A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polynomials expressed in polynomial bases, IMA Journal of Numerical Analysis, vol.29, issue.1, pp.141-157, 2009.
DOI : 10.1093/imanum/drm051

J. D. Oliver, T. Barrowclough, and . Dokken, Approximate implicitization using linear algebra, J. Appl. Math, 2012.

E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets [4] Nicolás Botbol. The implicit equation of a multigraded hypersurface, Inst. HautesÉtudesHautes´HautesÉtudes Sci. Publ. Math. J. Algebra, vol.348, issue.67, pp.5-42381, 1988.

N. Botbol, L. Busé, and M. Chardin, Fitting ideals and multiple points of surface parameterizations, Journal of Algebra, vol.420, 2013.
DOI : 10.1016/j.jalgebra.2014.07.028

URL : https://hal.archives-ouvertes.fr/hal-00874221

L. Busé, M. C. , L. Busé, M. Chardin, and J. Jouanolou, Implicitizing rational hypersurfaces using approximation complexes, Proceedings of the, pp.1150-1168, 2005.
DOI : 10.1016/j.jsc.2004.04.005

L. Busé, D. Cox, and C. Andrea, IN THE PRESENCE OF BASE POINTS, Journal of Algebra and Its Applications, vol.02, issue.02, pp.189-214, 2003.
DOI : 10.1142/S0219498803000489

L. Busé and J. Jouanolou, On the closed image of a rational map and the implicitization problem, Journal of Algebra, vol.265, issue.1, pp.312-357, 2003.
DOI : 10.1016/S0021-8693(03)00181-9

L. Busé and T. Luu-ba, Matrix-based implicit representations of rational algebraic curves and applications, Computer Aided Geometric Design, vol.27, issue.9, pp.681-699, 2010.
DOI : 10.1016/j.cagd.2010.09.006

L. Busé and T. Luu-ba, The surface/surface intersection problem by means of matrix based representations, Computer Aided Geometric Design, vol.29, issue.8
DOI : 10.1016/j.cagd.2012.04.002

. Eng-wee, R. N. Chionh, and . Goldman, Degree, multiplicity, and inversion formulas for rational surfaces using u-resultants, Computer Aided Geometric Design, vol.9, issue.2, pp.93-108, 1992.

D. Cox, R. Goldman, and M. Zhang, On the Validity of Implicitization by Moving Quadrics for Rational Surfaces with No Base Points, Journal of Symbolic Computation, vol.29, issue.3, pp.419-440, 2000.
DOI : 10.1006/jsco.1999.0325

D. Cox, J. Little, and D. O. Shea, Using algebraic geometry, Graduate Texts in Mathematics, vol.185, 1998.
DOI : 10.1007/978-1-4757-6911-1

J. W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), 1997.
DOI : 10.1137/1.9781611971446

T. Dokken, Approximate implicitization, Mathematical methods for curves and surfaces, pp.81-102, 2001.

H. Gene, C. F. Golub, and . Van-loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 1996.

C. Per and . Hansen, Rank-deficient and discrete ill-posed problems, SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics, 1998.

Y. Hua and T. Sarkar, On SVD for estimating generalized eigenvalues of singular matrix pencil in noise, IEEE Transactions on Signal Processing, vol.39, issue.4, pp.892-900, 1991.
DOI : 10.1109/78.80911

A. Khetan and C. Andrea, Implicitization of rational surfaces using toric varieties, Journal of Algebra, vol.303, issue.2, pp.543-565, 2006.
DOI : 10.1016/j.jalgebra.2005.05.028

J. Kollár, An effective lojasiewicz inequality for real polynomials, Periodica Mathematica Hungarica, vol.38, issue.3, pp.213-221, 1999.
DOI : 10.1023/A:1004806609074

T. Luu-ba, L. Busé, and B. Mourrain, Curve/surface intersection problem by means of matrix representations, SNC Conference, pp.71-78, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00418403

D. Manocha and J. Canny, A new approach for surface intersection, Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM applications, pp.209-219, 1991.

A. Les, W. Piegl, and . Tiller, The NURBS book Monographs in visual communication, 1997.

T. W. Sederberg and F. Chen, Implicitization using moving curves and surfaces, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques , SIGGRAPH '95, pp.301-308, 1995.
DOI : 10.1145/218380.218460

P. Solernó, Effective ??ojasiewicz inequalities in semialgebraic geometry, Applicable Algebra in Engineering, Communication and Computing, vol.118, issue.1, pp.2-14, 1991.
DOI : 10.1007/BF01810850