Evaluating motion estimation models from behavioural and psychophysical data

Emilien Tlapale 1 Pierre Kornprobst 1 Jan D. Bouecke 2 Heiko Neumann 2 Guillaume S. Masson 3
1 NEUROMATHCOMP
CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Rocquencourt, ENS Paris - École normale supérieure - Paris, UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR8548
3 DyVa Team
INCM - Institut de neurosciences cognitives de la méditerranée - UMR 6193, Université de la Méditerranée - Aix-Marseille 2
Abstract : Offering proper evaluation methodology is essential to continue progress in modelling the neural mechanisms involved in vision information processing. Currently the evaluation of biologically inspired motion estimation models lacks a proper methodology for comparing their performance against behavioural and psychophysical data. Here we set the basis for such a new benchmark methodology based on human visual performance and designed a database of image sequences taken from neuroscience and psychophysics literature. In this article we focused on two fundamental aspects of motion estimation, which are the respective influence between 1d versus 2d cues and the dynamics of motion integration. Since motion models deal with many kinds of motion representations and scales, we defined two general readouts based on a global motion estimation. Such readouts, namely eye movements and perceived motion, will serve as a reference to compare simulated and experimental data. Baseline results are provided for biologically inspired artificial vision models but also for computer vision models. As a whole we provide here the basis for a valuable evaluation methodology to unravel the fundamental mechanisms of motion perception in the visual cortex. Our database is freely available on the web together with scoring instructions and results at: http://www-sop.inria.fr/neuromathcomp/psymotionbench
Type de document :
Communication dans un congrès
Junichi Suzuki and Tadashi Nakano. International ICST Conference on Bio-Inspired Models of Network, Information and Computing Systems (BIONETICS), Dec 2010, Boston, MA, United States. Springer, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 87, pp.483-496, 2010, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 〈10.1007/978-3-642-32615-8_46〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00847454
Contributeur : Pierre Kornprobst <>
Soumis le : jeudi 26 octobre 2017 - 13:53:34
Dernière modification le : vendredi 18 mai 2018 - 01:25:17
Document(s) archivé(s) le : samedi 27 janvier 2018 - 13:11:13

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emilien Tlapale, Pierre Kornprobst, Jan D. Bouecke, Heiko Neumann, Guillaume S. Masson. Evaluating motion estimation models from behavioural and psychophysical data. Junichi Suzuki and Tadashi Nakano. International ICST Conference on Bio-Inspired Models of Network, Information and Computing Systems (BIONETICS), Dec 2010, Boston, MA, United States. Springer, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 87, pp.483-496, 2010, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 〈10.1007/978-3-642-32615-8_46〉. 〈hal-00847454〉

Partager

Métriques

Consultations de la notice

453

Téléchargements de fichiers

25