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Abstract

We introduce and study a new implicit representation of rational Bézier curves and surfaces in the 3-dimensional space. Given
such a curve or surface, this representation consists of a matrix whose entries depend on the space variables and whose rank drops
exactly on this curve or surface. Our approach can be seen as an extension of the moving lines implicitization method introduced by
Sederberg, from non-singular matrices to the more general context of singular matrices. In the first part of this paper, we describe
the construction of these new implicit matrix representations and their main geometric properties, in particular their ability to
solve efficiently the inversion problem. The second part of this paper aims to show that these implicitization matrices adapt
geometric problems, such as intersection problems, to the powerful tools of numerical linear algebra, in particular to one of the most
important: the singular value decomposition. So, from the singular values of a given implicit matrix representation, we introduce a
real evaluation function. We show that the variation of this function is qualitatively comparable to the Euclidean distance function.
As an interesting consequence, we obtain a new determinantal formula for implicitizing a rational space curve or surface over the
field of real numbers. Then, we show that implicit matrix representations can be used with numerical computations, in particular
there is no need for symbolic computations to use them. We give some rigorous results explaining the numerical stability that we
have observed in our experiments. We end the paper with a short illustration on ray tracing of parameterized surfaces.
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1. Introduction

In geometric modeling, parameterized algebraic curves
and surfaces are used intensively. To manipulate them, it
is useful to have an implicit representation, in addition to
their given parametric representation. Indeed, a paramet-
ric representation is for instance well adapted for visual-
ization purposes whereas an implicit representation allows
significant improvements in the computation of intersec-
tions. Nevertheless, implicit representations are known to
be very hard to compute in general. The goal of this pa-
per is to overcome this difficulty by introducing a simple
method for computing an implicit representation of a pa-
rameterized curve or surface in the form of a matrix. We
will call them implicit matrix representations.

Matrix-based implicit representations of plane curves
and surfaces already appeared several times in the litera-
ture (see e.g. [12,13,23,25]). However, all these approaches
aimed at building a non-singular matrix whose determi-
nant is an implicit polynomial equation. The case of plane
curves is well understood: it is always possible to build such
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a non-singular matrix, in particular by means of the mov-
ing lines method introduced by Sederberg [25]. The case of
surfaces is much more involved because of their rich geom-
etry and the occurrence of base points (the points where
the parameterization is not well defined). Thus, in order
to find a non-singular matrix whose determinant is an im-
plicit polynomial equation, one has to consider some very
particular classes of parameterizations (see e.g. [13,8,20]).

In this paper, we show that matrix-based implicit repre-
sentations can be built for (almost all) parameterized al-
gebraic curves, including space curves, and surfaces if the
requirement of getting a non-singular matrix is deleted. In-
deed, the matrices we will introduce are in general singular
matrices, but they still represent the curve or surface: the
vanishing of a determinant will be replaced by a drop-of-
rank property. Our approach is hence to keep these matri-
ces as implicit representations on their own and to develop
their study and use. Added and combined to the paramet-
ric representations, we believe that these implicit matrix
representations can be a powerful tool.

The theoretical foundations of implicit matrix represen-
tations have been developed in a couple of papers [9,6], us-
ing tools from algebraic geometry and commutative alge-



bra. We will review their main properties in Section 3. The
first contribution of this paper is to adapt the construction
of these matrices to the context of Bézier patches (usually
obtained from the decomposition of a NURBS). This is the
content of Section 2. The rest of the paper, and its main
contribution, is a study of implicit matrix representations
through a famous tool of numerical linear algebra: the sin-
gular value decomposition (SVD). It turns out that com-
bined with this SVD, implicit matrix representations have
very nice properties and show a very good numerical be-
havior. In Section 4, a real evaluation function is built from
an implicit matrix representation and it is shown that this
function is comparable to the classical Euclidean distance.
As a byproduct, a new determinantal formula for implicit-
izing a rational Bézier curve or surface over the field of real
numbers is obtained. Section 5 is devoted to the study of
the numerical behavior of implicit matrix representations.
In particular, we show that there is no need for symbolic
computations to use them and we prove results that give
insights for their numerical stability and robustness that
we have observed in our experiments. Finally, the paper
ends with a short discussion on the application of implicit
matrix representations to intersection problems.

2. Constructing a family of matrices attached to a
parameterization

In this section, we construct in a general framework a
family of matrices that is attached to a given parameteriza-
tion φ. Consider a parameterization φ of a curve or surface

s ∈ R1 or R2 φ−→
(
f1(s)

f0(s)
,
f2(s)

f0(s)
,
f3(s)

f0(s)

)
∈ R3 (1)

where f0, f1, f2 and f3 are polynomials in the parameter s of
degree 6 d. Notice that s stands for a single parameter t ∈
R if φ parameterizes a curve, or for a couple of parameters
(u, v) ∈ R2 if φ parameterizes a surface. Similarly, the word
degree means a single degree (for curves and triangular
surfaces) or a bi-degree (for tensor-product surfaces).

Let Bd = {φ1(s), . . . , φnd(s)} be a set of blending func-
tions that form a basis of polynomials of degree at most d
in the parameter s. Then, the parameterization φ is of the
form

φ(s) =

∑nd
i=1 wibiφi(s)∑nd
i=1 wiφi(s)

where the points bi = (xi, yi, zi) ∈ R3, i = 1, . . . , nd, are
the control points andw1, . . . , wnd their associated weights.
It follows that

f0(s) =

nd∑
i=1

wiφi(s), f1(s) =

nd∑
i=1

wixiφi(s),

f2(s) =

nd∑
i=1

wiyiφi(s), f3(s) =

nd∑
i=1

wiziφi(s).

Now, we fix a non-negative degree ν and build a matrix
Mν(φ) as follows. Consider the set of 4-tuples of polynomi-
als (g0(s), g1(s), g2(s), g3(s)) such that

deg(gi(s)) 6 ν and

3∑
i=0

gi(s)fi(s) ≡ 0. (2)

It is clearly a vector space and computing one of its bases,
say L1, . . . , Lrν amounts to solving a single linear system.
Each Lj being a 4-tuple of polynomials (g0, g1, g2, g3), it
can be identified with the polynomial

Lj(s;X,Y, Z) := g0(s) +Xg1(s) + Y g2(s) + Zg3(s).

Moreover, we have the freedom to choose an arbitrary basis
of polynomials of degree 6 ν to express the gi’s. Let B′ν =
{ψ1(s), . . . , ψmν (s)} be such a basis, then we have

Lj(s;X,Y, Z) =

(
mν∑
i=1

λ
(j)
0,iψi(s)

)
+

(
mν∑
i=1

λ
(j)
1,iψi(s)

)
X+(

mν∑
i=1

λ
(j)
2,iψi(s)

)
Y +

(
mν∑
i=1

λ
(j)
3,iψi(s)

)
Z (3)

where the λ
(j)
k,i are real numbers. By rearranging (3), we get

Lj =

mν∑
i=1

(
λ
(j)
0,i + λ

(j)
1,iX + λ

(j)
2,iY + λ

(j)
3,iZ

)
ψi(s)

=

mν∑
i=1

Λi,j(X,Y, Z)ψi(s) (4)

where Λi,j(X,Y, Z) is a linear polynomial in R[X,Y, Z].
The matrix Mν(φ) is then defined as the mν × rν-matrix
whose entry (i, j) is the linear polynomial Λi,j(X,Y, Z):

Mν(φ) :=


Λ1,1 Λ1,2 · · · Λ1,rν

Λ2,1 Λ2,2 · · · Λ2,rν

...
...

...

Λmν ,1 Λmν ,2 · · · Λmν ,rν

 . (5)

A geometric interpretation of this construction is the fol-
lowing. For any specific value of the parameter s0, the equa-
tion Lj(s0;X,Y, Z) = 0 defines a plane in R3. When the
parameter s varies, this plane varies as well and the equa-
tion Lj(s;X,Y, Z) = 0 is hence called (after Sederberg and
his co-authors; see e.g. [25,13]) a moving plane. Moreover,
by definition of Lj , we have

Lj

(
s;
f1(s)

f0(s)
,
f2(s)

f0(s)
,
f3(s)

f0(s)

)
= 0 (6)

which means that the plane corresponding to the given pa-
rameter s0 always goes through the point φ(s0) (if it is
well-defined, i.e. f0(s0) 6= 0) that belongs to the curve or
the surface parameterized by φ. Therefore, L1, . . . , Lrν is
a collection of rν moving planes and for any specific value
s0 of the parameter s, the rν corresponding planes all in-
tersect at the point φ(s0). As we will see in the sequel, un-
der suitable hypothesis this point is actually their unique
intersection point.

Before giving the main properties of the matrices Mν(φ)
in the next section, we give more details on their construc-
tion in three particular cases of interest in CAGD.
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2.1. Rational Bézier curves

Assume that φ parameterizes a rational Bézier curve. In
this situation, the blending functions Bd are given by the
Bernstein polynomials

Bdi (t) =

(
d

i

)
ti(1− t)d−i, i = 0, . . . , d.

Therefore, we have

φ : t ∈ R 7→
∑d
i=0 wibiB

d
i (t)∑d

i=0 wiB
d
i (t)

=

(
f1(t)

f0(t)
,
f2(t)

f0(t)
,
f3(t)

f0(t)

)
where bi = (xi, yi, zi), i = 0, . . . , d are the control points,
and w0, . . . , wd are their weights.

Now, we fix a degree ν > 0 and we seek 4-tuples of poly-
nomials (g0, g1, g2, g3) satisfying (2) in the Bernstein basis,
that is to say, we choose B′ν = {Bν0 (t), . . . , Bνν (t)} so that
for all j = 0, . . . , 3

gj(t) =

ν∑
i=0

αj,iB
ν
i (t), αj,i ∈ R. (7)

For that purpose, we form a matrix Sν as follows: the first
column is filled with the coefficients of Bν0 (t)f0(t) in the
Bernstein basis Bν+d = {Bν+d0 (t), . . . , Bν+dν+d(t)}, the sec-
ond column with the coefficients of Bν1 (t)f0(t) and so on
until the column ν+1 which is filled with the coefficients of
Bνν (t)f0(t). Then, we continue this way and add three other
similar blocks of columns with the polynomials f1(t), f2(t)
and f3(t). The matrix Sν is hence a (d+ ν + 1)× 4(ν + 1)-
matrix that satisfies the equality of matrices[

Bν+d0 (t) Bν+d0 (t) · · · Bν+dν+d(t)
]
Sν =

[Bν0 (t)f0(t) · · ·Bνν (t)f0(t) Bν0 (t)f1(t) · · ·Bνν (t)f3(t)] .

Notice that this matrix is easily filled with simple computa-
tions on control points. Indeed, for any polynomial f(t) =∑d
i=0 ciB

d
i (t) and j = 0, . . . , ν we have

Bνj (t)f(t) =

d∑
i=0

(
ν
j

)(
d
i

)(
d+ν
i+j

) ciBd+νi+j (t).

By definition of Sν , any vector in its null space is of the form

[α0,0, . . . , α0,ν , α1,0, . . . , α1,ν , α2,0, . . . , α2,ν , α3,0, . . . , α3,ν ]
T

and yields a 4-tuple of polynomials (7) satisfying (2). There-
fore, the null space of Sν corresponds to a 4(ν + 1) × rν-
matrix of the form

Null(Sν) =


Mν,0

Mν,1

Mν,2

Mν,3

 (8)

where the block matrices Mν,0,Mν,1,Mν,2 and Mν,3 are of
size (ν + 1)× rν . By definition of Mν(φ), we have

Mν(φ) = Mν,0 +XMν,1 + YMν,2 + ZMν,3. (9)

Example 1 As a simple illustration, consider the cubic
curve with d = 3, wi = 1 for all i = 0, . . . , 3 and b0 =
(0, 0, 0), b1 = (1/3, 0, 0), b2 = (2/3, 1/3, 0), b3 = (1, 1, 1).
Then, choosing ν = 1 the matrix S1 is of size 5× 8 and the
computation of its null space yields the matrix

M1(φ) =

X + Y + Z X + Y X

−1 + Z −1 + Y −1 +X

 .
Taking ν = 2, S2 is of size 6× 12 and M2(φ) is equal to 2X + 2Y −2X − Y 2X + 2Y + 2Z −3X − 2Y − Z −X 2X

−1 + Y 1 −1 + Z 3/2 1/2 X − 1

0 −1 + Y 0 −1 + Z X − 1 0

 .
2.2. Triangular rational Bézier surfaces

A triangular rational Bézier surface of degree d corre-
sponds to a parameterization of the form

φ : (u, v) ∈ R2 7→
∑d
i+j=0 wi,jbi,jB

d
i,j(u, v)∑d

i+j=0 wi,jB
d
i,j(u, v)

=

(
f1(u, v)

f0(u, v)
,
f2(u, v)

f0(u, v)
,
f3(u, v)

f0(u, v)

)
where for all pairs of integers i, j such that 0 6 i + j 6 d,
bi,j = (xi,j , yi,j , zi,j) is a control point, wi,j its weight and

Bdi,j(u, v) =

(
d

i, j

)
uivj(1− u− v)d−i−j

=
d!

i!j!(d− i− j)!
uivj(1− u− v)d−i−j

the corresponding Bernstein polynomial. We proceed simi-
larly to the previous case of curves. We fix an integer ν > 0
and seek 4-tuples of polynomials (g0, g1, g2, g3) in the Bern-
stein basis

B′ν = {Bν0,0(u, v), Bν0,1(u, v), Bν0,2(u, v) . . . , Bνν,0(u, v)} :

gj(u, v) =

ν∑
i+j=0
i,j>0

αj,iB
ν
i,j(u, v), αj,i ∈ R. (10)

To compute them, we form the matrix Sν whose columns
are filled with the coefficients of

Bνi,j(u, v)fk(t), 0 6 i+ j 6 ν, 0 6 i, j, k = 0, 1, 2, 3

in the Bernstein basis

Bν+d =
{
Bν+d0,0 (u, v), Bν+d0,1 (u, v) . . . , Bν+dν+d,0(u, v)

}
.

The matrix Sν has hence
(
d+ν+2

2

)
rows and 4mν = 4

(
ν+2
2

)
columns and it satisfies the equality of matrices[

Bν+d0,0 (u, v) Bν+d0,1 (u, v) · · · Bν+d,0ν+d (u, v)
]
Sν =[

Bν0,0(u, v)f0 · · ·Bνν,0(u, v)f0 B
ν
0,0(u, v)f1 · · ·Bνν,0(u, v)f3

]
.

Notice that for any polynomial

f(u, v) =

d∑
i+j=0

ci,jB
d
i,j(u, v)
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and any pair of integers 0 6 k + l 6 ν, 0 6 k, l we have

Bνk,l(u, v)f(u, v) =

d∑
i+j=0
i,j>0

(
ν
k,l

)(
d
i,j

)(
d+ν

i+k,j+l

)ci,jBd+νi+k,j+l(u, v).

So, Sν can be filled by simple computations on the control
points of the parameterization φ. Now, by definition of Sν
the computation of its null space returns a 4

(
ν+2
2

)
× rν-

matrix of the form (8) where each matrix Mν,i is of size(
ν+2
2

)
× rν . Finally, we get

Mν(φ) = Mν,0 +XMν,1 + YMν,2 + ZMν,3.

Example 2 As a simple illustration, we consider a pa-
rameterization of the unit sphere with d = 2, w0,0 = 1,
w0,1 = 1, w0,2 = 2, w1,0 = 1, w1,1 = 1, w2,0 = 2, b0,0 =
(1, 0, 0), b0,1 = (1, 0, 1), b0,2 = (0, 0, 1), b1,0 = (1, 1, 0),
b1,1 = (1, 1, 1), b2,0 = (0, 1, 0). Choosing ν = 1 we form
the 10× 12-matrix Sν and find the matrix

M1(φ) =

 Y 1−X + Y + Z −1 +X − Y 0

Y −2X + 2Y −1 +X − Y + Z −Y

−1−X + Y −2X 2X Z

 .
2.3. Tensor-product rational Bézier surfaces

A tensor-product rational Bézier surface of bi-degree
(d1, d2) corresponds to a parameterization of the form

φ : (u, v) ∈ R2 7→
∑d1
i=0

∑d2
j=0 wi,jbi,jB

d1
i (u)Bd2j (v)∑d1

i=0

∑d2
j=0 wi,jB

d1
i (u)Bd2j (v)

where the bi,j ’s are the control points and the wi,j ’s their
weights. Here again, we proceed as in the previous cases.
However, in this case the degree is actually a bi-degree,
that is to say a pair of integers that corresponds to the
degree in the variable u and the degree in the variable v.
In the sequel, all the inequalities between these bi-degrees
are understood component-wise.

So, let us fix a bi-degree ν = (ν1, ν2) and seek 4-tuples of
polynomials (g0, g1, g2, g3) in the tensor product Bernstein
basis

B′ν = {Bν10 (u)Bν20 (v), Bν10 (u)Bν21 (v), . . . , Bν1ν1 (u)Bν2ν2 (v)} :

gj(u, v) =

ν1∑
i=0

ν2∑
j=0

αj,iB
ν1
i (u)Bν2j (v), αj,i ∈ R. (11)

Here again, we form the matrix Sν whose columns are filled
with the coefficients of Bν1i (u)Bν2j (v)fk(u, v), in the Bern-
stein basis

Bν+d = {Bν1+d10 (u)Bν2+d20 (v), . . . , Bν1+d1ν1+d1
(u)Bν2+d2ν2+d2

(v)}.

Hence the matrix Sν has (ν1 + d1 + 1)(ν2 + d2 + 1) rows
and 4mν = 4(ν1 + 1)(ν2 + 1) columns and it satisfies the
equality of matrices[

Bν1+d10 (u)Bν2+d20 (v) · · · Bν1+d1ν1+d1
(u)Bν2+d2ν2+d2

(v)
]
Sν =[

Bν10 (u)Bν20 (v)f0 · · ·Bν1ν1 (u)Bν20 (v)f0 · · ·Bν1ν1 (u)Bν2ν2 (v)f3
]
.

Observe that for any polynomial

f(u, v) =

d1∑
i=0

d2∑
j=0

ci,jB
d1
i (u)Bd2j (v)

and any pair of integers k, l such that 0 6 k 6 ν1 and 0 6
l 6 ν2, we have

Bν1k (u)Bν2l (v)f(u, v) =
d1∑
i=0

d2∑
j=0

(
ν1
k

)(
ν2
l

)(
d1
i

)(
d2
j

)(
ν1+ν2
i+k

)(
d1+d2
j+l

) ci,jBν1+d1i+k (u)Bν2+d2j+l (v).

The computation of the null space of Sν returns a 4(ν1 +
1)(ν2 + 1) × rν-matrix of the form (8) where each matrix
Mν,i is of size (ν1+1)(ν2+1)×rν . As in the previous cases,
we get

Mν(φ) = Mν,0 +XMν,1 + YMν,2 + ZMν,3.

Example 3 As a simple illustration, we consider a param-
eterization of a tensor product surface of bi-degree (1, 2),
i.e. a ruled surface, with the following data:w0,0 = 1,w0,1 =
1, w0,2 = 2, w1,0 = 1, w1,1 = 1, w1,2 = 2, b0,0 = (1, 0, 0),
b0,1 = (1, 0, 1), b0,2 = (0, 0, 1), b1,0 = (1, 1, 0), b1,1 =
(1, 1, 1), b1,2 = (0, 1, 0). Choosing ν = (1, 1), the matrix
S(1,1) is of size 12× 16 and we find the matrix

M1,1(φ) =


−1 +X 1−X + Z 0 Y

−1 +X + Z −2X Y 0

−1 +X 2− 2X + Z 0 Y − 1

Z −2X Y − 1 0

 .

3. Definition and main properties of implicit
matrix representations

The family of matrices we have built in the previous sec-
tion is particularly interesting because these matrices can
be seen as implicit representations of a parameterized curve
or surface, if the degree ν is not too small. In this section,
we describe their main properties. Notice that most of them
have been already proved in a more general setting using
technics from algebraic geometry and commutative algebra
(see [10,9,6,4]).

Hereafter, we take again the notation of Section 2: φ
denotes the parameterization (1) of a curve or a surface
and Mν(φ) (or Mν for short), ν > 0, its associated family
of matrices.

3.1. Evaluation is linear

By construction, the entries of the matrices Mν , ν > 0,
are linear polynomials in R[X,Y, Z]. Actually, these matri-
ces are pencil of matrices, that is to say that there exist four
matrices Mν,i, i = 0, . . . , 3, whose entries are real numbers
and such that (see (9))

Mν(X,Y, Z) = Mν,0 +XMν,1 + YMν,2 + ZMν,3.
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It follows that the matrix Mν = Mν(X,Y, Z) can be eval-
uated at any point P ∈ R3 and that this evaluation is very
simple since it corresponds to a linear combination of four
matrices. In the sequel, we will denote it by Mν(φ)(P ), or
simply Mν(P ) if there is no possible confusion.

3.2. The drop-of-rank property

Let P ∈ R3 be a point such that P = φ(s0) for some
parameter value s0. By construction of Mν , (6) holds and
we hence get

[ψ1(s0) · · · ψmν (s0)]×Mν(P )

= [L1(s0;P ) · · · Lrν (s0;P )] = [0 · · · 0] . (12)

Therefore, it is clear that a non trivial linear combination
between the rows of Mν appears after evaluation at a point
P that belongs to the image of φ (the blending functions
ψi’s do not all vanish simultaneously). It turns out that
there exists a ”critical degree” ν0 such that, for all matri-
ces Mν with ν > ν0, the above property characterizes the
points P belonging to the (algebraic) closure of the image
of φ. For simplicity of presentation, from now on we will
denote the image of φ by Im(φ) and its closure by Im(φ).

To be more precise, we first give explicit values of this
critical degree integer ν0 in each of the three cases treated
in Section 2:
• §2.1 : if φ parameterizes a rational Bézier curve of degree
d > 1 then ν0 := d− 1.

• §2.2 : if φ parameterizes a triangular rational Bézier sur-
face then ν0 := 2(d− 1).

• §2.3 : if φ parameterizes a tensor-product rational Bézier
surface then ν0 := (2d1 − 1, d2 − 1) (or by symmetry
ν0 = (d1 − 1, 2d2 − 1)).

Recall that the integers rν and mν denote the number
of columns and rows, respectively, of the matrix Mν for all
ν > 0 (see (5)).

Fact 1 For all degrees ν > ν0 we have rν > mν , i.e. the
matrices Mν have more columns than rows. In particular,
rank(Mν(P )) 6 mν for all points P ∈ R3.

Fact 2 For all degrees ν > ν0 and all points P ∈ R3,
rank(Mν(P )) < mν if and only if P ∈ Im(φ).

The above properties show that for all ν > ν0 the ma-
trices Mν(φ) can be used as implicit representations of the
parameterization φ. Compared to the more classical im-
plicit representations in the form of polynomial equations
in the variables X,Y, Z, they are much more easy to com-
pute and they allow us to treat both parameterized curves
and surfaces in the same way.

Definition 1 For all ν > ν0, the matrices Mν(φ) are called
implicit matrix representations (M-rep for short) of the pa-
rameterization φ in degree ν.

The proofs of Fact 1 and Fact 2 can be found in [10],
[6] and [4] for the cases of rational curves (§2.1), triangu-
lar (§2.2) and tensor-product (§2.3) rational surfaces re-
spectively. They are independent of any choice of basis
(i.e. choices for B′ν and Bν+d).

Notice that a subtle hypothesis on the parameterization
φ is necessary, namely that the base points (i.e. the com-
mon roots of f0, f1, f2, f3 in the parameter space, including
at infinity) have to be locally defined by at most two equa-
tions (what is assumed here for the sake of simplicity). If
this is not the case, then one has to deal with some extra-
neous hyperplanes that appear in addition to Im(φ), but
this is not a problem because these hyperplanes are well
understood (see [7] for more details).

Notice also that the values given above for the critical
degree ν0 can be improved in some cases. For instance, for
rational curves ν0 can be decreased by the smallest degree
ν such that there exists a non trivial 4-tuple (g0, g1, g2, g3)
satisfying (2), so at least by 1 if the curve is not a line
(see [10]). For the case of triangular rational surfaces, ν0
can be decreased by the smallest degree of a curve in the
parameter space going through all the base points, which
is at least 1 if there exist base points (see [6]). However,
all these improved values depend on particular geometric
features of the parameterization φ and are hence not stable
under numerical perturbations. This is why we emphasized
the smallest values of the critical degree that only depend
on the degree of the fi’s and that are hence numerically
stable.

Example 4 Coming back to the examples given in Section
2, we see that Mν is an M-rep for all ν > ν0 = 2 in Example
1, but M1 is actually also an M-rep because this curve is not
a line.

In Example 2, Mν is an M-rep of the sphere for all ν >
ν0 = 2, but M1 is also an M-rep because the two cyclic points
are base points.

In Example 3, the matrix M(ν1,ν2) is an M-rep for all
(ν1, ν2) > (1, 1) (or > (0, 3)). Notice that M(1,1) is a square
matrix, so a polynomial implicit equation of the ruled surface
can be obtained by computing its determinant. A similar
property holds for M0,3.

Finally, although we choose to work in the affine space
R3, there is no hidden difficulty at infinity. Indeed, denoting
by (W : X : Y : Z) the homogeneous coordinates of the
projective space P3(R) (with the convention (1 : X : Y :
Z) = (X,Y, Z) in R3), the pencil of matrices

WMν,0 +XMν,1 + YMν,2 + ZMν,3

have the properties stated above in P3(R) and hence it
provides an implicit matrix representation of the closure of
the image of φ in P3(R). Actually, one can even replace the
field of real numbers by any other field (including the field
of complex numbers) and the above properties, as well as
the construction of Mν , still hold.

5



3.3. The inversion property

Let P ∈ R3 be a point such that P = φ(s0) for some
parameter value s0. For any M-rep Mν of the parameteri-
zation φ, we have seen that the equality (12) holds so that
the vector

[ψ1(s0) · · · ψmν (s0)]
T

(13)

belongs to the null space of Mν(P )T (the notation −T
stands for the matrix transpose).

Fact 3 If P ∈ R3 is a point such that P has a unique
(counted properly) pre-image by φ, then the dimension of
the null space of Mν(P )T is one.

This property shows that an M-rep allows us to invert a
point P = φ(s0) on the curve or surface parameterized by φ
if φ is proper and P does not belong to the self-intersection
locus (notice that if φ is not proper or if P belongs to the
self-intersection locus, then inversion is not well-defined).
Indeed, the computation of the null space of Mν(P )T pro-
vides a single vector [v1 · · · vmν ]T which is proportional
to the vector (13). From here, the parameter s0 can be ex-
tracted without any difficulty. For instance, if φ parame-
terizes a rational Bézier curve (§2.1), then looking at the
ratio (but other ratios can be used as well)

(v1 : v2) = (Bd0 (s0) : Bd1 (s0)) = (1− s0 : ds0)

we deduce that s0 = v2/(dv1 + v2) (notice that the denom-
inator can never vanish). If φ parameterizes a triangular
(§2.2) or a tensor-product (§2.3) rational Bézier surface, we
can proceed similarly and the computation of two ratios
yields the two coordinates of the pre-image of P .

With an M-rep, it is hence possible to handle at the same
time a non-singular point P ∈ Im(φ) and its pre-image
through a simple null space computation. This property
can be very useful in many circumstances, as for instance
for splitting a curve at a point in space, or for dealing with
trimmed surfaces.

To simplify our notation, in the sequel we will denote by
the corank of a given matrix M the difference between its
number of rows and its rank. Equivalently, corank(M) is
equal to the dimension of the left null space of M .

3.4. Pre-images and the drop-of-rank property

Let Mν be an M-rep of a parameterization φ and let P
be a point in R3. We have seen (see Fact 1 and Fact 2) that
corank(Mν(P )) = 0 if and only if P /∈ Im(φ). Moreover,
in Fact 3 we stated that corank(Mν(P )) = 1 if P is a non-
singular point of the closure of the image of φ. It turns
out that some even finer geometric properties of φ can be
extracted from an M-rep. For the sake of completeness, we
briefly mention them.

Denote by φ−1(P ) the algebraic set of all the pre-images
of P by φ in the parameter space over the field of complex
numbers. Thus, if P /∈ Im(φ) then φ−1(P ) is empty. Oth-

erwise, φ−1(P ) can be either a finite set or an infinite set
of points. If φ−1(P ) is finite, which is for instance always
the case if φ parameterizes a rational curve, then we denote
by NP its cardinal number, counted properly with multi-
plicities. If φ−1(P ) is infinite, which can only occur if φ pa-
rameterizes a surface, then it can be decomposed into the
union of an algebraic plane curve and a finite set of points;
we denote by DP the degree of the curve.

The proof of the following result is beyond the scope of
this paper and can be found in [5].

Fact 4 Let P be a point in R3 and Mν be an M-rep of φ.
• If φ−1(P ) is finite, then for all ν > ν0

corank(Mν(P )) = NP .

• If φ−1(P ) is infinite, then for all ν > ν0

corank(Mν(P )) = DP .ν + CP

Two comments are in order about this fact. First, if φ pa-
rameterizes tensor-product rational Bézier surface (§2.3),
DP is a bi-degree, say DP = (D1, D2), and DP .ν is the
“scalar product” D1.ν1 + D2.ν2 where ν = (ν1, ν2). Sec-
ond, mention that the quantity CP has a geometric mean-
ing. It gathers informations about the genus of the curve
component of φ−1(P ) and the cardinal number of the re-
maining finite part, counted properly with multiplicity. In
algebraic geometry, the linear polynomial DP .ν + CP is
actually known as the Hilbert polynomial of φ−1(P ) (see
e.g. [14, Chapter 6, §4]).

A direct consequence of Fact 4 is that the comparison of
the corank of two or three successive M-reps (Mν and Mν+1

for a triangular surface and Mν , Mν+(0,1), Mν+(1,0) for a
tensor-product surface) allows us to determine if φ−1(φ) is
finite or infinite and at the same time to determine NP or
DP . Another interesting observation is that small drop of
rank can only arises at points P such that φ−1(P ) is finite.
We refer the reader to [5] for more details.

4. Evaluating M-reps through singular values

In this section, we will define a real evaluation function
of an M-rep Mν at a given point P by means of the singular
values of the matrix Mν(P ). For any point P ∈ R3, we will
hence get a real number denoted δMν (P ) ∈ R. We will show
that this real evaluation function behaves like a classical
Euclidean distance function. As a byproduct, we will also
get a new determinantal formula for implicitizing a curve
or surface over the real numbers. We begin with a quick
review of the SVD.

4.1. The singular value decomposition

Let A ∈ Rm×r be a real matrix and assume for ease of
presentation that m 6 r (if m > r then simply apply what
follows to AT ). The singular value decomposition (SVD) of
A is a decomposition of the form A = UΣV T where U =
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[u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vr] ∈ Rr×r are real
orthogonal matrices and the matrix

Σ =


σ1 0 · · · 0 0 . . . 0

0 σ2
. . .

...
...

...

...
. . .

. . . 0 0 . . . 0

0 . . . 0 σm 0 . . . 0

 ∈ Rm×r

has nonnegative diagonal elements appearing in the con-
ventional decreasing order

σ1 > σ2 > · · · > σm > 0.

The numbers σi, also denoted σi(A), are called the singular
values of A while the vectors ui and vi are called the left
and right singular vectors of A, respectively. Notice that
the singular values of A are precisely the lengths of the
semi-axes of the ellipsoidal image of the unit sphere under
the mapping x → Ax. We refer the reader to [17, §2.5.3]
for the proof of the existence of the SVD.

The most important property of the SVD for our pur-
poses is that it is a powerful tool for deciding the rank of a
matrix. We will come back to this in the next section when
dealing with numerical computations. For now, we will only
need the following elementary property:

rank(A) = max{i : σi(A) 6= 0}. (14)

4.2. Real evaluation function of an M-rep

Consider a parameterization φ of a curve or surface as
in (1) and let Mν be an M-rep of φ. Recall from Section 2
that the matrix Mν has mν rows and rν columns.

Definition 2 For any point P in R3, the real evaluation
function of Mν at P is defined by

δMν : R3 → R>0 := {x ∈ R : x > 0}

P 7→ δMν (P ) :=

mν∏
i=1

σi(Mν(P ))

where σi(Mν(P )) are the singular values of the matrix
Mν(P ) ∈ Rmν×rν .

For any point P , δMν (P ) > 0 and Fact 2 and (14) imply
that

δMν (P ) = 0⇔ P ∈ Im(φ). (15)

Therefore, the function δMν (P ) can be seen as a sort of dis-
tance function of the point P to Im(φ) (i.e. the curve or
surface parameterized by φ). This is similar to the alge-
braic distance function obtained by returning the absolute
value of the evaluation of an implicit polynomial equation
F (X,Y, Z) = 0 of a parameterized surface: |F (P )| = 0 if
and only if P belongs to the surface.

It turns out that the evaluation function δMν (P ) can ac-
tually be compared with the usual Euclidean distance func-
tion of P to Im(φ) ⊂ R3. To start, we first show that the
square of δMν is an algebraic function and point out an in-
teresting consequence.

4.3. A real implicit polynomial equation of parameterized
curves and surfaces

Let Mν be an M-rep of the parameterization φ and P
a point in R3. From the SVD of Mν and the definition of
δMν (P ), we get

δMν (P )2 =

mν∏
i=1

σi(Mν(P ))2 = det(Mν(P )Mν(P )T ).

Since the entries of Mν are linear polynomials in R[X,Y, Z],
we deduce that δMν (P )2 is a polynomial function of P .
Therefore, we define the polynomial

∆Mν (X,Y, Z) := det(MνMT
ν ) ∈ R[X,Y, Z].

For any P ∈ R3 we have ∆Mν (P ) = δMν (P )2.

Theorem 1 The real algebraic set

{(x, y, z) ∈ R3 : ∆Mν (x, y, z) = 0} ⊂ R3

is equal to Im(φ). In other words, ∆Mν (X,Y, Z) is a real
implicit equation of the curve or surface parameterized by φ.

Proof. It is a direct consequence of the definition of the
polynomial ∆Mν and (15). Another way to see this result
is to apply the Binet-Cauchy formula for expanding the
determinant of the product MνMT

ν . Indeed, this formula
yields

det(MνMT
ν ) =

∑
16i1<i2<···<imν6rν

([Mν ]i1,i2,...,imν )2 (16)

where [Mν ]i1,i2,...,imν (X,Y, Z) is the minor of Mν corre-
sponding to the columns i1, i2, . . . , imν . Then, the conclu-
sion follows from Fact 2. 2

The matrix MνMT
ν is a symmetric square matrix of size

mν and its entries are quadratic polynomials in R[X,Y, Z].
Its determinant ∆Mν is hence a degree 2m polynomial and
it is moreover a sum of squares by (16). Looking more pre-
cisely at the three cases detailed in Section 2 with ν = ν0,
we get:

• §2.1: if φ parameterizes a rational Bézier curve of degree
d then mν0 = ν0 + 1 = d, MνMT

ν is of size d and ∆Mν is
a polynomial of degree 2d.
• §2.2: if φ parameterizes a triangular rational Bézier sur-

face of degree d then mν0 = d(2d−1) and ∆Mν is a poly-
nomial of degree 2d(2d− 1).
• §2.3: if φ parameterizes a tensor-product rational Bézier

surface of bi-degree (d1, d2) then mν0 = 2d1d2 and ∆Mν
is a polynomial of degree 4d1d2.

Theorem 1 shows that implicit matrix representations
allow us to produce square matrices whose determinant is
an implicit polynomial equation for a parameterized curve
or surface over the real numbers. In general, this equation is
not of the lowest possible degree, see e.g. Example 5. Notice
too that Theorem 1 can be extended to the field of complex
numbers by taking the Hermitian matrix transpose instead
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of the simple matrix transpose (the Hermitian transpose of
a complex matrix is obtained by taking its transpose and
then by taking the complex conjugate of each entry).

Example 5 Taking again Example 2, the computation of
the product M1MT

1 yields a 3×3-matrix which is symmetric
and has quadratic entries in R[X,Y, Z]. Its determinant
∆M1

(X,Y, Z) is equal to(
(X − Y + 1)

2
+ 2Y 2 + Z2

)
×
(
X2 + Y 2 + Z2 − 1

)2
.

The right factor is the usual implicit equation of the sphere.
The left factor vanishes over the real numbers only at the
point (X,Y, Z) = (−1, 0, 0) which belongs to the sphere.

4.4. Comparison with the Euclidean distance function

In the field of real algebraic geometry, the  Lojasiewicz in-
equality is a classical result that gives information concern-
ing the relative rate of growth of two continuous semialge-
braic functions (see for instance [3]). In our context, it can
be used to compare the growth of the evaluation function
given in Definition 2 with the one of the usual Euclidean
distance between P and Im(φ). This latter will be denoted
by

d(P, Im(φ)) := min{‖P −Q‖2 : Q ∈ Im(φ)}.

Theorem 2 Let K ⊂ R3 be a compact semialgebraic set.
Then there exist two positive integers n1, n2 and two positive
real numbers c1, c2 such that

∀P ∈ K d(P, Im(φ))n1 6 c1.δMν (P )

and
∀P ∈ K δMν (P )n2 6 c2.d(P, Im(φ)).

Proof. Both functions δMν and d(−, Im(φ)) are continuous,
and they are also semialgebraic as they are the square roots
of positive algebraic functions. Moreover, the zero locus of
these two functions are equal:{

P ∈ R3 : d(P, Im(φ)) = 0
}

=
{
P ∈ R3 : δMν (P ) = 0

}
= Im(φ).

It follows that, after restriction to the compact semialge-
braic set K, all the hypothesis for applying  Lojasiewicz
inequality are fulfilled (see [3, §6]) and we thus get the two
inequalities stated in this theorem. 2

This result shows that the evaluation function δMν be-
haves similar to a distance function: its value increases as
one gets far from Im(φ) and decreases as one gets close to it
until vanishing exactly on it. The compact semi-algebraic
set K can be taken as a 3D bounding-box, but notice that
there exists a version of  Lojasiewicz inequality where K
is not assumed to be a compact set (for instance K could
be R3). Finally, notice that determining the integers n1, n2
and constants c1, c2 is in general difficult, although some ef-
fective bounds are known. We refer the reader to [26] (and
the references therein; see also [21]) for more details.

5. Numerical behavior of M-reps

Implicit matrix representations are interesting not only
for their nice geometric properties, but also because all the
experiments we have conducted have shown a particularly
good numerical stability. One can expect that this is a con-
sequence of the design of M-reps that makes them very well
adapted to the SVD which is one of the basic and most im-
portant tool of numerical linear algebra. Indeed, as we will
explain in this section, all the properties of M-reps can be
exploited using numerical computations by means of the
SVD, even their construction. In addition, we provide some
rigorous results on the properties of M-reps under numeri-
cal computations in order to give more insight on the good
numerical behavior of M-reps we have observed in our ex-
periments.

5.1. The numerical rank

In the presence of roundoff errors and data perturbations,
every matrix tends to be a full rank matrix and hence de-
termining its original rank becomes nontrivial. A strict and
operational definition of “numerical rank”, which is widely
used in the field of numerical linear algebra, takes the fol-
lowing form.

Definition 3 ([17, §2.5.5]) The numerical rank of a ma-
trix A, with respect to the tolerance ε > 0, is given by

rank(A, ε) = min {rank(B) : ‖A−B‖2 6 ε} .

In other words, the numerical rank of A is equal to the
number of columns of A that are guaranteed to be linearly
independent for any perturbation of A with 2-norm less
than or equal to the tolerance ε.

An important property of the SVD is that for all non-
negative integers k < rank(A),

σk+1(A) = min
rank(B)=k

‖A−B‖2 (17)

which means that the singular value σk+1(A) indicates how
near the matrixA is to a matrix of rank k (see [17, Theorem
2.5.3]). Therefore, setting rε := rank(A, ε), we see that

σ1(A) > · · · > σrε(A) > ε > σrε+1
(A) > · · · > σm(A)

with the notation A ∈ Rm×r, m 6 r. The numerical rank
of A can hence be determined by inspecting the singular
values of A:

rank(A, ε) := max {k : σk(A) > ε} . (18)

Due to computer arithmetic, the calculated singular val-
ues may be different from the exact singular values. How-
ever, on can show (see [17, §5.5.8]) that the computed sin-
gular values of A are the exact singular values of a slightly
perturbed matrix A + E where ‖E‖2 6 ρu‖A‖2; here u is
the roundoff unit (see [17, §2.4.2]) and ρ is a slowly growing
function of m and r. Therefore, in this context the toler-
ance ε is usually chosen in this form, so that it makes sense
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in (18) to use the computed singular values of A in place of
the exact singular values of A.

5.2. Numerical computation of M-reps

Let φ be a parameterization as in (1). As described in
Section 2, an M-rep Mν of φ is obtained as the null space
of the multiplication matrix Sν which is built directly from
the control points and weights of φ (see e.g. (8)). We will
describe how this computation can be done numerically by
means of the SVD.

Consider a matrix A and its SVD A = UΣV T ∈ Rm×r
where V = [v1, . . . , vr] ∈ Rr×r. It is easy to check that

‖Avi‖2 = σi(A), i = 1, . . . , r

(setting σi(A) = 0 if i > max(m, r)). So, if σi(A) is “small”
compared to the norm ‖A‖2 = σ1(A), then the correspond-
ing right singular vector vi is “almost” a null vector for A.
It follows that the determination of the numerical rank rε
of A, with the tolerance ε, yields a numerical null space
of A which is the vector space spanned by the vectors
vrε+1, . . . , vr.

From these considerations, we deduce that Mν can be
read off the SVD of the matrix Sν . Indeed, with the appro-
priate tolerance ε, this SVD yields a numerical rank rε and
the last r− rε columns in the matrix V yield the numerical
null space of Sν . It is of the form (8) and hence provides a
numerical approximation of Mν given by

Mν,0 +XMν,1 + YMν,2 + ZMν,3.

The quality of this numerical approximation is essentially
governed by the ratio σ1/σrε . To be more precise, for a given
matrixA, denote byNk(A) the vector space spanned by the
vectors vk+1, . . . , vr. Let A + E be the small perturbation
of the matrix A corresponding to the computation of its
singular values (see §5.1), so that the computed singular
values of A are the exact singular values of A + E. It can
be shown ([18, Theorem 3.2.1], see also [17, §8.6.1]) that if
‖E‖2 6 σk − σk+1, then

dist(Nk(A),Nk(A+ E)) 6
σ1
σk
.
‖E‖2
‖A‖2

where dist(−,−) stands for the distance between vector
spaces (see [17, §2.6.3]). In our setting, we deduce that the
SVD of Sν will give an accurate and robust numerical null
space (hence numerical M-rep Mν), namelyNr−rε+1(Sν), if
there is a distinct gap between σrε and σrε+1 with respect
to σ1.

Example 6 Taking again Example 2, the computation of
the SVD of the 10× 12 multiplication matrix S1 returns

σ1 = 3.52756346141076, σ8 = 0.452628072697747,

σ9 = 3.31295025717184461× 10−11.

We deduce that the numerical rank is equal to 8 and hence
find a null space of dimension 4. The numerical M-rep
M1(φ) we get this way is printed in Figure 1.

The numerical computation of M-reps have some simi-
larities with approximate implicitization [16,2], as the use
of the SVD, but it is different. In particular, with M-reps
there is no need to guess or estimate a good degree for the
approximate implicit representation, it is provided by the
method: this is the integer ν0 (see §3.2). Its determination is
actually the difficult part of the M-rep approach for which
tools from commutative algebra and algebraic geometry are
necessary.

5.3. The drop-of-rank property and numerical
computations

Let Mν be an M-rep of a parameterization φ as in (1),
and let P be a point in R3. The drop-of-rank property of
Mν is the fact that the rank of Mν drops at P if and only
if P ∈ Im(φ). Therefore, it seems quite natural to compute
the SVD of Mν(P ) for deciding if P belongs to Im(φ). How-
ever, one has to be careful because there is a subtle diffi-
culty. Indeed, the theory of the SVD have been shown to be
very powerful when dealing with the whole space of dense
matrices. For instance, looking at (17) it is clear that the
matrix B can be any matrix without particular structure,
even if A has such a particular structure itself. In our set-
ting, we are handling M-reps which are pencils of matrices
(see (9)) and hence are very particular. Therefore, there is
no guarantee that the detection of a numerical drop of rank
at a given point Q corresponds to the existence of another
point P in its neighborhood such that the exact rank of
Mν(P ) drops. This is because M-reps have this particular
structure of being a pencil of matrices. In general, work-
ing with such particular subspaces of matrices may lead to
difficulties with the SVD. However, all the experiments we
have made with M-reps have always shown a very good nu-
merical behavior. In order to explain and clarify these ob-
servations, we prove two results showing that a given point
P is close to Im(φ) if and only if the numerical rank of
Mν drops at P . In the sequel, it is assumed that M-reps
are computed as explained in §5.2. Recall also the notation
that an M-rep Mν is of size mν × rν .

Proposition 1 Let P,Q be two points in R3. For all k =
1, . . . ,mν , we have

|σi(Mν(P ))− σi(Mν(Q))| 6 ‖P −Q‖2.
Proof. We begin with a useful remark: the matrix Mν(P )
can be computed as described in §3.1, but it is not hard
to check that it can also be computed as the product of
two matrices. Indeed, to any point P = (x, y, z) ∈ R3 we
associate the following matrix

Pν =


diag(1)

diag(x)

diag(y)

diag(z)

 (19)

where each block is a diagonal matrix of size mν with the
same repeated element on the diagonal (from top to bot-
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[
−0.000 + 0.000X − 0.354Y + 0.354Z 0.0811 − 0.0811X + 0.324Y + 0.324Z −0.354 + 0.354X + 0.000Y − 0.000Z −0.005 + 0.005X − 0.000Y + 0.000Z

−0.354 − 0.354X + 0.000Y + 0.354Z −0.243 − 0.406X + 0.324Y + 0.243Z −0.354 + 0.354X + 0.0107Y + 0.354Z −0.005 + 0.005X − 0.707Y + 0.005Z

0.354 + 0.354X − 0.354Y + 0.000Z −0.243 − 0.406X + 0.243Y + 0.324Z −0.354 + 0.354X + 0.354Y − 0.0107Z −0.005 + 0.005X + 0.005Y + 0.707Z

]
Fig. 1. Numerical M-rep for the unit sphere with a display precision of three digits.

tom, the diagonal of the first block is filled with 1, the diag-
onal of the second block with x, and so on). Then, denoting
by Nν the null space of Sν (see (8)), we get that

Mν(P ) = NTν Pν . (20)

Now, by applying a classical inequality about singular
values (see [17, Corollary 8.6.2]), we get

|σi(Mν(P ))− σi(Mν(Q))| 6 ‖Mν(P )−Mν(Q)‖2.
But using (20) and a standard inequality for the 2-norm of
matrices, we obtain

‖Mν(P )−Mν(Q)‖2 = ‖NTν (Pν −Qν)‖2
6 ‖NTν ‖2 ‖Pν −Qν‖2.

The matrix Pν−Qν is made of columns that are orthogonal
vectors whose norm is equal to ‖P −Q‖2, so

‖Pν −Qν‖2 = ‖P −Q‖2.
The matrix Nν is made of orthonormal columns (see §5.2),
so ‖NTν ‖2 = ‖Nν‖2 = 1 and the conclusion follows. 2

Corollary 1 Let P be a point in R3 and ε > 0 be a toler-
ance. For all points Pε ∈ R3 such that ‖Pε − P‖2 6 ε we
have

rank(Mν(Pε), ε) 6 rank(Mν(P )).

Proof. For all integers k > rank(Mν(P )), σk(Mν(P )) = 0
and the conclusion follows by applying Proposition 1. 2

This result shows that if a point P is close to Im(φ) then
the numerical rank of Mν drops at P . Now, we examine the
converse.

Proposition 2 Let P be a point in compact semi-
algebraic set K ⊂ R3, ε > 0 be a tolerance and set rε :=
rank(Mν(P ), ε), σ1 := σ1(Mν(P )). There exist a positive
integer n1 and a constant real number c1 such that

d(P, Im(φ)) 6
(
c1σ

rε
1 ε

mν−rε
) 1
n1 .

Moreover, σ1 6 (1 + ‖P‖22)
1
2 .

Proof. By Theorem 2, there exist a positive integer n1 and
a constant real number c1 such that for all points P ∈ K

d(P, Im(φ))n1 6 c1δMν(P )(P ) = c1

mν∏
k=1

σk(Mν(P )).

Now, by the property of the numerical rank, the singular
values of Mν(P ) satisfy the inequalities

σ1 > · · · > σrε > ε > σrε+1
> · · · > σmν .

Therefore, we deduce that
mν∏
k=1

σk(Mν(P )) 6 σrε1 ε
mν−rε

and hence

d(P, Im(φ))n1 6 c1σ
rε
1 ε

mν−rε .

To prove the second claimed inequality, we observe that
σ1 = ‖NTν Pν‖2 by (20). It follows that σ1 6 ‖NTν ‖2‖Pν‖2.
But ‖NTν ‖2 = 1 (see the proof of Proposition 1) and from
the definition of the matrix Pν , it is clear that

‖Pν‖2 6 (1 + ‖P‖22)
1
2 .

From here, the conclusion follows. 2

This result shows that if P is a point in R3 such that the
numerical rank of Mν(P ) drops, then P has to be “close”
to Im(φ) (notice that if P is in a bounded box, then σ1 is
bounded above in terms of ‖P‖2). Moreover, it also shows
that the more P is singular (i.e. rε decreases), the more P
is close to Im(φ).

Notice, however, that Proposition 2 is not very helpful
in practice because the constants n1 and c1 are difficult
to predict (they follow from the Lojasiewicz inequalities).
Nevertheless, it reinforces our experimental observations
showing the very good numerical behavior of M-reps.

5.4. Inversion through numerical computations

Given a parameterization (1), we have shown in §3.3
that the inversion problem can be solved by computing
a one-dimensional null space. Exploiting the capability of
the SVD for computing numerical null space, as explained
in §5.2, it becomes possible to treat the inversion problem
with numerical computations.

To be more precise, let Mν be an M-rep of a parameteri-
zation φ, as in (1), and consider a given tolerance ε. Let P
be a point in R3 that has a unique pre-image via φ, i.e. such
that P = φ(s0) and corank(Mν(P )) = 1. By Fact 3, we
know that s0 can be extracted from the one-dimensional
null space Nmν−1(Mν(P )T ) by a ratio computation (see
§3.3). We will denote by u the vector spanning this null
space, it is the last column of the matrix U in the SVD of
Mν(P ).

Now, let Pε ∈ R3 be such that ‖Pε − P‖2 6 ε, so that
rε := rank(Mν(P ), ε) < mν by Corollary 1. As explained in
§4.1, determining the numerical rank rε is done by comput-
ing the SVD of Mν(Pε) = UεΣεV

T
ε . Denote by uε ∈ Rmν

the vector corresponding to the last column of the matrix
Uε. By the discussion in §5.2, we deduce that

dist(uε, u) 6
σ1

σmν−1

‖Mν(Pε)−Mν(P )‖2
σ1

6
σ1

σmν−1

ε

σ1
.

Therefore, it appears that if there is a distinct gap between
σmν (Mν(Pε)) and σmν−1(Mν(Pε)), then the numerical rank
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is clearly equal to one and umν yields an accurate approx-
imation of the null space of Mν(P )T . Moreover, if θ de-
notes the angle between uε and u, then dist(uε, u) = sin(θ)
by definition of this distance function (see [17, §2.6.3]). It
follows that the numerical values of the pre-image s0 com-
puted from the ratios of uε and u are equal up to the nu-
merical precision ε.

Example 7 Take again the simple Example 2 of the unit
sphere. If P = (1/

√
3, 1/
√

3, 1/
√

3), then the exact null
space of M1(P )T is generated by the vector (

√
3− 1)/(

√
3 + 1)

1/(
√

3 + 1)

1/(
√

3 + 1)

 ≈
 0.2679491925

0.3660254037

0.3660254037

 (21)

where the numerical precision is 10 digits. Notice that we
chose the generator of this null space which is normalized
with respect to the 1-norm. This is because our M-rep has
been built with Bernstein bases which form a partition of
unity. Therefore, if s0 = (u0, v0) ∈ R2 is the pre-image of
P then (21) is equal to the vector[

B1
0,0(u0, v0), B1

0,1(u0, v0) = v0, B
1
1,0(u0, v0) = u0

]T
.

It follows that

u0 = v0 = 1/(
√

3 + 1) ≈ 0.3660254037. (22)

Now, we do the computations by using the numerical M-
rep given in Figure 1 and take Pε as the numerical approxi-
mation of P with 10 digits precision. The computed singular
values of M1(Pε) are

σ1 = 0.7637626159, σ2 = 0.4902332028, σ3 = 2.3855877838.10−10

and the last column of the matrix U of the SVD is the 2-
norm unitary vector

[0.4597008431 0.6279630304 0.6279630302]T

By normalizing this vector with the 1-norm, we recover, as
expected, the same approximation of u0 and v0 with 10 digits.
Now, we add a perturbation of 10−5 to each coordinate of
the point Pε. The singular values of M1(Pε) become

σ1 = 0.7637701751, σ2 = 0.4902374484, σ3 = 0.0000114631

and the last column of the matrix U of the SVD is the 2-
norm unitary vector

[0.4596994681 0.6279635337 0.6279635335]T

By normalizing this vector with the 1-norm, we finally get

u0 ≈ 0.3660257759, v0 ≈ 0.3660257758.

Comparing these values with (22), we check that up to 5
digits precision, the approximation of u0 and v0 are correct.

6. The curve/M-rep intersection problem

Our main motivation for introducing M-reps was to
tackle intersection problems by generalizing the approach
initiated by Canny and Manocha for non-singular matrix
representations [23]. This approach consists in combin-
ing matrix-based implicit representations with generalized

eigenvalues computations. We have extended it to M-reps
recently: see [22,10] for the curve/surface intersection and
[10] for the curve/curve intersection by means of M-reps.
Here, we quickly review how the properties of M-reps allow
us to intersect a parameterized curve with another param-
eterized curve or surface that is represented by an M-rep,
i.e. a curve/M-rep intersection problem.

For simplicity and clarity, let us consider the intersec-
tion between a ray and a parameterized surface (e.g. a
Bezier patch obtained after the decomposition of a NURBS
into Bézier patches [24, Chapter 5, §5.3]). This intersec-
tion problem is intensively used for ray tracing NURBS. A
classical approach consists of computing an implicit repre-
sentation of the ray as the intersection of two planes given
by linear equations in R3. Then, substituting the surface
parameterization into these two equations yields a polyno-
mial system that can be solved via the Newton method.
The intersection points are then obtained in the parameter
space of the surface, so one can compute the normal of the
surface at these points without difficulty (this is required
for light reflection for instance).

Another way to proceed is to compute an implicit equa-
tion of the parameterized surface, to substitute the ray pa-
rameterization in this equation and solve a univariate poly-
nomial. However, the implicitization step is very hard in
general, due to the presence of base points. But M-reps have
been designed to overcome this difficulty and are very easy
to compute. So, let Mν be an M-rep of the surface param-
eterization. Substituting the ray parameterization into Mν

yields a matrix whose entries are univariate linear polyno-
mials in the parameter of the ray, say t. Finding the inter-
section points amounts to finding the values of t such that
this matrix is not full rank. These values are the general-
ized eigenvalues of this matrix (which is actually a univari-
ate pencil of matrices) and, after a reduction step based
on the SVD, they can be found by using algorithms that
have been developed by the community of numerical lin-
ear algebra (see for instance [15, Chapter 4]). Using the ray
parameterization, we then obtain the intersection points in
R3. Now, thanks to the inversion property of M-reps, one
can find the pre-image of these intersection points in the
surface parameter space and hence compute the normal to
the surface at these points (notice that intersection points
that are singular points on the surface do not have a well
defined normal vector). We refer the reader to [22] for the
details (see also [1] for the linearization step in the Bern-
stein basis instead of in the power basis). Notice too that a
study of the numerical accuracy in generalized eigenvalue
computations can be found in [19]. In Figure 2, a ray tracing
of the sphere given in Example 2 is shown. It has been ob-
tained by Valentin Michelet (an engineering student) who
developed his own ray tracer from scratch by computing
the ray/surface intersection by means of M-reps. Two other
illustrations are given in Figure 3.

It should be clear to the reader that the above method
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Fig. 2. Ray tracing of the sphere by means of M-reps

Fig. 3. Ray tracing of Steiner surfaces by means of M-reps

can be applied with any parameterization that admits an
M-rep. Therefore, parameterized curve/curve and param-
eterized curve/surface intersections can be treated exactly
in the same way. An implementation of these intersections
has been done in the algebraic geometric modeler Axel, in
the plugin Shape; it is freely available at the URL: http:
//axel.inria.fr.

7. Conclusion

In this paper, a new implicit representation of a param-
eterized curve or surface is presented: a matrix whose en-
tries depend on the space variables. It has the property
that its rank drops after evaluation at a given point if and
only if this point belongs to the curve or surface under con-
sideration. The main properties of such an implicit matrix
representation are described and a detailed analysis of its
numerical behavior is given. Its use for solving intersection
problems is also illustrated and seems to be promising. The
surface/surface intersection problem by means of this new
representation is still a topic for future research. A prelim-
inary investigation has already started [11], but more work
is necessary to get a numerically stable and robust method,
as we provided for the curve/M-rep intersection problem.
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[5] Nicolás Botbol, Laurent Busé, and Marc Chardin. Fitting ideals
and multiple-points of surface parameterizations. In preparation,

2013.
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