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On a nonlocal, nonlinear Schrödinger equation
occuring in Plasma Physics

T. Colin∗

CMLA, Ecole Normale Supérieure de Cachan et CNRS,
61 av. du Pdt Wilson, 94235 Cachan Cedex, France.

ABSTRACT

In this work, our goal is to study the Cauchy problem for a nonlocal, nonlinear
Schrödinger equation occuring in Plasma Physics. We shall construct solutions in
the energy space; we give some sufficient conditions on the initial data which ensure
that the solutions are global and we show that in some cases, finite time blow up
occurs. We prove the existence of standing waves, solution to these equations and
provide some stability results.

1 Introduction

The goal of this work is to study the following system :
iφt + ∆φ = −div(|∇ψ|σ∇ψ),

∆ψ = φ,
φ(x, 0) = φ0(x),

(1)

for t ≥ 0 and x ∈ R3.
This system is equivalent to :{

i(∇ψ)t + ∆(∇ψ) = ∇(−∆)−1div(|∇ψ|σ∇ψ),
∇ψ(x, 0) = ∇ψ0(x).

(2)

The physical case occurs for σ = 2 and was introduced by Musher, Rubenchick
and Zakharov5 as a model for a nonlinear Plasma.
The plan of the work is the following:

2 Existence and finite time blow-up results.
3 Standing waves.
4 Radial standing waves.
5 Return to the finite time blow-up.
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6 Stability for σ < 4/3.
7 Instability for σ > 4/3.
We will not give complete proofs, we refer the reader to Colin2 for more details.

2 Existence and finite time blow-up results.

If φ is a solution to Eq. 1, one can show that the following quantities are invariants
of the motion:

m(t) =
∫
R3
|∇ψ|2dx = m(0), (3)

E(t) =
∫
R3

1

2
|∆ψ|2 − 1

σ + 2
|∇ψ|σ+2 = E(0). (4)

Therefore, we define the energy space H as the completion of the set of C∞ fonc-
tions ψ with compact support endowed with the norm |∇ψ|H1 (H1 denoting the
standard Sobolev space on R3). Because of the Sobolev imbedding, H turns out to
be equal to {ψ ∈ L6, ∇ψ ∈ H1} normed by |∇ψ|H1 .
With these notations, we have:

Theorem 1 Let 0 < σ < 4 and ψ0 ∈ H, then there exists an unique maximal solution
to Eq. 2 on [0, T (ψ0)[ in C([0, T (ψ0)[, H). The equalities Eq. 3 and Eq. 4 hold.
Moreover, if T (ψ0) <∞ then

lim
t→T (ψ0)

|∇ψ(t)|H1 = +∞.

If 0 < σ < 4/3, then T (ψ0) =∞.
If 4/3 ≤ σ < 4 and if |ψ0|H is sufficiently small, then T (ψ0) =∞.

Proof: For the proof of this Theorem, we remark that the operator ∇(∆)−1div
is a Calderón-Zygmund operator, hence it maps Lp into Lp for all 1 < p < ∞.
Therefore, we can use the standard methods for Schrödinger type equations (see
Kato3 for example). We first prove that Eq. 2 is equivalent to the following integral
equation:

∇ψ = T (ψ), (5)

where

T (ψ) ≡ S(t)∇ψ0 − i
∫ t

0
S(t− s)∇(−∆)−1div(|∇ψ|σ∇ψ)(s)ds, (6)

S(t) denoting the free propagator of the equation

i∇ψt + ∆∇ψ = 0.

Using the Lp−Lq estimates (see Kato3), one can prove that T is a contraction in the
convenient spaces, hence there exists a local solution to Eq. 2.
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If σ < 4/3, using Eq. 3, 4 and a Gagliardo-Nirenberg inequality, we obtain a bound
of ψ in the space H, and hence the solution is global.
If σ ≥ 4/3 and if |∇ψ0|H1 is small, one can show, using a Gagliardo-Nirenberg in-
equality, that E(t) controls the L2 norm of ∆ψ, therefore the solution is global in
time, see Colin2 for details.

For the case where |∇ψ0|H is not small, we have the following result:

Theorem 2 i) Let ψ0 ∈ H be such that∫
|x|2|∇ψ0|2 <∞,

then the solution ψ to Eq. 2 satisfies:

|x||∇ψ| ∈ L∞(0, t, L2),

for all t < T (ψ0).
ii)If σ ≥ 4/3, there exists some radial initial data such that the corresponding solutions
blow up in finite time.

Sketch of proof:
i) In order to prove that the quantity | |x||∇ψ| |L2 persists, we work on the integral
equation Eq. 5. We have to estimate the commutator of x and ∇(−∆)−1div. This
can be done using the Fourier transform and some estimates on the Riesz potential
(see Stein7). Next, we show that if |x||∇ψ0| ∈ L2(R3), then there exists T0 > 0
such that |x||∇ψ| ∈ L∞(0, t, L2) for all t < T0. Then it is sufficient to prove than
T (ψ0) and T0 are equal. This is done by supposing the contrary and working on Eq. 5.

ii) To prove the second part of Theorem 2, we make two elementary remarks:
1)P = ∇(−∆)−1div is the projector on the set of the gradients in (L2(R3))3.
2)Every radial vector of (L2(R3))3 is a gradient.

These remarks prove that the restriction of Eq. 2 to the radial functions is:

i(∇ψ)t + ∆∇ψ = |∇ψ|σ∇ψ.

This equation satisfies the Virial identity:

d2

dt2

∫
|x|2|∇ψ|2dx = 16E(ψ0) +

16

σ + 2
(1− 3σ

4
)
∫
|∇ψ|σ+2, (7)

where

E(ψ0) =
∫ 1

2
|∆ψ0|2 −

1

σ + 2
|∇ψ0|σ+2.

Hence, in the case where σ ≥ 4
3

and E(ψ0) < 0, the solution has to blow up in finite
time.
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3 Standing waves.

The goal of this section is to find ψ(x) and ω ∈ R such that eiωtψ(x) is a solution to
Eq. 2 .

Theorem 3 For all 0 < σ < 4 and all ω > 0, there exists a function ψω ∈ H
satisfying: {

−ωφω + ∆φω = −div(|∇ψω|σ∇ψω),
∆ψω = φω,

i.e. eiωtψω(x) is a solution to Eq. 2.

Proof: We solve the following minimization problem:

inf{−
∫
|∇ψ|σ+2, ψ ∈ H,

∫
|∇ψ|2 = λ,

∫
|∆ψ|2 = µ},

where λ and µ are convenient parameters. In order to solve this problem we take
a minimizing sequence and thanks to the concentration-compactness method of P.L.
Lions4, we prove that this sequence is compact up to translations, providing a mini-
mum ψ. Writing the Euler-Lagrange equation satisfied by φ, there exists two Lagrange
multipliers α and β such that:

α∆ψ + β∆2ψ = −div(|∇ψ|σ∇ψ). (8)

We now make a scaling on ψ, and using the so-called Pohozahev identity (i.e. multi-
plying Eq. 8 by x.∇ψ and integrating over all R3), we find that ω has to be positive.
Hence eiωtψ(x) is a standing wave solution to Eq. 1.

4 Radial Standing waves.

The goal of this section is to prove that there exists some radial standing waves
solution to the system 1. Our result in this direction reads as follows.

Theorem 4 For all ω > 0 and 0 < σ < 4, there exists radial functions ψω satisfying{
−ωφω + ∆φω = −div(|∇ψω|σ∇ψω),

∆ψω = φω.

Method:
The system 1 in the radial case is equivalent to the following ordinary differential
equation:

f ′′ +
2

r
f ′ − (ω +

2

r2
)f = −|f |σf,
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where f = ψr.
We find a solution to this equation by considering the following minimization problem:

inf{−
∫
fσ+2r2dr, f ∈ H1

r (R3) such that
∫
f ′2r2dr + 2

∫
f 2dr = µ,

∫
f 2dr = λ},

where H1
r (R3) denotes the set of all radial functions which are in the Sobolev space

H1(R3). Using the compactness of H1
r (R3) ⊂ Lσ+2, due to Strauss8, we are able to

prove that the minimizing sequences are compact in H1(R3), providing therefore a
minimum. We conclude as in the previous section.

There is an open question: are the two familly of standing waves the same?

5 Return to the finite time blow up.

Thanks to the previous section, we prove:

Proposition 1 Let σ = 4/3, then for all t0 > 0, there exists a radial function ψ0

such that the corresponding solution to Eq. 2 blows up exactly at t = t0.

Proof: The restriction of Eq. 2 to the radial functions is:

iut + ∆u− 2

|x|2
u = −|u|4/3u, (9)

where u = ψr.
This equation satisfies the pseudo-conformal transformation law, i.e. if u is a solution
to Eq. 9 then

v(x, t) =
1

t
3
2

e
i|x|2
4t ū(

x

t
,
1

t
)

is also a solution to Eq. 9.

We now apply this transformation with u = any radial standing wave, and the propo-
sition is proved.

6 Stability for σ < 4/3.

Theorem 5 For σ < 4/3, the set Sω of standing waves defined by the minimization
problem of section 3 is stable:
for all ε > 0, there exists a δ > 0 such that

∀ψ0 ∈ H, inf
ψω∈Sω

||ψ0 − ψω||H < δ

⇒ inf
ψω∈Sω

||ψ(., t)− ψω||H ≤ ε.
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Sketch of proof:
We first proved that the problems

(P1) inf{−
∫
|∇ψ|σ+2, ψ ∈ H,

∫
|∇ψ|2 =

∫
|∇ψω|2,

∫
|∆ψ|2 =

∫
|∆ψω|2}

and

(P2) inf{1

2

∫
|∆ψ|2 − 1

σ + 2

∫
|∇ψ|σ+2 +

ω

2

∫
|∇ψ|2,

ψ ∈ H,
∫
|∇ψ|2 =

∫
|∇ψω|2},

where ψω is any standing wave that we found in section 3, are equivalent.
In order to do that, we use the concentration-compactness lemma to prove that (P2)
has a solution, and a careful scaling analysis shows that this solution is also a solution
to (P1). This method gives us the compactness of the minimizing sequences, which
implies the stability according to the method of Cazenave and Lions1.

7 Instability for σ > 4/3.

In this case, we prove:

Theorem 6 For σ > 4/3, the orbit eiθψω is unstable, i.e. there exists ε0 > 0 and
ψ0
n → ψω in H such that

sup
t>0

inf
θ∈R
||ψn(., t)− eiθψω||H ≥ ε0.

Sketch of proof:
The problems

(P1) inf{−
∫
|∇ψ|σ+2, ψ ∈ H,

∫
|∇ψ|2 =

∫
|∇ψω|2,

∫
|∆ψ|2 =

∫
|∆ψω|2}

and

(P3) inf{1

2

∫
|∆ψ|2 − 1

σ + 2

∫
|∇ψ|σ+2 +

ω

2

∫
|∇ψ|2,

ψ ∈ H,
∫
|∆ψ|2 =

∫
|∆ψω|2},
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where ψω is any standing wave, are equivalent (we apply the same method than in
the previous section).

We then define

d(ω) = inf{1

2

∫
|∆ψ|2 − 1

σ + 2

∫
|∇ψ|σ+2 +

ω

2

∫
|∇ψ|2,

∫
|∆ψ|2 =

∫
|∆ψω|2}.

A simple scaling leads to

d(ω) =
ω

2
σ
− 1

2

3

∫
|∆ψ1|2,

so that d is convex.
With these notations and results we are in the framework of Shatah and Strauss6,
which leads to Theorem 6.
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