E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, vol.52, issue.2, pp.489-509, 2006.
DOI : 10.1109/TIT.2005.862083

D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Transactions on Information Theory, vol.52, issue.1, pp.6-18, 2006.
DOI : 10.1109/TIT.2005.860430

H. Rauhut, Compressive Sensing and Structured Random Matrices, Theoretical Foundations and Numerical Methods for Sparse Recovery of Radon Series Comp. Appl. Math, pp.1-92, 2010.

E. J. Candès and Y. Plan, A Probabilistic and RIPless Theory of Compressed Sensing, IEEE Transactions on Information Theory, vol.57, issue.11, pp.7235-7254, 2011.
DOI : 10.1109/TIT.2011.2161794

M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, vol.170, issue.6, pp.1182-1195, 2007.
DOI : 10.1002/mrm.21391

G. Puy, P. Vandergheynst, and Y. Wiaux, On Variable Density Compressive Sampling, IEEE Signal Processing Letters, vol.18, issue.10, pp.595-598, 2011.
DOI : 10.1109/LSP.2011.2163712

A. Juditsky, F. K. Karzan, and A. Nemirovski, On Low Rank Matrix Approximations with Applications to Synthesis Problem in Compressed Sensing, SIAM Journal on Matrix Analysis and Applications, vol.32, issue.3, pp.1019-1029, 2011.
DOI : 10.1137/100792251

URL : https://hal.archives-ouvertes.fr/hal-00450983

F. Knoll, C. Clason, C. Diwoky, and R. Stollberger, Adapted random sampling patterns for accelerated MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.64, issue.2, pp.43-50, 2011.
DOI : 10.1007/s10334-010-0234-7