
HAL Id: hal-00848093
https://inria.hal.science/hal-00848093

Submitted on 25 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low Speed Automation: technical feasibility of the
driving sharing in urban areas

Paulo Resende, Evangeline Pollard, Hao Li, Fawzi Nashashibi

To cite this version:
Paulo Resende, Evangeline Pollard, Hao Li, Fawzi Nashashibi. Low Speed Automation: technical
feasibility of the driving sharing in urban areas. IEEE ITSC 2013 - 16th International IEEE Conference
on Intelligent Transportation Systems, Oct 2013, La Hague, Netherlands. �hal-00848093�

https://inria.hal.science/hal-00848093
https://hal.archives-ouvertes.fr


Low Speed Automation: technical feasibility of the driving sharing in

urban areas

Paulo Resende, Evangeline Pollard, Hao Li, Fawzi Nashashibi

Abstract�This article presents the technical feasibility of
fully automated driving at speeds below 50 km/h in urban
and suburban areas with an adequate infrastructure quality
(no intersections, known road geometry and lane markings
available) focusing on congested and heavy traf c. This re-
quires implementation of several systems: lane keeping system,
Adaptive Cruise Control (ACC), lane changing,. . . Feasibility
has been demonstrated through a complex scenario during the
 nal ABV project event.

I. INTRODUCTION

The Intelligent Transportation Systems (ITS) community

has been focusing on vehicle automation since many years.

From 1987 to 1995 the European Commission funded the

800 million Euros EC EUREKA Prometheus Project on

autonomous vehicles where vehicles such as the Dickmann�s

Mercedes-Benz vehicle were able to perform vision-based

autonomous navigation on empty roads. In the meanwhile,

the USA funded the DARPA Autonomous Land Vehicle

(ALV) project. Here, laser-based (ERIM) and vision-based

navigation (CMU, SRI) were developed for low speed driv-

ing on roads while HRL laboratories were demonstrating

the  rst off-road low speed autonomous ALV robot. In

the 90�s, the cybercar were one of the  rst concepts of

vehicles designed as fully automated vehicles [1]. Beyond

its fully automation ability, they were conceived as a new

transportation system, for passengers or goods, on a road

network with on-demand and door-to-door capability. In the

USA, the Federal Highway Administration established the

National Automated Highway System Consortium (NAHSC)

that demonstrated about 20 automated vehicles in Demo�97

on I-15 in San Diego, California.

Since then, large efforts have been performed towards

full automation with the  rst DARPA Grand Challenge in

2004 [2] and its urban version in 2007 (DARPA Urban

Challenge [3]). In 2010, the VisLab Intercontinental Au-

tonomous Challenge, consisted in riding four vehicles from

Parma, Italy, to Shanghai, China, mainly in an automated

way [4]. The same year, Google announced having created

an autopilot system for cars which already drove more than

200,000 km in a fully automated way [5]. However, the

technology used is really expensive. Other initiatives and

automated vehicles exist worldwide e.g. Technical University

of Braunschweig or Stanford�s road vehicles.

The Google driverless car is the  rst case of a vehicle

supposed to autonomously drive in a urban context. Even if
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Nevada was the  rst state to issue driverless vehicle licenses

on public roadways, total automation remains a future goal,

even if vehicles become more and more autonomous in the

automotive industry. Indeed, many Advanced Driver Assis-

tance Systems (ADAS) are now embedded into industrial

cars in order to help the driver in his driving process. Part

of these systems, such as speed alert or blind spot detection,

provides only advice or warning to the driver, but others,

such as the Adaptive Cruise Control (ACC) or the Anti-lock

braking system (ABS), can be considered as elements of

a partial automation since they act on the control part of

the vehicle. This increasing automation is possible because

sensors become more and more effective and reliable. In

this spirit, many international and European projects aim at

proving the technical feasibility for such automated vehicles

in order to create a legal framework. That was the case with

the Citymobil project, the German AKTIVE project and the

HAVEit project [6].

Beyond the HAVEit project, that was related to high speed

automation on highways and human machine cooperation,

the French ABV project, standing for Low Speed Automa-

tion, differs from HAVEit by focusing on congested and

heavy traf c in urban and suburban roads at speeds below

50 km/h and adding the fully automated driving capability

to the automation spectrum.

By automatically following congested traf c, the ABV

system relieves the human driver from performing

monotonous tasks like holding the brake pedal or rather

risky maneuvers like changing lanes or simply keeping a safe

distance from the vehicle in front. During fully automated

driving inside the application zone, the human driver is still

responsible for the vehicle, and so, he is required to be

involved in the driving task (e.g. activating a blinker to

overtake) but with much less engagement. When reaching

the end of the application zone the driver is required to take

over the control of the vehicle. If he fails to do so, the vehicle

will automatically stop.

To demonstrate the technical feasibility of the ABV

project, technologies where integrated into a demonstration

vehicle consisting of an electri ed Citröen C1 Ev�ie [7].

Consequently, the paper is structured as follows. First,

a system description is provided in Sec. II. Then, from

Sec. III to IV, the three classical components of automation,

perception-planing-control, are described. Sec. V is dedicated

to the driving share. And, in Sec. VI, we report results of our

scenarios experiments. Finally, conclusion and future works

are drawn in Sec. VII.



Fig. 1. Vehicle equipment

II. SYSTEM DESCRIPTION

An overview of the vehicle equipment and components

can be seen on the Fig. 1. Citröen C1 Ev�ie is an electrical

vehicle equipped the following elements:

• Sensors in order to provide information about the sur-

rounding environment (more information are provided

in Sec. II-A) .

• On board computer to process data coming from the

sensor in order to plan the trajectory and calculate forces

to apply on the actuators to achieve it.

• Actuators in order to follow the planed trajectory

• Interfaces in order to interact with the driver through a

touch screen and switches to activate the different sensor

and the automation mode

• Communication devices: CAN bus (for Controller Area

Network) for the low level communication and 3G

antenna for the internet.

A. Sensors

Exteroceptive sensors are used to provide information

about the environment. Two laser range  nder devices are

mounted in the front of the vehicle and one at the back as

described in Fig. 2. Two lasers are used at the front to cover

all the front area because they have a 110 ! aperture only.

One frontal camera is used to observe the road. One GPS-

RTK is used to provide an absolute positioning, because no

map-matching is considered in this application. In addition,

proprioceptive sensors such as incremental encoders are used

to provide the vehicle velocity and steering angle information

are provided from the steering actuator.

B. Actuators

The vehicle is equipped with acceleration/brake and steer-

ing actuators (PARAVAN) that are controlled by software.

Actuator controller and CAN bus architecture are described

in Fig. 3.

III. PERCEPTION ISSUES

Perception issues are divided into three main axes. First,

the ego-localization consists in estimating the vehicle posi-

tion and orientation in the application zone.

Fig. 2. Top-view of the perception area

Fig. 3. Actuator controllers and CAN bus con guration

A. Ego-localization

Let the vehicle state be denoted as Xt = (xt, yt, θt)
T ;

where (xt, yt) and θt respectively denote the position and

the heading angle of the vehicle in the absolute reference

at time t. The vehicle state is estimated by fusing GPS data

and odometer data in the framework of the Extended Kalman

Filter (EKF) [8].

Vehicle state evolution prediction

Let ut = (∆dt,∆θt) denote the vehicle motion data, i.e.

the traversed distance and the yaw change (directly measured

or indirectly computed). The vehicle state equation is thus

written as:

Xt = G(Xt−1,ut,Ex) (1)

where G is the non linear motion model and Ex is a zero-

mean, white Gaussian process, which models the uncertainty

on the vehicle state model.

Motion data are used to predict the vehicle state X̂t|t−1

according to the kinematic bicycle model:






xt|t−1 ≈ xt−1 +∆dt cos(θt−1 +∆θt/2)
yt|t−1 ≈ yt−1 +∆dt sin(θt−1 +∆θt/2)
θt|t−1 = θt−1 +∆θt

(2)



The predicted vehicle state covariance Pt|t−1 is evolved

as:

Pt|t−1 = GXPt−1GX
T +GuEuGu

T (3)

where GX and Gu are respectively the Jacobian matrices of

the function G with respect to the X and u.

Vehicle state update

Let the GPS measurement for the vehicle at time t be
denoted as zt = (zx, zy)

T . The measurement model can be

described as:

zt = HXt +Rz (4)

where H = [I2×2,02×1] is the transition matrix from the

vehicle state space to the measurement space; the measure-

ment error Rz is a zero-mean, white Gaussian process with

a known covariance matrix Ez

The state update is carried out as follows:

K = Pt|t−1H
T (HPt|t−1H

T +Ez)
−1

X̂t = Xt|t−1 +K(zt −HXt|t−1)
Pt = (I−KH)Pt|t−1

(5)

where K is de ned as the gain of the Kalman  lter.

B. Lane detection and tracking

The lane detection process is ful lled by a mono-vision

system. It is divided into three main steps: lane marking

segment extraction, lane model  tting, and lane tracking.

In the lane marking segment extraction, a bird-eye view

images is generated by inverse perspective mapping i.e.

projecting the camera image onto the ground plane. Camera

parameters which determine the geometrical relationship

between the image plane and the ground plane are calibrated

off-line. Image processing is carried out on the bird-eye view

image instead of directly on the camera image. Based on

some criteria that are related to the inherent physical prop-

erties of the lane marks only, lane mark segment candidates

are extracted using Canny detector for edge detection, edge

point connection and edge segment matching.

The lane model  tting is performed to generate possible

lane con guration hypotheses based on the extracted lane

mark segments and a priori knowledge about the road geom-

etry. The lane model is parameterized in the world reference

(the ground plane) instead of in the image reference. For

any pair of lane marking segments, a preliminary judgment

on whether they are possibly on the same lane is performed,

according to the geometry of a  tted cubic spline and normal

road construction standards.

Then, a group of lane con guration samples is generated

randomly in the spirit of the RANSAC method [9] and their

 tness values are evaluated. The lane tracking is carried out

in the framework of the particle  lter, including the evolution

and the update of the lane state.

More details concerning this sub-section can be referred

to [10].

Fig. 4. Obstacle detection and tracking: general scheme

C. Obstacle detection and tracking

1) Principle: The proposed obstacle detection and track-

ing approach is a classical 6 step approach [11] illustrated

in Fig. 4.

• In the Data processing step, distances coming from the

several laser sensors are converted into (x, y, z) points
in the local Cartesian coordinate system centered on

the middle back of the chassis of the vehicle. They are

then sorted depending on their angle from the coordinate

system center.

• In the Segmentation step, a Recursive Line  tting algo-

rithm is used as in [12] with parameter d1 and d2 for the
maximum distances to the closest segment and between

two successive segments respectively. Before applying

the Recursive Line  tting algorithm on the point set, it

is clustered. Each sorted point is recursively associated

to an existing cluster by measuring its distance to the

last point of the cluster or it is initializing a new one if

the distance to each existing cluster is bigger than the

same threshold d2.
• In the Clustering step, segments are associated to create

objects. Objects with less than 5 laser impacts are

 ltered. This number has been established by expertise.

Then, only objects on the current lane are considered

for ACC or emergency braking to limit false alarms.

• In the Classi cation step, size and shape consideration

are used to obtain a raw classi cation of the object. This

raw consideration is used to update the type probability

over time only, but motion model is not yet considered.

• In the Tracking step, information about the vehicle

dynamics are considered (velocity and steering angle) to

improve the tracking of the object in the local Cartesian

coordinate system. Object tracking is done in relative

coordinates regarding the ego-vehicle using a Constant

Velocity Kalman  lter and Nearest Neighbor approach



Fig. 5. Obstacle detection and tracking result - Cyan rectangle is the ego-
vehicle. Yellow points are the laser impacts. Green lines are the segments.
Blue lines are the current lane limits. Pink lines are the detection area limits
- Red square with label is one of the tracks and the associated red arrow
is the estimated orientation

for data association to deal with real time constraint.

2) ACC Target detection with lane detection: In order to

perform an ACC system, the closest obstacle on the current

lane must be detected. Lane information (see Fig. 6) is thus

converted into the local Cartesian coordinate system and used

to  lter obstacle on the current lane. As illustrated in Fig. 5,

obstacles are tracked in the detection area (limits are the pink

lines) and considered for the ACC only on the current lane

(limits are the blue lines).

3) ACC Target Relative velocity estimation using numeri-

cal derivation method: In order to provide an ACC system,

the relative velocity of the front obstacle must be calculated.

This can be done by derivation of its relative distance.

a) Numerical derivation: The obstacle detection mod-

ule provides an estimation of the relative position of the

obstacles by regarding the ego position. From this position,

the relative distance dr(t) of the closest front obstacle can be
calculated over time. The distance dr(t) is thus considered
as a noisy input signal to derive numerically, in order to gain

the relative velocity.

Our approach is based on the Fliess�s approach [13]. The

relative distance dr(t) is approximated as a truncated Taylor
expansion at order N , which can be locally approximated as

a polynomial function. Here, for t = 0, we can approximate
dr(t) as:

dr(t) =

N
∑

i≥0

d(i)r (0)
ti

i!
(6)

Then, each processed signal can be extended in a poly-

nomial function of higher degree and derivative coef cient

can be calculated by using the Laplace transform. Here, the

relative distance dr(t) is locally represented as a  rst order

Fig. 6. Lane detection and tracking result - Cyan lines are the current
lane boundaries. Red lines are the lane centers. Bottom  gures are bird eye
view images: the right one is a binary image containing extraction points.

polynomial function, ∀(ao, a1) ∈ R
2:

dr(t) = a0 + a1 · t (7)

In order to calculate the relative velocity, coef cient a1
for dr(t) signal must be estimated. Using the Laplace trans-
form and successive calculus transformation, eq (7) can be

expressed in the Laplace domain as:

−
a1
s4

=
Dr(s)

s2
+

1

s

dDr(s)

ds
(8)

where Dr(s) is the operational expression of dr(t). Using
classical operational to time domain transformation rules

and Cauchy formula, estimation of the coef cient â1 can

be limited to the calculation of one integral:

â1 = −
3!

T 3

T
∫

0

(T − 2τ)dr(τ)dτ (9)

where T is the length of the integration window. More details

on this technique are provided in [14], [15].

b) A new robust numerical derivation method: The

numerical derivation method has been extended in order to be

robust to outliers. If for some reasons, the closest detected

obstacle is not the right vehicle (in case of lane detection

de ciency for instance, the guard rail can be detected instead

of the front vehicle), then the value will be unexpected and

has to not be taken into account for the relative velocity

estimation.

The proposed robust approach can be summarized as

follows. A maximum standard deviation σ is de ned in

order to de ne the tolerance of the system to outliers. It

must be determined by considering the application and the

maximum velocity and acceleration of the vehicle. Then

for each incoming distance value dr(t) at time t, a gating



test is processed which takes into account the time to the

closest valid data ∆t in order to balance the gating procedure
over time. If the following condition described in eq. 10 is

respected, then the incoming value is validated.

(dr(t)− dr(t− 1))
2

σ2
· exp(−σ∆t) < γ (10)

where γ is coming from the χ2 table following a gating

probability of 0.99.

IV. CONTROL ISSUES

The control is based on a decoupled control law algorithm:

one for the steering wheels angle β (lateral control law

Sec. IV-A) to perform lane keeping/changing (LKS/LCS),

and the other for the vehicle speed (longitudinal control law

Sec. IV-B) to perform an Adaptive Cruise Control (ACC).

A. Lateral control

The lateral control law for the steering wheel takes as

inputs the lateral position error of the vehicle e⊥, and the

yaw angle of the vehicle Ψ at a variable look-ahead point.

This point is located at a distance dv , in front of the vehicle,
depending on the vehicle actual speed v as shown in eq. (11).

dv =















dmin, v ≤ vmin

dmin +

(

vmax − v

vmax − vmin

)

, vmin < v < vmax

dmax, v ≥ vmax

(11)

Eq. (12) represents the control law we used:

β = k1 · e⊥ + k2 · (ψ − ψref ) (12)

In this equation the yaw angle reference ψref is given by

the target lane heading information. Proof of stability of this

equation is given in [16].

The dv function parameters together with the gains k1 and
k2 are used to tune the system. The module of the maximum
lateral position error and of the maximum steering angle,

are respectively given by e⊥,max and βmax. The maximum

steering wheels rate of the vehicle is respected by limiting

the variation of β between two successive commands.

B. Longitudinal control

The longitudinal control law is a simple proportional-

integral-derivative controller (PID) as shown on eq. (13)

based on the speed error ve given by (v− vref ). This law is

used to control the position p of a coupled gas/brake pedal.

p = kp · ve + ki

∫

(ve + kD)∂ve (13)

To avoid saturation of the pedal position command the

integral error is limited using an anti-windup incremental

algorithm. When no obstacle is present in the trajectory of

the vehicle, the reference speed vref is simply given by the

minimum value between the driver preferred speed vdriver,
the road speed limit vroad, and the maximum speed the

automated system can handle vsystem. When an obstacle is

present in the trajectory of the vehicle moving at an absolute

speed vobs, the reference speed vref has to be calculated.

Considering the Torricelli�s equation (with vf and vi the
 nal and initial velocity),

v2f = v2i + 2A∆d (14)

and knowing that the desired speed variation is zero when the

ego-vehicle is at the appropriate distance to the front obstacle

(eg. derror = 0), the  nal velocity can be calculated as:

vf =
√

2.A.∆d (15)

where ∆d = derror and A is the desired accelera-

tion/deceleration.

The coef cient derror/|derror| is then introduced to spec-
ify the sign of the desired speed variation since vf is always

positive and that the reference speed vref is given as the

minimum value between vdesired and the ACC speed vACC

provided by:

vACC = vobs +

(

derror
|derror|

)

√

2 · A · |derror| (16)

where derror is given by:

derror = min (dobs, vobs · theadway) (17)

and dobs is the distance from the vehicle to the obstacle,

theadway is the headway time in seconds (2 seconds is

considered to be a good value) and A is the desired vehicle

acceleration if derror ≥ 0 or deceleration if derror < 0 .

The  nal gas/brake pedal position p is then given as the

minimum between the previously calculated pedal position

p using eq. 16 and an estimated collision risk multiplied by

the maximum brake position. The Time-To-Collision (TTC)

based collision risk estimation relates to the work described

in [17].

V. INTERACTION WITH A HUMAN

The human-machine interface in the vehicle consists of

a touch screen allowing the driver to choose the preferred

speed and to initiate lane changes by activating the blinkers

if this is allowed in a given situation. Information about

the current speed limits, environment situation (lanes and

obstacles), and current vehicle maneuver are presented to the

driver in real time by visual information in the screen. An

image of the touch screen graphical interface is represented

on Fig. 7. A situation awareness component monitors the

current state of the lanes (number of lanes, lane marking type,

current lane index), obstacles, ego vehicle state and current

maneuver (keep lane, change lane left/right, emergency stop).

It updates the information about the current situation to be

presented in the graphical interface. Written messages about

some particular situations (blocked road, end of application

zone, emergency stop) are also used to inform the driver. At

any moment the driver can bring the vehicle to a full stop

by pressing the STOP button.



Fig. 7. Screenshot of the graphical interface in the interior of the vehicle

VI. EXPERIMENT RESULTS

Real experiments have been conducted on the Satory

tracks, close to Versailles in France. Results shown in

Fig. 8 and 9 were registered during the �nal event of the

ABV project. The demonstration consisted in driving the

vehicle in a fully automated mode over 2 km. Weather

was cloudy. The scenario satis�ed a wide variety of road

scenarios. For the lane marking detection, the algorithm has

been confronted to damaged markings, useless blue road

marking, paved road, various shadows,. . . . Additional tests

have been made in the past to test the algorithm during

night and that has been proved that the algorithm is even

better int such conditions, where lane markings are really

well re�ected. Ego-localization had to deal with an outage

due to the presence of trees. The experiment objective was

to realize several use-cases: lane following, changing of

lane, overtaking, ACC and emergency braking. All these

maneuvers have been successfully conducted several times.

Fig. 8 shows the vehicle velocity and its steering angle. The

maximum velocity conducted by the vehicle was 47 km/h in

a smooth trajectory as shown also in [18].

Fig. 9 represents the relative distance measured from the

obstacle detection volume and the relative velocity calculated

with the numerical derivator at the beginning of the scenario.

When the scenario starts, a static obstacle is on the road.

The vehicle slowly starts and stops behind the obstacle (at

t = 26 s) Then, the obstacle starts (at t = 32 s) and the

vehicle follows it, maintaining a safe distance according to

its relative velocity. That one is calculated with the numerical

derivator and keeps a smooth and coherent shape.

VII. CONCLUSION AND FUTURE WORK

We presented in this article the prototype vehicle Citröen

C1 Ev�ie and its technologies to demonstrate the technical

feasibility of fully automated driving and low speed for the

ABV project and this main objective was achieved.

Now, beyond the ABV project objectives, many per-

spectives can be drawn. The perception system could be

Fig. 8. Vehicle velocity

Fig. 9. Front obstacle relative distance and velocity

more robust including stereo-vision algorithm for the ego-

localization and the obstacle detection algorithms. To com-

plete the perception architecture to the level of the state of the

art, localization should include a map matching algorithm.

It could also integrate more functionality such as the road

sign unit detection in order to be independent on the map.

The decision system, quite simple for the ABV project, can

be improved, in order to integrate more complex situations:

passing maneuvers with multi-criteria decisions, intersection

management including round-about . . . long terms perspec-

tives being to ensure automation outside the application zone

Many works are still in progress on the interaction between

the driver and the car. There is no doubt that future of

automation aims towards an intelligent interaction, able to

assess the driver state as well as the system state.
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