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Abstract—Modelling plant-pest interactions is not an
obvious task since the involved processes are numerous
and complex. We propose a minimal model based on
trophic relations and the concept of plant compensation
capacity. We only consider three main components in
our system: the plant foliar biomass, the compensation
capacity, and the pest population. We prove that there
exist two threshold parameters, N1 and N2, and show that
the system admits different equilibria, which are locally
asymptotically stable or unstable, depending on the value of
the previous threshold parameters. Finally, we summarize
our theoretical results in a bifurcation diagram that allows
to discuss possible control strategies to lower the impacts
of the pest or even to obtain a better biomass yield.

Index Terms—Mathematical modelling, crop protection,
plant-insect interactions, plant compensation, bifurcation
diagram

I. INTRODUCTION

Biological control, i.e. the use of living organisms to
control pest invasions, is booming in crop protection.
If the part of biological control in the global crop
protection market was minimal in 2000 (0.2%), the
development of biopesticides and the discovery of new
biological control agents has increased the percentage
to 2.5%. Biological control programs mainly concern
aphids, thrips, lepidopteran and dipteran leaf-chewing
or miner caterpillars, mites and scales in almost all
agrosystems (forests, greenhouses, fields) [25]. Even if
they are currently more and more used, their successes
in pest control are mixed and debated in the scientific
community. For instance, the establishment frequency
of control agents is estimated to be 34%-50% and the
total successes for controlling the target population are
around 3% and 11% for partial controls [15]. In addition,
non target effects are a common problem of biological
control programs. The damage caused ecologically but
also economically can be very important [15]. A well
known example is Harmonia axyridis (Pallas), an asian

ladybird which proliferates in France but also in North
and South America. Initially, this ladybird has been used
to control aphids and psyllids and was really efficient.
But among other problems, its important proliferation
disrupted ecosystems equilibria and led to the extinction
of other ladybird species [2], [9], [28].

The relationships between insect populations and
plants are complex and their dynamics difficult to pre-
dict. They are ruled by a lot of different phenomena such
as physiological processes, allelopathic relations, defense
mechanisms, trophic relations, etc... Mathematical mod-
elling is a useful tool to understand the dynamics of these
biological systems. Models can also agregate knowledge
and as such provide a synthetic view on plant-insects
interactions.

Most of the time, biological control models only take
into account the pest population and its natural enemies
(see [17] and references therein) and do not integrate
the plant compartment, considering somehow that the
crop and the insect populations are not in interaction.
In practice, this assumption does not always hold. If the
main objective of biological control is to maintain the
crop yield above a critical economic threshold, it seems
clear that crop growth has to be taken into account in
the biological control modelling.

Actually, there exist different plant modelling ap-
proaches. Empirical models [23] are the simplest ones.
They are directly linked to experimental data and give
no biological explanation on the considered phenomena.
Process Based Models, in short PBM, developed since
the seventies, intend to describe the essential physio-
logical processes in plant growth [27], [16], [11], [3].
Finally, more recent models integrate plant functioning
and structure or architecture. These new models are
called Functional Structural Plant Models, shortly FSPM
[8], [26].

Integrating a plant compartment in a pest-natural



enemy model entails integrating interactions between
plants and insects. This is not an easy task. In-
deed, these interactions merge trophic relations, tox-
ins/viruses/phytoplasma injections, resistance and tol-
erance [24], [1], chemical and mechanistic defenses
[12]. Surprisingly, the scientific litterature remains scarce
in concrete papers about these interactions and their
modelling [10].

Our aim is to model some plant-pest interactions. We
built an explanatory model which we were able to study
mathematically. We decided not to consider indirect pest
or plant effects like toxines, viruses or chemical defenses
and to concentrate on the trophic relations and the plant
compensation capacity.

Plant compensation is the process by which plants
respond positively to recover from the effects of pest
injury on plant growth [6]. It is a common phenomenon,
which has been repeatedly reported in various plant taxa
during the last thirty years. For instance, the Butterprint
(Abutilon theophrasti Medik) preserves its growth and
reproduction, when, at most, 75% of defoliation occur
(see [22] and references therein); wild radish plants
(Raphanus raphanistrum Linné) behaves similarly with
only a defoliation up to 25 % [1]. Depending on the
authors, plant compensation is assessed through the
variation in plant biomass or plant fitness between an
undamaged and a damaged plant [21]. If the fitness or
biomass of a damaged plant is higher, lower or equal
to the fitness or biomass of an undamaged plant, it is
termed over- under- or plain compensation respectively.
However the ”overcompensation” phenomenon is still
the matter of a debate [1], [18].

A lot of processes have been proposed to explain
compensation [22], [18] :

• carbon reallocation.
• up-regulation of the primary metabolism (increased

photosynthesis rate, increased growth rate, in-
creased fruit set percentage)

• release of buds and meristems dormancy (increased
branching)

The compensation capacity mainly leans on the car-
bohydrate source-sink dynamics. Mature photosynthesis
leaves and stored reserves are sources. All other parts of
the plants and the storage compartment can be consid-
ered as sinks, while new leaves, flowers and fruits are
particulary strong sinks. Sink strength can regulate the
photosynthesis of leaves. If there exists a competition
(several sinks) for one given source, the strongest sinks
will receive a greater part of resources [14], [5]. A
pest attack increases the relative sink strength because
of the leaves biomass consumption. The total carbon

assimilation should indeed decrease if source leaves are
removed. However, the increased carbon demand on the
remaining leaves can then potentially trigger an increase
of the photosynthesis rate, a faster carbon fixation and
translocation than in undamaged plants [22]. The plant
can thus compensate the pest attack. This photosynthesis
increase has been experimentally described using non
destructive and non invasive chlorophyll fluorescence
measurements [22].

The compensation mechanisms can also simply be
triggered by a pest elicited increase of the primary
metabolism [18] : the presence and action of the pest is
detected by chemical receptors that lead to the activation
of the compensation mechanisms. This hypothesis is sup-
ported by the study of pest larvae regurgitants like, for
instance, the Guatemalan potato moth (Tecia solanivora
(Povolny)) [18].

The timing of pest attacks also seems to have its
importance on the intensity of the compensation re-
sponse. Indeed, a pre-flowering attack on lebanese cu-
cumber (Cucumis sativus, Linné) has a positive effect on
vegetative biomass and fruit production whereas during
flowering, the damaged plants can only compensate in
terms of vegetative biomass and not in fruit production
[22].

Compensation capacity can be considered as an evo-
lution of plants which were not able to compensate but
grew with high level of herbivory [13], [22]. In pest-
free conditions, the plants that cannot compensate have
a better growth and dominate the environment. However,
if a pest attack occurs, they will be more affected than
the compensating ones [13], [22]. It means that in an
non-limited growth environment with a constantly high
pest pressure, the compensating plants will be favoured.

Our paper is organized as follows. In Section II,
we introduce the model. Our approach tries to be as
general as possible and the model is studied without
concentrating on a particular biological situation. In
section III, we discuss the different theoretical results.
The paper ends with a brief conclusion.

II. MODEL DESCRIPTION

Our model consists of three coupled ordinary dif-
ferential equations, taking into account the plant foliar
biomass, B, a variable related to the plant compensation,
V , and the pest population, R.

Our model is built around the following hypotheses :
• For the plant compartment :

– non-restricting growth conditions, i.e. green-
houses growth conditions, implies no abiotic
stresses and, no competition for resources,
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– crop representation is reduced to its foliar
biomass, simplifying hypothesis whose validity
depends on the considered pest,

– no chemical or mechanistic defenses but com-
pensation capacity in order to simplify the
plant-insect interactions

– all fixed carbon is used for vegetative growth
and compensation capacity

• For the pest compartment :
– one undifferentiated population of larvae,
– impact on plant’s growth rate and on the foliar

biomass (leaf-chewing or leaf-miner caterpil-
lars),

– no cannibalism,
– the insect birth rate depends on the plant

biomass.
The plant net growth results from three main pro-

cesses: gross primary growth, compensation capacity and
maintenance process. We denote by rB the biomass
growth rate and V the variable representing the plant
compensation capacity. Initially, V is neutral, i.e. equal
to 1 : the plant grows according to its biomass gross
growth rate discounted by the maintenance δB2, mod-
elled as an accelerating (convex) function of biomass.
However, the compensation capacity can increase ac-
cording to β(R) which is the plant compensation re-
sponse to a pest invasion, varying among the plant
species. We assume that the plant compensation capacity
is proportional to the pest population, i.e. β(R) = βR
with β ≥ 0. This assumption is the boundary case
of a concave, increasing and monotonic function that
could be chosen for β(R). When a pest attack occurs,
the compensation capacity increases and so does the
plant gross primary growth. When the pest disappears,
the compensation capacity V goes back to its initial
level according to a restoring force a. However, in the
literature, even if the compensation response is clearly
linked to the level of pest attack, there is no consensus
on the real impact of pest density on the plant response.
For instance, in the case of the Guatemalan potato moth
(Tecia solanivora), below 10% of damage, the potato
yield increases, otherwise the benefit of the pest attack
decreases [18]. In contrary, for lebanese cucumber, 40%
or, even, 80% of damage caused by brown garden snails
(Helix aspersa Müller), have an equivalent (positive)
effect on the compensation capacity [22].

We consider that the population dynamics are deter-
mined by two main parameters: α and µ, that represent,
respectively, the pest net growth rate per unit of con-
sumed biomass and, the pest mortality rate. Finally, we
assume that the pest population impacts plant growth at

different levels: the gross growth rate rB becomes rB
γR+1 ,

i.e. the gross growth rate decreases with the pest attack
intensity. Moreover an additional term is considered to
take into account the pest biomass consumption through
a mass action principle, i.e. −φBR, where φ is the
specific biomass consumption rate.

Altogether, we obtain the following system :
Ḃ = rBBV

γR+1 − δB
2 − φBR,

V̇ = a(1− V ) + βR,

Ṙ = αBR− µR.
(1)

with the following positive initial conditions : B(0) = B0,
V (0) = 1,
R(0) = R0.

(2)

If there is no pest attack, the crop biomass grows
normally according to its biomass growth rate. In that
case, we assume, for sake of simplicity, that the plant
biomass follows a logistic growth. When an attack
occurs, there are different possibilities according to the
compensation capacity (extinction of the pest population
or coexistence of the two compartments).

In the case where plants cannot compensate pest
attacks, i.e. β = 0, we can assume V is always equal to
1, its neutral value and the system reduces to:{

Ḃ = rBB
γR+1 − δB

2 − φBR,
Ṙ = αBR− µR.

(3)

III. DYNAMICS OF THE MODEL

The solution of system (1) is well-defined and stays
in the non-negative orthant R3

+ so that system (1) is
biologically well-posed.

A. Existence of equilibria

Looking for the equilibria in system (1) is equivalent
to solve the following system:

0 = B∗
(
rBV

∗

γR∗+1 − δB
∗ − φR∗

)
,

0 = a(1− V ∗) + βR∗,
0 = R∗(αB∗ − µ).

(4)

We identify two trivial pest-free equilibria: (0, 1, 0)
and ( rBδ , 1, 0). Assuming R∗ > 0 leads to:

V ∗ = 1 +
βR∗

a
,

and
B∗ =

µ

α
,
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which introduced into equation (4)1 give :

−φγ (R∗)
2

+

(
rBβ

a
− φ− δB∗γ

)
R∗+rB−δB∗ = 0.

(5)
Let us consider the following threshold parameters

N1 = βrB
a(φ+γrB) ,

N2 = µδ
rBα

.

N1 represents the net plant response to the pest attack,
as determined from the increase in gross growth rate
linked to plant compensation and the co-occurent direct
decrease due to plant consumption by the pest; and
1
N2

is the reproductive number of the pest at biomass
equilibrium.

Re-writting (5) with the threshold parameters :

bR∗2 + cR∗ + d = 0. (6)

with :

b = φγ,

c = (φ+ γrB)(1−N1) + γrB(N2 − 1),

d = rB(N2 − 1).

The two solutions of (6) are given by{
R∗1 = −c−

√
∆

2b

R∗2 = −c+
√

∆
2b

with ∆ = c2 − 4bd and R∗2 ≥ R∗1 if both roots are real
(we write R∗1,2 if they are identical). Since R∗1R

∗
2 = d

b
and since b > 0, both roots are real and of opposite sign
if and only if d < 0, that is if N2 < 1; in that case
R∗2 > 0 and R∗1 < 0. Now, if d > 0, both roots are
either real and of the same sign or complex conjugate;
they then only exist in our domain of definition if they
are both real and positive. This is achieved if their sum
R∗1 + R∗2 = − cb > 0 (that is if c < 0) and ∆ > 0.
The latter writes c2 > 4bd which, since c < 0 becomes
−c > 2

√
bd. We conclude that (6) presents two positive

roots if and only if N2 > 1 and

N1 > 1 + f(N2)

with f(N2) =
2
√
γφrB(N2 − 1) + γrB(N2 − 1)

φ+ γrB
, the

c < 0 condition being also encompassed in the latter
one. In all other cases, it has no positive root.

The results are summarized in Table I on page 5.
Note that case (iv) to (vi) (Table I) are only realised for
precise values of the parameters, so that they will not
be encountered in nature. Yet they define curves in the

(N1,N2) plane at which bifurcations occur: these curves
separates the (N1,N2) plane into regions in which the
model has different qualitative behaviors corresponding
to cases (i) to (iii).

Remark 1. When N2 > 1, B∗ = µ
α > rB

δ , i.e. in case
(iii), the final plant-pest co-existence biommass is higher
than the pest-free biomass. The positive equilibria in
section (iii) are overcompensation cases. At the contrary,
the positive biomass equilibrium in case (i) is lower than
the pest-free biomass and thus, is an under-compensation
case.

B. Local asymptotic stability/instability of the equilibria

Following [4], the local asymptotic stability or in-
stability of each equilibrium is studied by computing
the eigenvalues of the Jacobian Matrix J (X) related to
system (1), that is J (X) = rBV

γR+1 − 2δB − φR rBB
γR+1

−γrBBV
(γR+1)2 − φB

0 −a β
αR 0 αB − µ

 .

• When X∗ = (0, 1, 0), we have

J (X∗) =

rB 0 0
0 −a β
0 0 −µ

 ,

which implies that the equilibrium is always un-
stable, because it has one positive eigenvalue, rB .
(0, 1, 0) is a saddle point.

• When X∗ = ( rBδ , 1, 0), we have

J (X∗) =

−rB r2B
δ −γr

2
B

δ −
φrB
δ

0 −a β
0 0 αrB

δ − µ

 ,

which implies that the equilibrium is locally asym-
potically stable if N2 > 1. If N2 < 1, the
equilibrium is unstable: it is a saddle point.

• When X∗ = (B∗, V ∗, R∗), with R∗ = R∗1 or R∗2
or R∗1,2, we use the previous computations :{

B∗ = µ
α ,

0 = B∗
(
rBV

∗

γR∗+1 − δB
2∗ − φR∗

)
.

With this second equation, we can write :

−φR∗ = δB∗ − rBV
∗

γR∗+1 ,

rBV
∗B∗ = (φB∗R∗ + δB∗2)(γR∗ + 1).

(7)
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Table I
TABLE OF THE DIFFERENT CASES FOR THE POSITIVE EQUILIBRIA

Cases N1 conditions N2 conditions Equilibria

i N1 ≥ 0 0 ≤ N2 < 1
one positive equilibrium

(B∗, V ∗
2 , R∗

2)

ii 0 < N1 < 1 + f(N2) N2 > 1 no positive equilibrium

iii N1 > 1 + f(N2) N2 > 1
two positive equilibria

(B∗, V ∗
1 , R∗

1),(B
∗, V ∗

2 , R∗
2)

iv 0 < N1 ≤ 1 N2 = 1 no positive equilibrium

v N1 > 1 N2 = 1
one positive equilibrium

(B∗, V ∗
2 , R∗

2)

vi N1 = 1 + f(N2) N2 > 1
one positive equilibrium

(B∗, V ∗, R∗
1,2)

Putting (7)1 into J11(X∗) and (7)2 into J13(X∗),
we have the following useful relations between
B∗, V ∗, R∗,

B∗ = µ
α ,

rBV
γR+1 − 2δB − φR = −δB∗,
−γrBB∗V ∗

(γR∗+1)2 − φB
∗ = −γ(φB∗R∗+δB∗2)

(γR∗+1) − φB∗,

which imply the following simplifications in the
Jacobian Matrix, that in J (X∗) :

−δB∗ rBB
∗

γR∗+1
−γ(φB∗R∗+δB∗2)

(γR∗+1) − φB∗

0 −a β
αR∗ 0 0

 .

We then calculate the characteristic polynomial :

P (λ) = det(J (X∗)− λId)

=

∣∣∣∣∣∣∣
−δB∗ − λ rBB

∗

γR∗+1
−γ(φB∗R∗+δB∗2)

(γR∗+1) − φB∗

0 −a− λ β
αR∗ 0 −λ

∣∣∣∣∣∣∣ .
Expanding P (λ) gives:

P (λ) = −δaB∗λ− δB∗λ2 − aλ2 − λ3

+αrBB
∗βR∗

γR∗+1 − αR∗2γaφB∗

γR∗+1

−αR
∗δaB∗2

γR∗+1 − αR∗φaB∗ − αR∗2γφB∗λ
γR∗+1

−αR
∗δγB∗2λ
γR∗+1 − αR∗φB∗λ.

Then, rearranging the terms, the characteristic poly-
nomial becomes P (λ):

= −λ3 − λ2 (−δB∗ − a)
−λ

(
−δaB∗ − αR∗2γφB∗

γR∗+1
− αR∗δγB∗2

γR∗+1
− αR∗B∗φ

)
+αrBB

∗βR∗

γR∗+1
− αR∗2γaφB∗

γR∗+1
− αR∗δaγB∗2

γR∗+1

−αR∗φaB∗.

To show the local asymptotic stability of a pos-
itive equilibrium (B∗, V ∗, R∗), we need to show
that all roots of P (λ) have negative real part.
To prove it, we use the Routh-Hurwitz criterion
[7]. After some tedious but straightforward com-
putations, we deduce that (B∗, V ∗, R∗) is locally
asymptotically stable if R∗ > −c

2b , i.e R∗ >
−(φ+γrB)(1−N1)+γrB(N2−1)

2φγ which is always the
case for (B∗, V ∗2 , R

∗
2) and never for (B∗, V ∗1 , R

∗
1).

We summarize the previous results in the following
theorem

Theorem 1. .
• The equilibria (0, 1, 0) and (B∗, V ∗1 , R

∗
1) (when it

exists) are always unstable.
• ( rBδ , 1, 0) is locally asymptotically stable if N2 > 1

and unstable if N2 < 1.
• (B∗, V ∗2 , R

∗
2) (when it exists) is always locally

asymptotically stable.

Remark 2. The cases (iv), (v) and (vi) lead to non-
hyperbolic equilibria.

We summarize the previous results in Fig. 1.
Fig. 1 shows the different equilibria of system (1)

and their stability but not its backward bifurcation
when N1 > 1. A backward bifurcation is a particu-
lar transcritical bifurcation : one of the three biolog-
ically feasible branches of the transcritical bifurcation
in the neighborhood of 1

N2
= 1 is locally stable, here

(B∗, V ∗2 , R
∗
2). Because the remaining two biologically

feasible branches (corresponding to non-negative pop-
ulation states,( rBδ , 1, 0) and (B∗, V ∗1 , R

∗
1)) are locally

unstable, variations in the basic reproductive ratio lead
to discontinuous changes in the asymptotic dynamics of
the system [19]. Such a bifurcation thus modifies what
is generally expected, which is: when the reproductive
number, 1

N2
, is lower than 1, the pest populations goes
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Figure 1. Bifurcation diagram summarizing different situations. The
green equilibria are stable and the red ones are unstable. (0, 1, 0) is
not illustrated since it always unstable. The numbers correspond to the
different cases of Table 1.

Figure 2. Backward bifurcation of system 1. The green equilibria
are stable and the red one is unstable. The numbers correspond to the
different cases of Table 1.

extinct while it can otherwise persist. In the case of
a backward bifurcation (Fig. 2), in the same situation,
small invasions still cannot succeed (the pest-free equi-
librium exists), but there exists a positive equilibrium
where pests are present. The system will converge to
the pest-free equilibrium or the positive one according
to the initial pest invasion, all others parameters being
fixed.

IV. DISCUSSION

A. Model dynamics

The bifurcation diagram (Fig. 1) summarizes many
important informations regarding system (1) dynamics.
It merges different equilibria situations, numbered from
(i) to (vi).

In situation (i) the compensation capacity allows the
maintenance of the pest population, R∗2, with a biomass
B∗ lower than the pest free biomass. Thus, system
(1) converges to the positive equilibrium (B∗, V ∗2 , R

∗
2).

Situation (i) may represent cases of no-compensation and
under-compensation.

In situation (ii), contrarily to situation (i), the com-
pensation capacity, V , does not allow the maintenance
of the pest population, and the plant will reach its
normal amount of biomass. System (1) will converge
to equilibrium ( rBδ , 1, 0).

Situation (iii) is particular. Indeed, depending on
the initial pest population, the plant compensatory re-
sponse, which is proportional to the pest population,
i.e. β(R) = βR, drives system (1) to one of the
LAS equilibria, ( rBδ , 1, 0) or (B∗, V ∗2 , R

∗
2). With (B,V)

initially at ( rBδ , 1), if the initial pest population is small,
the compensatory response is weak, so that the biomass
only slowly increases from rB

δ , while R quickly goes
back to zero because αrB

δ − µ < 0, anihilating the
compensation effect; hence B settles to rB

δ again. In this
situation, the plant compensation thus acts as a mecha-
nism generating an Allee effect in the pest population. In
the second case, when the pest population is sufficiently
large, the biomass reaches its equilibrium before the
pest disappears. This positive equilibrium shows a final
biomass higher than in the other case, and thus can
be caracterised as an overcompensation one, as said in
Remark 1.

Cases (iv), (v) and (vi) determine the borderlines
between the previous generic cases, where bifurcations
take place; their types can easily be identified on
Fig. 1. When transition from region (i) to region (iii)
through curve (iv) takes place, there is an exchange
of stability between ( rBδ , 1, 0) and (B∗, V ∗1 , R

∗
1) which

collide; this corresponds to a transcritical bifurcation.
Similarly, on curve (v), a transcritical bifurcation takes
place between ( rBδ , 1, 0) and (B∗, V ∗2 , R

∗
2). Finally curve

(vi) corresponds to a saddle node bifurcation: unstable
(B∗, V ∗1 , R

∗
1) and stable (B∗, V ∗2 , R

∗
2) collide and dis-

appear: they become complex. The case where β = 0 is
represented when N1 = 0 with the same equilibria and
stability as in cases (i) and (ii).

B. How to choose the best control strategy ?

The bifurcation diagram (Fig. 1) gives also some po-
tential control of system (1). Indeed, the most interesting
equilibrium is the overcompensation one, i.e the positive
equilibrium (B∗, V ∗2 , R

∗
2) in case (iii). It is thus desirable

that model (1) reaches this equilibrium. The bifurcation
diagram shows also that switching from one equilibrium
to another is possible through the threshold parameters
N1 and N2.

To switch from case (i) to case (iii), the system has
to be in the area where N1 > 1, and the control should
impose an increase of N2 = µδ

αrB
(Fig. 3). To do that,
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Figure 3. Bifurcation diagram with the different possible controls.
The blue arrow shows the switching from case i to case iii and the
dark ones the switching from case ii to case iii. The numbers and the
equilibria are the same than in Fig.1

there are three different possibilities : increase the pest
mortality rate, µ, decrease the pest net growth rate, α
or increase δ

rB
. However, increasing δ

rB
is of no interest

since it would bring the parameters from region (i) to
(iii) without changing the final plant-pest co-existence
biomass B∗ = µ

α which does not depend on δ
rB

; even
worst: this could bring the solution to ( rBδ , 1, 0) with a
pest-free biomass level rB

δ smaller than the plant-pest
co-existence biomass, B∗ = µ

α , originally achieved in
region (i). On the contrary, changing µ or α can increase
the plant-pest co-existence biomass level at equilibrium
and this can be done with pest control means: Bacillus
thuringiensis as a poison [20], moulting hormone, eggs
poison, etc... . As explained in the previous subsection,
the initial pest invasion must nevertheless be high enough
to switch to the positive equilibrium of case (iii) and
not ( rBδ , 1, 0). However, even if the solution eventually
converges to ( rBδ , 1, 0) this would still yield a larger
pest-free biomass level than the original plant-pest co-
existence level, B∗ = µ

α , achieved by equilibrium
(B∗, V ∗2 , R

∗
2) in region (i).

If the system is in the area where N1 < 1, the only
possible improvement is to switch from case (i) to case
(ii) by increasing N2. This control should be done if
B∗ << rB

δ to have a worthy final biomass difference.
This is in fact the only action that can be taken when
the system does not have any compensation capacity,
i.e. N1 = 0. By manipulating the pest parameters, i.e. µ
and/or α, we can force pest exclusion and guarantee the
biomass to converge to its pest-free level.

The case of switching from case (ii) to case (iii)
is particular. When the initial pest population is low,

situations (ii) and (iii) are similar: the system may
converge to the same equilibrium, ( rBδ , 1, 0), at least
locally. However, in the case of an important initial
pest infestation, a control can be proposed. There are
indeed, two different possibilities (Fig. 3). If the system
is in the area where N1 < 1, switching from case (ii)
to case (iii) means increasing N1. This is possible by
increasing β or decreasing a, i.e. selecting a plant with
a more important and efficient compensation capacity, or
by reducing the pest impact on the plant by decreasing
φ or γ, i.e. changing the plant attraction to pest or the
pest metabolism. However, decreasing φ or γ changes
the curve (vi) and thus modifies section (iii). It means
that decreasing these parameters would possibly not
bring system (1) to the overcompensation equilibrium,
(B∗, V ∗2 , R

∗
2), and even if in section (iii).

If the system is in the area where N1 > 1, it
is possible to switch from case (ii) to case (iii) by
decreasing N2. This is equivalent to increase the pest
net growth rate, α, and/or to decrease the pest mortality
rate, µ. This latter result seems to be counterintuitive
but is in accordance with the assumptions made on
plant compensation: ”pest favors plant growth”. Indeed,
by decreasing µ or increasing α, the pest population
grows and with it, the plant compensatory response
which allows the pest installation with a higher biomass
than previously. That way, overcompensation helps to
increase the final biomass.

CONCLUSION

This study focused on trophic relations which are
basic interactions between a plant and an insect pop-
ulation. We introduced a compensation capacity which
is a first step in plant tolerance to handle pest attack.
Despite a relative simplicity, our model provides dif-
ferent results that seem interesting for a plant-insect
system and its control. In particular, our study highlights
two threshold parameters, N1 and N2, that aggregate all
the model parameters of respectively biomass and pest
population. Moreover, they characterize the dynamics
of the system and give simple indications on the plant
or insect parameters that may be modified to choose
appropriate and efficient control strategies. In this case,
mathematical modelling can really be complementary
to the experiments. It can indeed highlight emerging
properties, ask new questions that could be useful to
build future experiments and, help to design control
strategies.
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