Implicit matrix representations of rational Bézier curves and surfaces

Laurent Busé 1, 2
1 GALAAD2 - Géométrie , Algèbre, Algorithmes
CRISAM - Inria Sophia Antipolis - Méditerranée
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : We introduce and study a new implicit representation of rational Bézier curves and surfaces in the 3-dimensional space. Given such a curve or surface, this representation consists of a matrix whose entries depend on the space variables and whose rank drops exactly on this curve or surface. Our approach can be seen as an extension of the moving lines implicitization method introduced by Sederberg, from non-singular matrices to the more general context of singular matrices. In the first part of this paper, we describe the construction of these new implicit matrix representations and their main geometric properties, in particular their ability to solve efficiently the inversion problem. The second part of this paper aims to show that these implicitization matrices adapt geometric problems, such as intersection problems, to the powerful tools of numerical linear algebra, in particular to one of the most important: the singular value decomposition. So, from the singular values of a given implicit matrix representation, we introduce a real evaluation function. We show that the variation of this function is qualitatively comparable to the Euclidean distance function. As an interesting consequence, we obtain a new determinantal formula for implicitizing a rational space curve or surface over the field of real numbers. Then, we show that implicit matrix representations can be used with numerical computations, in particular there is no need for symbolic computations to use them. We give some rigorous results explaining the numerical stability that we have observed in our experiments. We end the paper with a short illustration on ray tracing of parameterized surfaces.
Type de document :
Article dans une revue
Computer-Aided Design, Elsevier, 2014, 2013 SIAM Conference on Geometric and Physical Modeling, 46, pp.14-24. <10.1016/j.cad.2013.08.014>
Liste complète des métadonnées


https://hal.inria.fr/hal-00847802
Contributeur : Laurent Busé <>
Soumis le : mercredi 24 juillet 2013 - 14:21:59
Dernière modification le : mercredi 4 mai 2016 - 01:06:07
Document(s) archivé(s) le : mercredi 5 avril 2017 - 16:24:55

Fichier

mrep.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Busé. Implicit matrix representations of rational Bézier curves and surfaces. Computer-Aided Design, Elsevier, 2014, 2013 SIAM Conference on Geometric and Physical Modeling, 46, pp.14-24. <10.1016/j.cad.2013.08.014>. <hal-00847802>

Partager

Métriques

Consultations de
la notice

781

Téléchargements du document

561