrete variables has dm (m = 1, . . . ,M) levels and define: D = (d1, . . . ,dM),
n = d1 + · · ·+dM and set Ω = {0,1}n. Then define a function ϕD : Ωd →Ω, such that:

ϕD(V ) = (V1,1, . . . ,V1,d1
, . . . ,VM,1, . . . ,VM,dM

), (10)

where Vm,k are defined as in (2). It is clear that the function is injective, but ϕD(Ωd) is strictly contained in Ω.

Namely, those elements of Ω that would satisfy Vm,k < Vm,k+1 for some m and some 1 ≤ k ≤ dm do not have a

pre-image in Ωd . In fact, such combinations are biologically meaningless, in view of the interpretation of (2).

Moreover, when constructing the Boolean rules for the extended system, one naturally wishes to avoid transitions

to these unfeasible states, in order to obtain a biologically significant model. Define the sets of permissible and

forbidden states of Ω, associated with D:

SD,p = {X ∈Ω : (∀ 1≤ m≤M)(∀ 1≤ k ≤ dm), Xm,k ≥ Xm,k+1}

SD, f = {X ∈Ω : (∃ 1≤ m̄≤M)(∃ 1≤ k̄ ≤ dm̄), Xm̄,k̄ < Xm̄,k̄+1},

where the n coordinates of vector X ∈Ω are labelled in M groups of length dm:

X = (X1,1, . . . ,X1,d1
, . . . ,XM,1, . . . ,XM,dM

). (11)

Note that: SD,p = ϕD(Ωd) and SD, f = Ω\SD,p, in view of H2. Then ϕD is a bijection between Ωd and SD,p, so it

is possible to define a (partial) inverse function:

ϕ−1
D,p : SD,p→Ωd , ϕ−1

D,p(X) = (V1, . . . ,VM),

where Vm = ∑k Xm,k. An algorithm for generating a Boolean model Σb = (D,Ω,Fb) associated to Σd is then as

follows:

1. Generate the state space: Ω = {0,1}n with n = d1 + · · ·+dM , and label the coordinates of X ∈Ω according

to (11);

2. Translate the discrete value table Fd(V ) into a Boolean value table Fb(X), for each X ∈ SD,p:

Fb(X) := ϕD(Fd(V )) = ϕD(Fd(ϕ
−1
D,p(X)))

(note that this assigns values to X ∈ SD,p only);

3. Complete the table Fb by assigning any function ψ : Ω→Ω to the Boolean states X ∈ SD, f :

Fb(X) =

{

ϕD(Fd(ϕ
−1
D,p(X))), X ∈ SD,p

ψ(X), X ∈ SD, f ;

4. Obtain Boolean logical rules from the (now full) synchronous truth table Fb.

Note that step 3 can be viewed as the identification of a n-dimensional Boolean map, verifying certain constraints

(on the set SD,p) and with some degrees of freedom (on the set SD, f ). Thus the map Fb : Ω→Ω is not necessarily

unique. To construct this map, one can use a reverse engineering algorithm, to find a function ψ according

to some suitable criteria (for instance, REVEAL Liang et al (1998) will find a function ψ with minimal node

connectivity). In any case, the values of Fb(SD, f ) will not affect the dynamics of the biologically relevant part

of the Boolean model. Lemma 1 shows that the Boolean model thus obtained is well defined and biologically

consistent with the discrete model, in the sense that no forbidden state will be a successor of a permissible state.

Forbidden states can succeed one another or go into a permissible state. (Grey rows in Table 3)

For the Boolean model Σb = (D,Ω,Fb), one can also define an asynchronous dynamics from Fb, by updating

only one Boolean variable at a time, X [t +1] = Fb,asyn(X [t]). Note that synchronous and asynchronous dynamics

have the same equilibrium points: X+ = Fb(X) = X implies X [t +1] = X [t] for all t.

Lemma 1 Suppose Σd is a multi-level system that satisfies H1. The Boolean system Σb = (D,Ω,Fb), constructed

according to H2 and points 1 to 3, allows only transitions from SD,p or SD, f into SD,p or from SD, f into itself (for

both synchronous and asynchronous updating strategies).
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Proof: Given any X ∈ SD,p, we want to show that X+ = Fb(X) ∈ SD,p. By definition of Fb, ϕD and ϕ−1
D,p we have:

Fb(X) = ϕD(Fd(ϕ
−1
D,p(X))) = ϕD(Fd(V )) = ϕD(V +),

for some V ∈Ωd . By assumption H2, it follows that ϕD(V +) ∈ SD,p.

The forbidden states can remain in SD, f or switch to SD,p since, given any X ∈ SD, f , we have X+ = Fb(X) =
ψ(X) and ψ(X) ∈ Ω = SD,p ∪ SD, f . To see that the asynchronous updating strategy also prevents transitions

from SD,p to SD, f , consider X ∈ SD,p and any asynchronous transition, Y = Fb,asyn(X). If X is an equilib-

rium point then immediately Y = X ∈ SD,p. Otherwise, since X is of the form (10), it can be written as:

X = (~1p1
,~0d1−p1

; · · · ;~1pM
,~0dM−pM

), where ~1p (resp., ~0p) is a vector of length p with all coordinates equal to

1 (resp., 0). Its synchronous successor is X+ = (~1p+
1
,~0d1−p+

1
; · · · ;~1p+

M
,~0dM−p+

M
), where p+

i ∈ {pi−1, pi, pi +1},

for all i = 1, . . . ,M. Since X is not an equilibrium point, then there exists k ∈ {1,dM} such that p+
k 6= pk. In any

asynchronous successor, only one pi can change at a time. Therefore, there exists exactly one index 1 ≤ k ≤M

such that p+
k = pk±1: Y = (~1p1

,~0d1−p1
; · · · ;~1p+

k
,~0d1−p+

k
; · · · ;~1pM

,~0dM−pM
). Therefore, it is clear that Y ∈ SD,p.

2 Multi-level and Boolean state transition tables for cya

To illustrate the construction of the Boolean rules from the piecewise affine model, we now give the complete

tables for the variable cya. The rules for the other variables can be similarly obtained (the full tables can be found

in the Supplementary Material). The left panel in Table 3 shows the multi-level model rules for cya, in the cases

U = 0 or U = 1. The columns C and Y contain the multi-level states corresponding to the (continuous) variables

xc and xy, obtained by application of (3). The column Y + shows the synchronous state transition, computed

according to (4). Columns Y +
1 and Y +

2 depict the states of the Boolean variables corresponding to Y +, computed

according to hypotheses H1 and H2. The right panel in Table 3 shows the Boolean variables corresponding to C

and Y in the first four columns, and the synchronous Boolean updates in the columns Y +
1 and Y +

2 . As explained in

the text, there are Boolean state combinations which have no biological meaning: these are the rows highlighted

in grey and represent the forbidden states in SD, f . The corresponding entries in columns Y +
1 and Y +

2 are filled

following points 1 to 3, in Appendix 1. Therefore, according to Lemma 1, there are no transitions to forbidden

states. The Boolean rules for cya can be now read from the columns Ci, Yi, and Y +
i :

Y +
1 = 1

Y +
2 = (U ∧Y1)∨ (U ∧ [(Y1∧ (C1∨C2))∨ ((Y1∧Y2)∧C1∧C2)])
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Table 3: Multi-level model and Boolean rules for cya (Y ) (synchronous maps Fd and Fb).

C Y U Y + Y +
1 Y +

2

0 0 0 1 1 1 1 1 0 0

0 1 0 1 2 2 1 1 1 1

0 2 0 1 2 2 1 1 1 1

1 0 0 1 1 1 1 1 0 0

1 1 0 1 2 2 1 1 1 1

1 2 0 1 2 2 1 1 1 1

2 0 0 1 1 1 1 1 0 0

2 1 0 1 2 2 1 1 1 1

2 2 0 1 2 1 1 1 1 0

C1 C2 Y1 Y2 U Y +
1 Y +

2

0 0 0 0 0 1 1 1 0 0

0 0 0 1 0 1 1 1 0 0

0 0 1 0 0 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1

0 1 0 0 0 1 1 1 0 0

0 1 0 1 0 1 1 1 0 0

0 1 1 0 0 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1

1 0 0 0 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1 1 1

1 0 1 1 0 1 1 1 1 1

1 1 0 0 0 1 1 1 0 0

1 1 0 1 0 1 1 1 0 0

1 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 1 1 1 0
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