
HAL Id: hal-00847635
https://hal.inria.fr/hal-00847635

Submitted on 24 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Cloud Task Processing with
Checkpoint-Restart Mechanism

Sheng Di, Yves Robert, Frédéric Vivien, Derrick Kondo, Cho-Li Wang, Franck
Cappello

To cite this version:
Sheng Di, Yves Robert, Frédéric Vivien, Derrick Kondo, Cho-Li Wang, et al.. Optimization of Cloud
Task Processing with Checkpoint-Restart Mechanism. SC13 - Supercomputing - 2013, Nov 2013,
Denver, United States. ACM, 2013, <10.1145/2503210.2503217>. <hal-00847635>

https://hal.inria.fr/hal-00847635
https://hal.archives-ouvertes.fr

Optimization of Cloud Task Processing
with Checkpoint-Restart Mechanism

Sheng Di1,2, Yves Robert3,4, Frédéric Vivien3, Derrick Kondo5, Cho-Li Wang6, Franck Cappello1,2,7

1. INRIA Saclay, France, shdi@inria.fr, fci@lri.fr
2. Argonne National Laboratory, USA

3. ENS Lyon and INRIA, France, Yves.Robert@ens-lyon.fr, Frederic.Vivien@inria.fr
4. University of Tennessee Knoxville, USA

5. INRIA Grenoble, France, derrick.kondo@inria.fr
6. The University of Hong Kong, Hong Kong, clwang@cs.hku.hk

7. University of Illinois at Urbana Champaign, USA

ABSTRACT
In this paper, we aim at optimizing fault-tolerance tech-
niques based on a checkpointing/restart mechanism, in the
context of cloud computing. Our contribution is three-fold.
(1) We derive a fresh formula to compute the optimal num-
ber of checkpoints for cloud jobs with varied distributions
of failure events. Our analysis is not only generic with no
assumption on failure probability distribution, but also at-
tractively simple to apply in practice. (2) We design an
adaptive algorithm to optimize the impact of checkpointing
regarding various costs like checkpointing/restart overhead.
(3) We evaluate our optimized solution in a real cluster en-
vironment with hundreds of virtual machines and Berke-
ley Lab Checkpoint/Restart tool. Task failure events are
emulated via a production trace produced on a large-scale
Google data center. Experiments confirm that our solution
is fairly suitable for Google systems. Our optimized formula
outperforms Young’s formula by 3-10 percent, reducing wall-
clock lengths by 50-100 seconds per job on average.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Fault toler-
ance; D.4.5 [Operating Systems]: Reliability—Checkpoint
/restart, Fault-tolerance

General Terms
Theory, Reliability, Experimentation, Performance

Keywords
Cloud Computing, Checkpoint-Restart Mechanism, Opti-
mal Checkpointing Interval, Google, BLCR

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13, November 17 - 21 2013, Denver, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 $15.00.
http://dx.doi.org/10.1145/2503210.2503217.

Cloud computing [1] is becoming a compelling paradigm in
provisioning elastic services and on-demand resources. The
cloud model investigated in this paper is based on Platform-
as-a-Service (PaaS) [1], where users can compose complex
requests (or jobs) based on off-the-shelf web services. Each
job could be made up of one or more tasks and each task
execution requires multiple types of resources. Each task
is executed in a particular virtual machine (VM) instance,
whose resources (such as CPU rate, memory size) are iso-
lated via virtual resource isolation technology [2, 3].

With the fast advance of web applications, fault tolerance
has become a fairly serious issue in cloud computing. On
the one hand, more and more high performance comput-
ing (HPC) applications are being developed over cloud plat-
forms. Evangelinos et al. [4], for example, confirmed the fea-
sibility of running coupled atmosphere-ocean climate mod-
els on Amazon EC2 [5]. Nurmi et al. [6] made use of VMs
to build a cloud platform (called EUCALYPTUS) allowing
Grid users to run HPC applications. In general, large-scale
systems always face more or less fault-tolerance problems.
For example, the BlueGene/L system with 100k nodes at
Lawrence Livermore National Laboratory (LLNL) experi-
ences an L1 cache bit error every 8 hours [7], and a hard fail-
ure every 7-10 days. On the other hand, over-commitment
of physical resources is very common in cloud systems, in
order to achieve high resource utilization. According to a
Google trace [8, 9] with 10k+ hosts, for example, Reiss. et
al. [10] showed that the requested resource amounts are of-
ten greater than the total capacity of Google data centers.
Such an over-commitment may cause exhaustion of physical
resources and, eventually, may lead to kill or eviction events
for low priority tasks [9].

In comparison to the traditional HPC/Grid platforms,
fault tolerance issue in the context of cloud computing faces
at least two new challenges. (1) Cloud jobs are much smaller
than Grid jobs (as reported by Di’s work [11] based on
Google trace [9]), so that cloud job execution time is more
sensitive to the impact of checkpointing/restart cost. (2)
The probability of failure occurrences for cloud jobs may
largely differ from that for HPC/Grid jobs. This is due to
the fact that cloud resources are often allocated with more
restrictions, like user payments and task priorities. For in-
stance, Yi et al. [12] shows that the failure probability den-
sity function (PDF) of Amazon cloud spot instances is not

only dependent on task length but is also related to user bids.
Cirne et al. [13] showed that the failure probability of Google
jobs, observed through real-world production traces, follows
a distribution with a saw-tooth curve. These observations
contrast the failure probability distribution of HPC/Grid
jobs [14, 15, 16], which is characterized as a rather simple
independent and identical distribution (IID).

In this paper, we mainly answer the four following ques-
tions:

• Based on the characterization of checkpointing/restart
cost and on the statistics of failure events of cloud
tasks, how to optimize the number of checkpoints for
each task? Since cloud task failure events may not sim-
ply depend on a particular probability distribution, we
have to analyze the issue with no assumption on proba-
bility distribution. This contrasts the traditional anal-
ysis like Young’s work [17] or Daly’s work [14], which
assumes that failure probability follows an Exponential
distribution. In this paper, we derive a novel succinct
formula to compute the optimal number of checkpoint-
ing intervals. We also prove that Young’s formula [17]
can be considered a particular case of our new formula.

• How to dynamically tune the optimal solution with
the checkpoint/restart mechanism at runtime, in or-
der to adapt to possible changes of the failure proba-
bility distribution? In the context of cloud computing,
task failure probabilities may change over time. For in-
stance, if a cloud user dynamically changes the bid on
service instances in Amazon EC2 [5], or the priority on
a Google cloud data center [9], the failure probability
changes accordingly.

• How to optimize the tradeoff between checkpointing
a task memory on local disks or on a shared disk?
Checkpointing on shared disks leads to higher relia-
bility and flexibility, as it avoids the impact of the
local node failures and supports implicit process mi-
gration. However, this approach incurs heavier check-
pointing costs and possible bottleneck problems. In
contrast, storing memory states in a local disk re-
duces the checkpointing costs, but incurs heavier pro-
cess migration costs. Based on Berkeley Lab Check-
point/Restart (BLCR) [20], for example, before restart-
ing a failed task on another host, one has to transfer
the task memory from the (ram)disk of its last execu-
tion host to the disk of the current host, introducing
extra disk read/write costs.

• What are the experimental results like, when apply-
ing our dynamic optimized fault-tolerant method on
a real-cluster environment deployed with VMs? We
evaluate this method on a real cluster environment
deployed with XEN’s hypervisor [18] and BLCR [20],
unlike other traditional work that performs evaluation
only by simulation or hypothetical cases. We repro-
duce the overall benchmark based on Google’s one-
month production trace [9], in which each job contains
one or more tasks (such as bag-of-tasks like Mapre-
duce [19]). Experiments confirm that our fault-tolerant
solution can effectively improve the workload process-
ing ratio by 3-10 percent.

The rest of this paper is organized as follows. In Section 2,
we provide an overview of our cloud model and introduce the

fault-tolerance mechanism. We formulate our research prob-
lem in Section 3. In Section 4, we detail the derivation of the
optimal number of checkpointing intervals in the context of
cloud computing, as well as the adaptive solution with min-
imized execution cost. We present experimental results in
Section 5. We discuss related work in Section 6. Finally,
we provide concluding remarks and hints for future work in
Section 7.

2. SYSTEM OVERVIEW
The system architecture of our fault-tolerant cloud plat-

form is shown in Figure 1, which is basically consistent with
most cloud models, e.g., Google task execution model [9]. A
user request (a.k.a., a job) is made up of one or more tasks,
each of which is an instance of a cloud service (or online ap-
plication). Job scheduling layer is used to coordinate the job
priorities, so that they can be treated in a fair way, or the
overall system can work quite efficiently. Resource alloca-
tion layer is responsible for allocating resource fractions for
cloud tasks based on specific demands, and for performing
resource isolation by hypervisor on selected VMs if needed.

F
a
u

lt
 T

o
le

ra
n

c
e

Figure 1: System Architecture of Composite Cloud
Service System.

The overall cloud system is often organized in a loosely-
coupled way. For example, Google web search system [21]
covers 10k+ servers worldwide, each comprising hundreds
of PC commodity machines. The fault tolerance on each
server is autonomously organized for purpose of high relia-
bility and performance. Accordingly, our research is based
on a particular large-scale data center with many execution
hosts.

In our cloud model, each job is processed according to the
procedure illustrated in Figure 2. At the beginning, a job is
submitted and analyzed by job parser, in order to predict the
job workload based on its input parameters. Recently, many
effective workload prediction methods were proposed, like
the polynomial regression method [22]. As there are avail-
able resources, one unprocessed task will be selected and put
in a pending queue, waiting for the scheduling notification
with a selected qualified host and a VM instance running
atop it. In our experiments, the physical host with the maxi-
mum available memory size will be selected. This scheduling
policy is to account for the specular features of Google jobs,
to be further discussed later. The corresponding hypervi-
sor will perform the resource isolation for the selected VM
to match the resource customization. The computing result
will be cached in the VM, in case of data transmission to a
succeeding task.

In our design, we use three specific threads to periodically
check the liveness of each physical host, VM, and task run-

����

�����		��

�����	�����

��	����

���	�����
�� ��

�
����

��	�

	������
�

����������

��	���������������

����	������
����

��	������ 	������

��	��!"������
�

�������#��
��
�

�����		�

��	�����
��

����������

�����		���	����������������

$������������������

Figure 2: Cloud Job Processing Procedure.

ning process. For example, if a host is down, all the tasks
running on the VMs of this host (as recorded in the schedul-
ing queue) will be immediately restarted on other hosts from
their most recent checkpoints. For any task restoration, a
new thread (called restoring thread) will be launched to han-
dle the restoration. We intentionally do not checkpoint an
entire VM’s state at runtime, but instead just the transient
memory of running tasks, because of the heavy overhead in
checkpointing VMs [23]. In particular, BLCR [20] is used to
periodically store the memory of running tasks in local disks,
or shared disks like Network File System (NFS). When an
interrupted task is detected, its execution can be restarted
on an idle VM, using its memory state stored in its most
recent checkpoint.

3. PROBLEM FORMULATION
There are n jobs in the system, denoted by Ji for i=1,2,· · · ,n.

Each job is made up of one or more tasks. We denote the
tasks of Ji by ti(1), ti(2), · · · , ti(mi), where mi is the number
of tasks in job Ji. The execution time (a.k.a., productive
time, excluding the time lost due to checkpoints and fail-
ures) of task ti(j) is denoted by Te(ti(j)).

Statistics of a Google trace with millions of tasks [8] indi-
cate that cloud jobs are likely to encounter failure/interrup-
tion events. Thus, it is necessary to checkpoint cloud jobs
from time to time. Thanks to outstanding checkpoint/restart
tools like BLCR software [20], equidistant checkpointing is
viable. That is, we can take checkpoints (storing any task
memory) at any time in the course of its execution. We for-
mulate the fault-tolerance research in the context of cloud
computing as an optimization problem of equidistant check-
pointing.

Equidistant checkpointing aims at determining the op-
timal number of same-length checkpointing intervals for a
task, in terms of the probability distribution of failure events
for that task. We suppose that the number of failure events
in a task ti(j) follows a probability distribution Pti(j) . That

is, the probability of task ti(j) encountering K failure/inter-
ruption events is denoted as Pti(j)(Y = K). We use Th(ti(j))
to denote the date of task ti(j)’s h-th failure event, and use
Λ(Th(ti(j))) to denote the checkpointing position which is
before and closest to the date Th(ti(j)). According to our
characterization, the checkpointing cost (defined as the in-
crement of the task wall-clock time due to one checkpoint) is
determined by the task memory size (to be discussed later).
Thus, the checkpointing cost is relatively stable for any given

task. Likewise, the cost for restarting a task (called task
restarting cost) is also constant in most cases. As a con-
sequence, we define the checkpointing cost and the task
restarting cost as two constants with respect to a partic-
ular task, denoted by C and R respectively. Considering
the total overhead due to task failure events and checkpoint-
ing/restart costs, the total wall-clock time (a.k.a., wall-clock
length) of a task ti(j) that encounters K failure events can
be represented as Formula (1), where x refers to the number
of checkpointing intervals. Here Th(ti(j))−Λ(Th(ti(j)) refers
to the time wasted on the rollback of the task execution to
its closest checkpoint. This formula means that a task total
wall-clock time is equal to its execution time (a.k.a., produc-
tive time) in processing its workload, plus the total overhead
of taking checkpoints and the total time cost of the rollbacks
of task execution upon failure events:

Tw(ti(j)) =Te(ti(j))+C · (x−1)

+
∑K
h=1(Th(ti(j))−Λ(Th(ti(j)))+R)

(1)

Our objective is to compute the optimal number of check-
pointing intervals for minimizing a task expected wall-clock
time, when we set equidistant checkpoints. A task expected
wall-clock time could be written as Formula (2), where we
omit the notation ti(j) for simplicity of expression, e.g., Te
and Th refer to Te(ti(j)) and Th(ti(j)) respectively.

E(Tw(ti(j)))

=
∞∑
K=0

(
Pti(j)(Y=K)·(Te+C(x−1)+

K∑
h=1

(Th−Λ(Th)+R))

)
(2)

We summarize key notations in Table 1.

Table 1: Summary of Key Notations.
Notation Description

n number of jobs
Ji a user request that is made up of multiple tasks
ti(j) the jth task in the job Ji

Pti(j)
(Y =K) probability of K failure events striking ti(j)

Th(ti(j)) date of the hth failure event of task ti(j)
Λ(Th(ti(j))) checkpointing position that is before & closest to

Th(ti(j))
C checkpointing cost (per checkpoint)
R time cost when restarting a failed task
Te(ti(j)) execution time of ti(j) without failure events, also

excluding checkpointing costs
Tw(ti(j)) wall-clock time of ti(j), including all costs

induced by failure events and fault tolerance

4. OPTIMIZING FAULT TOLERANCE FOR
CLOUD TASKS

In this section, we compute the optimal number of check-
pointing intervals based on the equidistant checkpointing
model and introduce an adaptive algorithm to minimize ex-
ecution cost regarding checkpointing/restart overhead.

4.1 Optimizing the Number of Checkpoints
For the sake of simplicity, we omit the notation ti(j) in

the following text. For instance, we use Tw, P (Y=K), and
Th, to represent respectively Tw(ti(j)), Pti(j)(Y=K), and

Th(ti(j)).

Theorem 1. Based on the problem formulation in Sec-
tion 3, if we set checkpoints evenly during a task execution,

then the optimal number (x∗) of checkpointing intervals is
given by Equation (3), where E(Y) denotes the expected
number of failure events occurring during the execution of
the task.

x∗ =
√

Te·E(Y)
2C

(3)

Proof. E(Tw)

=
∞∑
i=0

(
P (Y = i)·(Te+C(x−1)+

i∑
j=1

(Tj−Λ(Tj)+R))

)
=(Te+C(x−1))

∑∞
i=0P (Y=i)

+
∑∞
i=0

(
P (Y=i)·(

∑i
j=1 (Tj−Λ(Tj))+iR)

)
=(Te+C(x−1)+R·E(Y))+

∞∑
i=0

(
P (Y = i)·

i∑
j=1

(Tj−Λ(Tj))

)
Let us analyze the expected value of

∑i
j=1(Tj−Λ(Tj)).

Checkpoints are set evenly during a task execution. Be-
cause Te denotes the total execution length in the absence
of fault-tolerance mechanisms and failures, a checkpoint is
taken once the execution of the task has progressed for a
duration Te

x
without encountering any failure event. This is

exemplified by Figure 3, where x=4 in this example.

task execution time (Te)

Te/4 Te/4 Te/4 Te/4

Figure 3: Segment Intervals Separated by Check-
points.

Once a task is victim of a failure event, it is either restarted
immediately using an idle VM, or it is restarted later when
some resources become available. That is, a task may not
be restarted immediately when it encountered a failure event
due to the nature of cloud computing. In addition, task fail-
ure events are often attributed to multiple complex factors.
Hence, checkpointing dates and failure events are indepen-
dent. Therefore, the expected time loss of the rollback due
to a failure event is Te

2x
, because a failure event must happen

in an interval of length Te
x

. Hence, E(Tw) can be rewritten
as Equation (4).

E(Tw)
=(Te+C(x−1)+R·E(Y))+

∑∞
i=0

(
P (Y =i)· i·Te

2x

)
=(Te+C(x−1)+R·E(Y))+Te

2x

∑∞
i=0 (i·P (Y =i))

=(Te+C(x−1)+R·E(Y))+Te
2x
E(Y)

(4)

Since ∂2E(Tw)

∂x2
=TeE(Y)

2x3
>0, E(Tw) has a minimum extreme

point when ∂E(Tw)
∂x

=0. Accordingly, we can compute the
optimal value (x∗) by solving Equation (5).

∂E(Tw)
∂x

= C − TeE(Y)

2x2
= 0 (5)

This leads to x∗=
√

TeE(Y)
2C

.

Remarks:

• We give an example to illustrate the theorem. Suppose
that the task execution length is Te=18 seconds and
that checkpointing cost is C=2 seconds. If the number
of failure events follows a Poisson distribution where
P (Y=k) = λk

k!
e−λ and the failure rate λ is equal to

2, then, E(Y)=λ=2. Hence, the optimal number of

checkpointing intervals for the task is
√

18×2
2×2

=3. That

is, the optimal solution is to take a checkpoint every
18
3

=6 seconds during the execution of the task. In
practice, the expected number of failures for a task can
be estimated by the mean number of failures (MNOF)
of the task, and MNOF can be estimated with the
statistics computed based on history.

• Note that our theoretical conclusion does not depend
on any probability distribution, unlike Young’s for-
mula [17] which needs to assume that failure intervals
follow an exponential distribution. Young’s formula is
given by Equation (6), where Tc, C, and Tf refer to
the optimal checkpointing interval, checkpointing cost,
and the mean time between failures (MTBF) respec-
tively.

Tc =
√

2 C Tf (6)

That is, Theorem 1 advances a more generic formula
without any assumption on the probability distribu-
tion. This is significant because different types of cloud
tasks are likely to be victim of different distributions of
failure intervals. For example, Figure 4 presents, with
respect to the different task priorities in Google sys-
tems, the cumulative distribution function (CDF) of
the uninterrupted work intervals of a given task. One
can observe that the distributions of uninterrupted
intervals are quite different for the various task pri-
orities (from 1 to 12). Tasks with higher priorities
tend to have longer uninterrupted execution lengths,
because low-priority tasks tend to be preempted by
high-priority ones.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Uninterrupted Task Length (day)

priority=1
priority=2
priority=3
priority=4
priority=5
priority=6

(a) w.r.t. low-priority tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Uninterrupted Task Length (day)

priority=7
priority=8
priority=9

priority=10
priority=11
priority=12

(b) w.r.t. high-priority tasks

Figure 4: Distribution of Google Task Failure Inter-
vals According to Priorities.

• In fact, Corollary 1 proves that Young’s formula is a
particular case of Theorem 1.

Corollary 1. If the failure intervals of a task follow
an exponential distribution and if the checkpointing cost is
small, then Young’s formula can be derived from Formula (3).

Proof. We denote the Mean Time Between Failures (MTBF)
of a task by Tf . Because the failure events striking a given
task occur independently and because their consecutive in-
tervals follow an exponential distribution, it can be proven
that the number of failures must follow a Poisson process
with the expected number of occurrences per time unit be-
ing equal to 1

Tf
. Then, the expected number of task failure

events during its productive period can be approximated

as E(Y)≈Te× 1
Tf

= Te
Tf

if the checkpointing cost and the ex-

pected number of failures are small with respect to Te. Then,
we can get Young’s formula based on the following deriva-
tion.
Tc = Te

x∗ = Te√
1
2
TeE(Y)/C

= Te√
1
2
Te· Te

Tf

/
C

=
√

2CTf

• Formula (3) is easier to apply than Young’s formula
in many situations. Note that Young’s formula relies
on the distribution of failure intervals. In general, it is
non-trivial to record the accurate time stamps of fail-
ure events due to many factors like non-synchronous
clocks across hosts (failed tasks may be restarted on
a host using a different clock), inevitable influence of
checkpointing cost, or significant delay of failure de-
tection. In contrast, it is easy to record the number
of failures striking a particular task. That is, Formula
(3), which depends on the expected number of failure
events hitting a task, is easier to apply.

• We give a practical example summarized from a one-
month Google trace [8]. We derive the optimal check-
pointing intervals for the execution of a Google task us-
ing both Theorem 1 and Corollary 1. Figure 5 presents
the CDF of the uninterrupted work intervals of a task
in the Google trace, as well as some well-known distri-
bution curves fitted with maximum likelihood estimate
(MLE).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000

C
D

F

Task Failure Interval (Second)

Distribution of Samples
Fitted Exponential Distribution

Fitted Geometric Distribution
Fitted Laplace Distribution
Fitted Normal Distribution
Fitted Pareto Distribution

(a) all failure intervals

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Task Failure Interval (Second)

Distribution of Samples
Fitted Exponential Distribution

Fitted Geometric Distribution
Fitted Laplace Distribution
Fitted Normal Distribution
Fitted Pareto Distribution

(b) short failure intervals

Figure 5: Overall Distribution of Google Task Fail-
ure Intervals and Distribution Fitting with MLE.

We find that a Pareto distribution fits the sample dis-
tribution best in general. However, since a large ma-
jority (over 63%) of task failure intervals last for less
than 1000 seconds, according to our characterization,
one should be more interested in small tasks. If we just
consider failure intervals within 1000 seconds, the best-
fit distribution is an exponential distribution with fail-
ure rate λ=0.00423445 (although not perfect, as shown
by the discrepancies in Figure 5 (b)). Hence, in this
situation, suppose the checkpointing cost is always 2
seconds. Then the optimal checkpointing interval for a
relatively small cloud task (task length ≤1000 seconds)

can be estimated as
√

2C 1
λ

=
√

2× 2× 1
0.00423445

≈
30.7 seconds, in terms of Corollary 1.

4.2 Adaptive Optimization of Fault Tolerance
So far, we have investigated the optimal number of check-

pointing intervals for a cloud task, by setting checkpoints
evenly during the task execution. However, the failure prob-
ability distribution a task is subject to depends on the task

Algorithm 1: Adaptive Checkpointing Algorithm

Input: task ti(j), checkpointing cost C, task execution
time Te

1 Estimate the checkpointing/restart tradeoff between
using shared-disk and local-disk /* Section 4.2.2 */

2 Select the device used to store memory based on the
optimal estimation

3 Compute X∗ based on Formula (3)
4 W0 ← Te/X

∗; W ←W0

5 repeat
6 if (W ≤ 0) then
7 Take a checkpoint for task ti(j) via a new thread
8 Te ← Te −W0

9 if (MNOF changed) then
10 Compute a new X∗ based on Formula (3)
11 W0 ← Te/X

∗

12 W ←W0

13 W ←W −∆t /* countdown */
14 Sleep a tiny period ∆t
15 until task ti(j) is completed

priority. Therefore, if the priority of a task changes dur-
ing its execution, so does the failure probability distribu-
tion. Thus, we propose an adaptive solution that recom-
putes checkpointing dates in order to cope with potential
changes at runtime in the failure probability distribution.

We also compute the most efficient checkpointing/restart
approach when one can store checkpoints either in local
ramdisks1 or in shared disks. We present the pseudo-code
in Algorithm 1.

At the beginning of Algorithm 1, we compute the first
checkpoint with Formula (3) using the task predicted ex-
ecution workload2 and the corresponding mean number of
failures (MNOF). During the task execution, the algorithm
will periodically check whether it is time to take a checkpoint
through a countdown mechanism. This step can also be im-
plemented easily with a notify/wait mechanism, instead of
a polling method.

In the following text, we mainly focus on two key issues: in
what situation the checkpointing dates (i.e., optimal check-
point positions) should be updated, and whether to use local
ramdisks or shared disks to store checkpoints.

4.2.1 Dynamic Optimization of Checkpointing Posi-
tions

We prove in Theorem 2 that the next checkpoint position
needs to be recomputed, if and only if the task MNOF (i.e.,
E(Y) in Theorem 1) is changed during the previously last
checkpoint interval (probably due to the credits or priori-
ties tuned by users). That is, although the remaining work-
load of a task decreases over time, the optimal checkpointing
dates remain actually the same if the task MNOF remains
unchanged. More specifically, if the factor (e.g., task prior-
ity) that may influence the task MNOF remains unchanged,
the optimal checkpointing positions would be unchanged for
its remaining execution.

1RAMDisk creates a virtual RAM drive, or block of mem-
ory, which the computation host treats as if it were a disk
drive.

2A task workload can be predicted by prediction methods
like polynomial regression [22] or the estimation based on
history [25].

Theorem 2. Next optimal checkpointing position will be
changed for the task remaining workload (i.e., remaining ex-
ecution length), if and only if the task MNOF is changed
in the previously last checkpointing interval.

Proof. Without loss of generality, suppose that the cur-
rent checkpointing position is the (k+1)st checkpoint and
its preceding one is the kth checkpoint, and their remain-
ing execution lengths are denoted as Tr(k+1) and Tr(k) re-
spectively. We denote the optimal number of checkpointing
intervals computed at the kth and (k+1)st checkpoints as

X∗ and X(∗) respectively. We illustrate the notations in
Figure 6. In the following text, we will prove X(∗)=X∗−1.

��� �������

�	���

�	�����
�
���
��	�

�
���
���

Figure 6: Illustration of Notations used in the Proof.

According to Theorem 1, we can represent the optimal
number of checkpointing intervals at the two positions in
Formula(7) and Formula(8) respectively, where Ek(Y) de-
notes the expected number of failures in the task remaining
execution time Tr(k). Obviously, E0(Y)=E(Y)=MNOF.

X∗ =

√
Tr(k)Ek(Y)

2C
(7)

X(∗) =

√
Tr(k + 1)Ek+1(Y)

2C
(8)

Since each computation of checkpoints is based on equidis-
tant checkpointing model, we can get Tr(k+1) = Tr(k)·X

∗−1
X∗ ,

which can also be derived from Figure 6.
Based on the definition of Ek(Y), we can derive Ek(Y) =

Tr(k)
Tr(0)

E0(Y) = Tr(k)
Tr(0)

MNOF and Ek+1(Y) = Tr(k+1)
Tr(0)

E0(Y) =
Tr(k+1)
Tr(0)

MNOF. By combining the condition that MNOF is

unchanged between the kth and (k+1)st checkpoints, we can

further get Ek+1(Y)=Ek(Y)·Tr(k+1)
Tr(k)

. Then, we can derive

X(∗) as follows:

X(∗)=

√
Tr(k+1)·(Ek(Y)

Tr(k+1)
Tr(k)

)

2C
=

√
Tr(k)·X

∗−1
X∗ ·(Ek(Y)X∗−1

X∗)

2C

= X∗−1
X∗

√
Tr(k)Ek(Y)

2C
= X∗−1

Hence, the next optimal checkpointing position will not
be changed if the task MNOF is unchanged. In contrast, if
the task MNOF is changed, we can get X(∗) 6=X∗ − 1 based
on a similar derivation.

4.2.2 Local Disk vs. Shared Disk Checkpointing
We want to determine what is the most efficient approach,

storing checkpoints either in local disks or in shared disks.
We denote the checkpointing cost over local disks and over
shared disks as Cl and Cs respectively. Based on the two
checkpointing approaches, we call their corresponding task
migrations (a.k.a., process migration) as migration type A
and migration type B. We denote the task restarting cost
based on the two checkpointing approaches as Rl and Rs
respectively. Then, according to Formula (4), in order to
identify the most efficient approach we only need to compare

their respective expected total costs, Cl(Xl−1)+RlE(Y)+
Te·E(Y)

2Xl
and Cs(Xs − 1) + RsE(Y) + Te·E(Y)

2Xs
, where E(Y)

and X respectively refer to the MNOF and the specified
number of checkpointing intervals. That is, it is better to
store checkpoints on local disks if Cl(Xl − 1) + RlE(Y) +
Te·E(Y)

2Xl
< Cs(Xs − 1) + RsE(Y) + Te·E(Y)

2Xs
, and to select

shared disks otherwise.
How to choose a suitable migration type depends on the

system setting. If each VM instance owns a local ramdisk
with relatively large space, migration type A is likely to be
faster than migration type B in that it does not access disks.
However, the local disk space and memory size of a VM in-
stance are often both limited, and our benchmark environ-
ment belongs to this case. This means that, with BLCR,
upon a task failure, we have to move the memory from local
ramdisk to shared disks before restarting it on another host,
introducing some extra cost. Note that it may be more ef-
ficient for a task to precopy its checkpointed memory from
local ramdisk to the shared-disk beforehand in case of task
failures, yet this may induce seriously heavy load on the
network, or even network congestion, since checkpoints are
usually much more frequent than task failures. For instance,
if a task length, checkpointing cost and expected number of
failures are 441 seconds, 1 second, and 2 respectively, then,

the number of optimal checkpoints is
√

441×2
2×1
−1 = 20.

Obviously, it is necessary to carefully characterize the
checkpointing cost and task restarting overhead, based on
the above discussion. We evaluate them based on a clus-
ter [26] deployed with BLCR, where each evaluated case is
performed 25 times. We find that the task total checkpoint-
ing cost increases linearly with its consumed memory size
and with the number of checkpoints, as shown in Figure 7.
As observed, for the memory size being in [10,240] MB, the
checkpointing cost is [0.016,0.99] seconds when using local
ramdisk, while it ranges in [0.25,2.52] seconds when adopting
NFS.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

C
he

ck
po

in
tin

g
C

os
t (

S
ec

on
ds

)

Number of Checkpoints

memsize=10MB
memsize=20MB
memsize=40MB
memsize=80MB

memsize=160MB
memsize=240MB

(a) over local ramdisk

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

C
he

ck
po

in
tin

g
C

os
t (

S
ec

on
ds

)

Number of Checkpoints

memsize=10MB
memsize=20MB
memsize=40MB
memsize=80MB

memsize=160MB
memsize=240MB

(b) over NFS

Figure 7: Checkpointing Cost based on BLCR.

We also investigate the issue about checkpointing conflict,
i.e., the situation when checkpointing multiple tasks simul-
taneously on the same hardware. In our characterization,
when two or more tasks are simultaneously checkpointed,
the checkpointing cost over local ramdisk will not be im-
pacted significantly, while the cost with NFS will be largely
ncreaseed, as presented in Table 2 (memory size=160MB).
The table shows the checkpointing cost is quite stable when
simultaneously checkpointing tasks and storing memories in
the same local ramdisk, while it increases over NFS with in-
creasing number of simultaneous checkpoints. The increased
checkpointing cost over NFS is due to the network conges-

tion on NFS servers, or to NFS synchronization mechanism.

Table 2: Cost of Simultaneous Checkpointing Tasks
on Local Ramdisk and NFS (seconds).
‘‘‘‘‘‘‘‘‘‘‘type

parallel degree
X=1 X=2 X=3 X=4 X=5

Local min 0.613 0.71 0.51 0.53 0.55
ramdisk avg 0.632 0.81 0.74 0.59 0.58

max 0.667 0.91 0.93 0.69 0.64

min 1.4 2.66 4.66 5.96 8.36
NFS avg 1.67 2.665 5.38 6.25 8.95

max 1.78 2.67 6.05 6.35 9.18

In order to control the simultaneous checkpointing cost
over the shared-disk, we design a distributively-managed
NFS (DM-NFS) by alleviating the bottleneck problem. We
let every physical host in the system serve as an individ-
ual NFS server, and make each VM instance mount each of
NFS server to a different mount point. As it is required to
make a checkpoint for a running task in a VM instance using
shared-disk, one of NFS servers will be randomly selected for
storing its memory. In Table 3, we present the checkpointing
cost when simultaneously checkpointing one or more tasks
over the DM-NFS. By comparing it to Table 2, we find that
our design is fairly effective in controlling the mutual im-
pact of simultaneous checkpointing. The checkpointing cost
is always limited within 2 seconds even with simultaneous
checkpointing, which means a much higher scalability.

Table 3: Cost of Simultaneously Checkpointing
Tasks on DM-NFS.‘‘‘‘‘‘‘‘‘‘‘type

parallel degree
X=1 X=2 X=3 X=4 X=5

min 1.4 1.4 1.54 1.61 1.48
DM-NFS avg 1.67 1.49 1.63 1.75 1.74

max 1.78 1.58 1.66 1.89 1.97

Based on BLCR, we find that the operation time cost in
making a checkpoint on a running task is determined by its
memory size. Each checkpointing operation (over shared-
disk) takes 0.33-6.83 seconds when the memory size of a task
is 10-240MB, as shown in Table 4. Hence, the checkpointing
operation should be performed in a new thread in order to
unblock the countdown to the next checkpointing position,
as shown in Algorithm 1 (line 7).

Table 4: Time Cost of a Checkpoint.
memory operation memory operation memory operation

size time size time size time
10.3 MB 0.33 sec 82.4 MB 1.46 sec 162 MB 3.68 sec
22.3 MB 0.42 sec 86.4 MB 1.75 sec 174 MB 4.95 sec
42.3 MB 0.60 sec 90.4 MB 2.09 sec 212 MB 5.47 sec
46.3 MB 0.66 sec 94.4 MB 2.34 sec 240 MB 6.83 sec

In addition, we also characterize task restarting cost based
on our system setting, as shown in Table 5 (measurement
unit: seconds). It is observed that task restarting cost with
migration type A is much higher than that with migration
type B, due to the extra cost in accessing shared-disk under
migration type A. This is consistent with our analysis above.

Finally, we give an example based on the above character-
ization to illustrate how to determine a suitable migration

Table 5: Task Restarting Cost based on BLCR over
VM Ramdisk (Seconds).
memory size (MB) 10 20 40 80 160 240
migration type A 0.71 0.84 1.23 1.87 3.22 5.69
migration type B 0.37 0.49 0.54 0.86 1.45 2.4

type regarding the checkpointing/restarting cost. Suppose
that a task execution length Te is 200 seconds, its memory
size is 160MB, and there are 2 failures (expected number)
during its execution. With respect to the two migration
types, the optimal numbers of checkpointing intervals can be

computed as
√

200×2
2×0.632

= 17.79 and
√

200×2
2×1.67

=10.94 respec-

tively. Then, the total costs are 0.632×(17.79−1) + 3.22×2
+ 200×2

2×17.79
= 28.29 and 1.67×(10.94−1)+1.45×2+ 200×2

2×10.94
=

37.78 respectively. This means it is better to select local-
ramdisk as the memory storage device, because it leads to a
lower total cost.

5. PERFORMANCE EVALUATION

5.1 Experimental Setting
We evaluate both the checkpointing/restart method and

the dynamic solution, through a set of comprehensive ex-
periments. We reproduce Google jobs based on a large-scale
one-month Google trace [9]. Each job/task’s execution is
exactly consistent with its arrival time stamp, execution
lengths, and task events (e.g., evict, kill or finish events)
recorded in the trace. The valid workload processed be-
tween checkpoints will be recorded over time. MNOF and
MTBF are estimated based on historical task events in the
trace, and the details are to be discussed later.

In particular, we perform the experiments on a powerful
supercomputer at HongKong (namely Gideon-II [26]). We
are assigned 32 physical hosts, each of which has 2 quad-
core Xeon CPU E5540 (i.e., 8 cores per host) and memory
of 16GB. Our experiment maintains 224 VM-images (cen-
tos 5.2) over DM-NFS (7 VMs per host). Each VM is set
with 1GB memory size and 1GB ramdisk size. XEN 4.0 [18]
serves as the hypervisor on each host and dynamically al-
locates customized CPU rates to VMs via credit scheduler.
Although there are only 32 physical hosts, such an envi-
ronment can serve up to 600 Google jobs simultaneously,
since the processing parallelism is determined by the avail-
able memory. The VM selection policy adopts a greedy al-
gorithm that selects the VM instance with the maximum
available memory size for load balancing.

In the Google trace, there are two types of job struc-
tures, either sequential tasks (ST) or bag-of-tasks (BOT).
The structure of each job emulated in our experiment is ex-
actly based on a sample job randomly selected according
to the trace. In order to focus on the effectiveness of dif-
ferent algorithms in front of failure events, only jobs half of
whose tasks (at least) suffer from a failure event, are selected
as sample jobs. Each task memory size is the same as the
value recorded in the trace. In Figure 8, we present the CDF
of the memory size and execution length of the Google jobs
used in our experiment. We can observe that job memory
sizes and lengths differ significantly according to job struc-
tures; however, most jobs are short jobs with small memory
sizes.

Any running task would be killed by “kill -9” command

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Memory Size (MB)

ST job
BoT job

mixture of both

(a) job memory size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Job’s Length (hour)

ST job
BoT job

mixture of both

(b) job execution length

Figure 8: Distribution of Google Jobs: Memory Size
and Execution Length.

from time to time based on the kill/evict/failure events recorded
in the trace [9]. Each task is checkpointed using BLCR based
on the optimized checkpointing positions. Interrupted/killed
tasks will be detected by our polling thread and restarted
on another host. If there were network connections opened
before the task failure, they will be reopened for retransmit-
ting data upon the task restoration, which is consistent with
the design of BLCR.

In our experiment, the key indicator used to evaluate the
efficiency of a job execution is called Workload-Processing
Ratio (WPR), as defined in Formula (9). Ji’s workload pro-
cessed refers to the valid execution length saved by check-
points, excluding the rollback overhead caused by task fail-
ures. The real wall-clock length (i.e., Tw) indicates the du-
ration from its submission moment to its final completion
moment, including any extra costs caused by task schedul-
ing, task interruption/failure, checkpointing, restarting and
data communication.

WPR(Ji) =
J ′is workload processed

J ′is real wall-clock length
(9)

5.2 Experimental Results
First of all, we analyze the checkpointing effect based on

all of 300k Google jobs, using our optimized formula (For-
mula (3)) versus Young’s formula respectively. We observe
that if MNOF and MTBF can always be predicted cor-
rectly, the checkpointing effects with the two formulas are
very close, as shown in Table 6. That is, with exact values,
both approaches almost coincide as expected. In practice,
however, the prediction of the number of failures and fail-
ure intervals may be inaccurate, inevitably leading to the
degraded checkpointing effect. Hence, we also analyze the
checkpointing effect with possible inaccurate prediction of
MNOF or MTBF.

Table 6: Checkpointing Effect with Precise Predic-
tion.

Formula (3) Young’s formula
avg WPR lowest WPR avg WPR lowest WPR

BoT 0.960 0.742 0.954 0.735
ST 0.937 0.742 0.938 0.633
Mix 0.949 0.742 0.939 0.633

The following evaluation shows that the checkpointing
effect with our Formula (3) is much better than the one
with Young’s formula, when we estimate MNOF and MTBF
based on priorities. That is, we first categorize all sam-
ple jobs into 12 groups based on 12 priorities and compute

MNOF and MTBF for each group. We perform the check-
pointing with our Formula (3) and Young’s formula via the
priority-based MNOF and MTBF respectively.

In Figure 9, we present the cumulative distribution func-
tion (CDF) of WPR in the situation with ST jobs and BoT
jobs respectively. It is observed that the checkpointing/restart
method with Formula (3) significantly outperforms the one
with Young’s formula with high probability. In absolute
terms, for sequential-task jobs, the average WPRs of the
two solutions with different formulas are 0.945 and 0.916 re-
spectively. The average WPRs of bag-of-task jobs under the
two solutions are 0.955 and 0.915 respectively. Moreover,
with Formula (3), only 7% of ST jobs’ WPRs are lower than
0.88, while with Young’s formula, the corresponding ratio is
about 20%. With Formula (3), 56.6% of BoT jobs’ WPRs
are higher than 0.95, while with Young’s formula, the ratio
is only 46.5%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

D
F

Workload-Processing-Ratio

C/R with Formula (3)
C/R with Young’s Formula

(a) sequential-task (ST) job

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Workload-Processing-Ratio

C/R with Formula (3)
C/R with Young’s Formula

(b) bag-of-task (BOT) job

Figure 9: CDF of WPR with Different Checkpoint-
Restart Formulas over Google Trace.

The main reason why our Formula (3) exhibits much bet-
ter checkpointing effect than Young’s formula, is that our
formula is based on the MNOF estimated while Young’s for-
mula relies on the estimated MTBF. The MNOF and MTBF
estimated based on priorities are shown in Table 7 (unit:
second). We can observe that MTBF based on each priority
is usually very large, due to the typical Pareto distribution
of failure intervals as presented in Section 4.1. That is, a
majority of failure intervals are short while a minority are
extremely long, leading to the large MTBF on average thus
large prediction errors for most of tasks. Young’s formula is
not proper for computing the optimal checkpointing inter-
val due to its assumption with exponential distribution of
failure intervals. In contrast, the checkpointing effect with
our Formula (3) (shown in Figure 9) is pretty close to the
effect with precise prediction of the number of failure events
(shown in Table 6). There are two key factors for that. (1)
Our formula does not depend on particular distribution like
exponential distribution, as discussed in Section 4.1. (2)
The mean number of failures (MNOF) estimated based on
priority in Google trace would not change a lot with task
lengths, rather than MTBF, as shown in Table 7. For in-
stance, MNOF and MTBF of the tasks with priority=2 and
lengths≤1000 seconds are 1.06 and 179 respectively, while
for all tasks with priority=2 and no limitations on task
lengths, MNOF and MTBF are 1.21 and 4199 seconds re-
spectively. That is, if we set MTBF to 4199 seconds, the
prediction will definitely lead to large errors for short tasks.

We also present the minimum/average/maximum values
of WPR in Figure 10, for the ST jobs and BoT jobs, with

Table 7: MNOF & MTBF w.r.t. Job Priority in
Google Trace.

limit Seq-Task Bag-of-Task Mixture
(sec) Pr MNOF MTBF MNOF MTBF MNOF MTBF

task 1 0.24 130 1.12 126 0.77 127
length 2 1.0 3377 1.06 179 1.06 179
≤ 7 0.4 186 1.0 80.5 0.15 180
1000 10 12.0 37.1 4.5 37.4 11.9 37.1

task 1 0.52 184 1.18 180 0.72 183
length 2 1.0 3377 1.08 396 1.08 396
≤ 7 0.57 303 1.0 198 0.58 300
3600 10 13.0 37.9 3.5 93 11.8 37.6

task 1 3.33 6005 3.46 1074 3.36 5106
length 2 0.5 3258 1.27 4274 1.21 4199
≤+∞ 7 0.57 303 1.0 198 0.58 300.3

10 9.5 51 3.14 571 9.34 55.5

respect to various priorities. The bottom-edge, middle black
line, and upper-edge refer to the minimum, mean, and maxi-
mum values respectively. The results at some priorities (such
as priority 4, 8, 11 and 12) are missing due to no job fail-
ure events or no jobs normally completed according to the
Google trace. Through Figure 10, we observe that for al-
most all priorities, the checkpointing method with Formula
(3) significantly outperforms that with Young’s formula, by
3-10% on average.

(a) Sequential-Task Jobs (b) Bag-of-Task Jobs

Figure 10: Min/Avg/Max WPR with respect to Dif-
ferent Priorities.

We also investigate the execution performance especially
for relatively short jobs with a certain restricted length (RL),
with respect to ST jobs and BoT jobs respectively, using
a one-day period experiment with totally about 10k jobs.
MTBF (as well as MNOF) are estimated using correspond-
ing short tasks based on priorities, in order to estimate
MTBF with as small errors as possible for Young’s formula.
We show the distribution of Workload-Processing Ratio in
Figure 11, for the two types of jobs. Under the approach
with our Formula (3), 98% of jobs’ WPR is greater than
0.9, while Young’s formula leads to up to 40% of jobs’ WPR
being lower than 0.9.

In Figure 12, we present the real wall-clock lengths of the
jobs in our experiment, where task lengths are limited within
1000 seconds and 4000 seconds respectively. It is observed
that majority of jobs’ wall-clock lengths are incremented by
50-100 seconds under Young’s formula compared to our For-
mula (3). Such a difference is actually quite large due to the
fact that majority of jobs in Google data centers are quite
short (200-1000 seconds) [11].

Through Figure 13, we observe that not all jobs exhibit
shorter wall-clock lengths when using our Formula (3) than
when using Young’s formula, but a large majority of jobs are
finished much faster under our solution. In Figure 13 (a), a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F

Workload-Processing-Ratio

Formula (3),RL=1000
Formula (3),RL=2000
Formula (3),RL=4000
Young Formula,RL=1000
Young Formula,RL=2000
Young Formula,RL=4000

(a) Sequential-Task Jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F

Workload-Processing-Ratio

Formula (3),RL=1000
Formula (3),RL=2000
Formula (3),RL=4000
Young Formula,RL=1000
Young Formula,RL=2000
Young Formula,RL=4000

(b) Bag-of-Task Jobs

Figure 11: Distribution of WPR in the Test over
One-day Google Trace.

(a) RL=1000 seconds (b) RL=4000 seconds

Figure 12: Wall-Clock Length in Experiment with
One-day Google Trace.

job’s ratio of wall-clock length is defined as the ratio of the
wall-clock length under our solution with Formula (3) to
the one with Young’s formula. Comparing our Formula (3)
to Young’s formula, about 70% of jobs’ wall-clock lengths
are reduced by about 15% on average, while only 30% of
jobs’wall-clock lengths are increased by 5% on average.

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 2000 4000 6000 8000 10000

R
at

io
 o

f W
al

l-C
lo

ck
 L

en
gt

h

Jobs

Jobs have shorter Tw
 under our Formula (3)
Jobs have shorter Tw
 under Young’s Formula

(a) Ratio of Wall-clock Length

-200
-150
-100
-50

 0
 50

 100
 150
 200

 0 2000 4000 6000 8000 10000

W
al

l-C
lo

ck
 L

en
gt

h

Jobs

Jobs have shorter Tw
 under our Formula (3)
Jobs have shorter Tw
 under Young’s Formula

(b) Wall-clock Length

Figure 13: Portions of Jobs using Different Solutions
(RL=1000 seconds).

Finally, we evaluate the effectiveness of our dynamic de-
sign with varied MNOF (i.e., line 8-11 in Algorithm 1) as op-
posed to the static approach with fixed MNOF, in Figure 14
(with one-day trace). In the experiment, each job prior-
ity is changed once in the middle of its execution. Upon
the change of a task priority, MNOF will change accord-
ingly in our dynamic algorithm, while it will stay fixed in
the static algorithm. Via Figure 14 (a), it is observed that
the dynamic algorithm significantly outperforms the static
one. In absolute terms, the worst WPR under dynamic so-
lution stays about 0.8 while that under static approach is
about 0.5. Figure 14 (b) shows that 67% of jobs’ wall-clock
lengths are similar under the two different solutions, while
over 21% of jobs run faster in the dynamic one than static

one by 10%. The key reason why the static algorithm suffers
low WPR is that the checkpointing effect would be degraded
with skewed MNOF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Workload-Processing-Ratio

Dynamic Algorithm
Static Algorithm

(a) Distribution of WPR

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000
R

at
io

 o
f W

al
l-C

lo
ck

 L
en

gt
h

Jobs

Jobs that have shorter Tw
 under Dynamic Algorithm
Jobs that have shorter Tw
 under Static Algorithm

(b) Ratio of Wall-Clock Length

Figure 14: Comparison between Dynamic Solution
and Static Solution.

6. RELATED WORK
The research most related to equidistant checkpointing is

Young [17] and Daly [14]. In 1974, Young [17] proposed
a mathematical checkpoint/restart model and derived the
optimal checkpointing interval with first order approxima-
tion. In 2006, Daly [14] extended this work to a higher
order approximation, and also took into account the task
restarting overhead. Their models both aim at deriving the
optimal checkpointing interval for a task, which is similar to
our equidistant checkpointing model with Theorem 1. How-
ever, they have three significant limitations, and their re-
sults are not suited to cloud environments (contrarily to our
approach). First, their analysis does not take into account
task execution lengths (in fact, they assume very long or in-
finite jobs), but only analyzes the relation between optimal
checkpointing interval and the probability of failure inter-
val. Second, their results depend on the assumption that
task failure intervals always follow an Exponential distribu-
tion, while ours does not have such a limitation. Finally,
their results hold approximately if and only if the check-
pointing/restart overhead is relatively small compared to
the checkpointing interval. In fact, cloud tasks are usually
small as reported by [11], which means that their results
would suffer from large errors (to a certain extent) in this
context. In contrast, the derivation of Theorem 1 does not
suffer from the limitation of checkpointing/restart overhead,
being more suitable for cloud frameworks.

More theoretical research on checkpoint/restart-based fault
tolerance focuses on stochastic models, which can be found
in [27, 28, 29]. Leung and Choo [27] analyzed in-depth job
wall-clock lengths by taking into account the probability dis-
tribution of failure intervals, restarting overhead, and job
execution length. Their model does not depend on a par-
ticular distribution of failure events. However, their work
suffers from two limitations: (1) It ignored the checkpoint-
ing cost. (2) It just derived an expression of task wall-clock
lengths in presence of failures, but did not give the opti-
mal number of checkpointing intervals. Walter summarized
many stochastic models for checkpointing at program level
in his book chapter [28], including equidistant checkpoint-
ing, random checkpointing, forked checkpointing, and so on.
However, all of the theoretical results depend on the Poisson
process of failure events (or Exponential distribution of fail-
ure intervals). Nakagawa [29] introduced a bunch of reliabil-

ity models for optimizing the retrial numbers in presence of
failure events, including standard model, checkpoint model,
Markov Renewal Process, Bayesian model, and automatic-
repeat-request (ARQ) model. They cannot be directly used
in clouds because of its common limitation which is ignoring
the shortness of cloud job lengths.

Fault-tolerance issue in the context of cloud computing
has been extensively studied recently [23]. Nicolae and Cap-
pello [23] proposed a novel checkpoint-restart mechanism
(namely BlobCR) especially for high-performance comput-
ing applications on Infrastructure-as-a-Service (IaaS) clouds
at system level. They summarized four key principles, aim-
ing to improve the robustness of running virtual machines
using virtual disk image snapshots. In comparison to their
work, this paper focuses on the theoretical optimization of
the cloud task execution, and corresponding implementation
issues, at the application level. Tchana et al. [30] also fo-
cused on the fault-tolerance at system level, on cloud plat-
forms deployed with virtual machines. They tried to im-
prove the tradeoff in the collaboration between provider and
consumer, but did not optimize task execution performance
based on the failure characterization. Amazon Web Service
(AWS) [31] built a queuing model, called Amazon Simple
Queue Service (SQS), for tolerating the inevitable failures
of message processing. Such a design cannot checkpoint and
restart tasks during their execution, significantly restricting
the fault-tolerance granularity. In summary, the significant
contribution of our work is that we not only optimize the
cloud task execution based on our in-depth theoretical anal-
ysis with the characterization of real-production traces, but
also we propose an adaptive solution by taking into account
varied failure probability distributions and the checkpoint-
ing tradeoff between using local disks and shared disks. We
evaluate our method using a real cluster environment de-
ployed with BLCR and XEN, and the experiments are per-
formed in accordance with Google trace [9].

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel approach to check-

point/restart task execution in order to improve the execu-
tion performance with failure events in the context of cloud
computing. Our fault-tolerance model aims at optimizing
the number of checkpoints and their positions for running
tasks, with minimized checkpointing/restarting cost. Unlike
the traditional analysis like Young’s work, our theoretical
results do not depend upon assuming a particular failure
distribution. We also designed a dynamic algorithm based
on the characterization of checkpointing cost, to adapt to
the task varied remaining workload to process and to possi-
ble changing failure probability. We evaluate our optimized
fault-tolerance solution with Google trace, which was pro-
duced with 10k+ machines and millions of jobs. Some key
findings are listed below:

• Our designed DM-NFS can effectively mitigate check-
pointing cost when simultaneously checkpointing tasks.
The checkpointing cost is always limited within 2 sec-
onds even with simultaneous checkpointings, which means
a high scalability.

• For all Google jobs, our approach significantly outper-
forms Young’s solution by 3-10 percent. The average
WPRs under our new formula and under Young’s for-
mula are about 0.95 and 0.915 respectively.

• Most job wall-clock lengths are reduced by 50-100 sec-
onds under our formula compared to Young’s formula.

• On average, our formula leads to about 70% of jobs
running faster by 15% than Young’s formula, and only
30% of jobs running slower by 5%.

• The dynamic solution with adaptive MNOF based on
priority significantly outperforms the static one for a
majority of jobs. The worst WPR under dynamic so-
lution stays about 0.8 while that under static approach
is about 0.5. 67% of job wall-clock lengths exhibit sim-
ilar under the two different algorithms, while over 21%
of jobs run faster in the dynamic one by 10%.

In the future, we plan to improve our method to better suit
high performance computing applications like MPI programs
with extremely large scales.

Acknowledgments
This work is supported by the projects ANR RESCUE 5323,
ANR ECS G8 5907, Europe GENCI/ Inria (AMFT) 7518,
and also in part by a Hong Kong UGC Special Equipment
Grant (SEG HKU09).

8. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A berkeley view of cloud computing. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb 2009.

[2] J. E. Smith and R. Nair. Virtual Machines: Versatile
Platforms For Systems And Processes. Morgan
Kaufmann, 2005.

[3] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing performance isolation across virtual
machines in xen. in Proceedings of 7th
ACM/IFIP/USENIX Int’l Conf. on Middleware
(Middleware’06), pages 342-362, 2006.

[4] C Evangelinos and C.N. Hill. Cloud Computing for
parallel Scientific HPC Applications: Feasibility of
Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2. in Computability and Complexity
in Analysis (CAA’08), 2008.

[5] Amazon elastic compute cloud: on line at
http://aws.amazon.com/ec2/.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff and D. Zagorodnov. Eucalyptus:
an open-source cloud computing infrastructure. in
Journal of Physics: Conference Series, 180(1):1-14,
2009.

[7] J.N. Glosli, K.J. Caspersen, J.A. Gunnels,
D.F. Richards, R.E. Rudd, and F.H. Streitz.
Extending Stability Beyond CPU Millennium: A
Micron-Scale Atomistic Simulation of
Kelvin-Helmholtz Instability. in Proceedings of
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’07), pages 58:1-58:11, 2007.

[8] J. Wilkes. More Google cluster data. Google research
blog, Nov. 2011, posted at

http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.

[9] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Google Inc.,
Mountain View, CA, USA, Technical Report, Nov.
2011, revised 2012.03.20.

[10] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Towards understanding heterogeneous
clouds at scale: Google trace analysis. Intel science and
technology center for cloud computing, Carnegie
Mellon University, Pittsburgh, PA, USA, Tech. Rep.
ISTC-CC-TR-12-101, Apr. 2012.

[11] S. Di, D. Kondo, and W. Cirne. Characterization and
comparison of cloud versus grid workloads. in
Proceedings of the IEEE International Conference on
Cluster Computing (Cluster’12), pages 230-238, 2012.

[12] S. Yi, A. Andrzejak and D. Kondo. Monetary
Cost-Aware Checkpointing and Migration on Amazon
Cloud Spot Instances. in IEEE Trans. on Services
Computing, 5(4):512-524, 2012.

[13] W. Cirne, G. Chaudhry, and S. Johnson. Managing
Descheduling Risk in the Google Cloud. posted at
http://cloud.berkeley.edu/data/managing-
descheduling-risk-in-the-google-cloud-berkeley.pdf.

[14] J.T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. in Future
Generation Computer Systems, 22(3):303-312, 2006.

[15] R. Subramaniyan, E. Grobelny, S. Studham,
A. George. Optimization of checkpointing-related I/O
for high-performance parallel and distributed
computing. in Journal of Supercomputing,
46(2):150-180, 2008.

[16] M.S. Bouguerra, T. Gautier, D. Trystram,
J.M. Vincent. A flexible checkpoint/restart model in
distributed systems. in Proceedings of the 8th
international conference on Parallel processing and
applied mathematics (PPAM’10), pages 206-215, 2010.

[17] J.W. Young. A first order approximation to the
optimum checkpoint interval. in Communications
ACM, 17(9):530-531, 1974.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. in
Proceedings of the 19th ACM symposium on Operating
systems principles (SOSP ’03). pages 164-177, New
York, NY, USA: ACM, 2003.

[19] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. in Commun. ACM,
51(1):107-113, 2008.

[20] P.H. Hargrove and J.C. Duell. Berkeley lab
checkpoint/restart (BLCR) for Linux clusters. in
Journal of Physics: Conference Series, 46(1):494,
2006.

[21] L.A. Barroso, J. Dean and U. Holzle. Web search for a
planet: The Google cluster architecture. in Journal of
Micro, 23(2):22-28, 2003.

[22] L. Huang, J. Jia, B. Yu, B.G. Chun, P. Maniatis, and
M. Naik. Predicting Execution Time of Computer
Programs Using Sparse Polynomial Regression. in
Proceedings of 24th International Conference on
Neural Information Processing Systems (NIPS’10),
pages 1-9, 2010.

[23] B. Nicolae and F. Cappello. BlobCR: efficient
checkpoint-restart for HPC applications on IaaS
clouds using virtual disk image snapshots. in
Proceedings of International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC’11), pages 34:1-34:12, 2011.

[24] S. Boyd and L. Vandenberghe ↪ač Convex Optimization.
Cambridge University Press, 2009.

[25] S. Di and C.L.Wang. Error-Tolerant Resource
Allocation and Payment Minimization for Cloud
System. in IEEE Trans. on Parallel and Distributed
Systems (TPDS), 24(6):1097-1106, 2013.

[26] Gideon-II Cluster:
http://i.cs.hku.hk/∼clwang/Gideon-II.

[27] C.H.C. Leung and Q.H. Choo. On the Execution of
Large Batch Programs in Unreliable Computing
Systems. in IEEE Trans. on Software Engineering,
10(4):444-450, 1984.

[28] K. Wolter, Stochastic models for checkpointing. in
Stochastic Models for Fault Tolerance, pages 177-236,
Springer Berlin Heidelberg, 2010.

[29] T. Nakagawa. Optimum retrial number of reliability
models. in Advanced Reliability Models and
Maintenance Policies, pages 101-122, ser. Springer
Series in Reliability Engineering. Springer London,
2008.

[30] A. Tchana, L Broto, and D. Hagimont. Fault Tolerant
Approaches in Cloud Computing Infrastructures. in
Proceedings of the 8th International Conference on
Autonomic and Autonomous Systems (ICAS’12),
pages 42-48, 2012.

[31] J. Barr, A. Narin, and J. Varia. Building
Fault-Tolerant Applications on AWS. Tech. Rep., Oct
2011.

