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4™ Order Symmetric Tensors and Positive ADC
Modelling

Aurobrata Ghosh, Rachid Deriche

Abstract High Order Cartesian Tensors (HOTs) were introduced in Generalized
DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent
diffusion coef cient (ADC) with greater accuracy than DTI in regions with ber
heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the
straightforward least square (LS) estimation of HOTs doesn't guarantee positivity.
In this chapter we address the problem of estimating 4th order tensors with positive
diffusion pro les.

Two known methods exist that broach this problem, namely a Riemannian ap-
proach based on the algebra of 4th order tensors, and a polynomial approach based
on Hilbert's theorem on non-negative ternary quartics. In this chapter, we review
the technicalities of these two approaches, compare them theoretically to show their
pros and cons, and compare them against the Euclidean LS estimation on synthetic,
phantom and real data to motivate the relevance of the positive diffusion pro le
constraint.

1 Introduction

Diffusion Tensor Imaging (DTI) [1, 2] has become the de facto standard today in
diffusion MRI (dMRI) for investigating the complex microstructure of the cerebral

white matter in-vivo and non-invasively. Its tremendous popularity is due to its sim-
plicity in acquisition requisites and elegance in interpretation, which makes it easy
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to implement the technique and infer the white matter microstructure, in particu-
lar the underlying ber orientations. Based on Fick's phenomenological anisotropic
diffusion equation, the DTI signal for the diffusion gradi€atis described by the
modi ed Stejskal-Tanner equation parameterized by the second order diffusion ten-
sorD [3]:

S= Sexp bg'Dg ; 1)

whereb= ¢?d?g> D $ ,g=jGj, andg= G=jGj. In DTI, the apparent diffusion
coef cient (ADC) is modelled by the spherical functi@(g) = g' Dg. However, in

spite of its usefulness, it is well known that DTI is inherently limited in regions with
heterogeneous ber distributions, such as in ber-crossings. In such regions DTI
can neither accurately model the complex shape of the resulting ADC, nor correctly
infer the underlying ber bundle layout.

Generalized DTI (GDTI) [4], was proposed to overcome this limitation by mod-
elling the complex shaped ADC with greater accuracy using Cartesian tensors of
order higher than two, the so called higher order (diffusion) tensors (HOTs). GDTI,
like DTI, is also based on Fick's phenomenological laws of diffusion, where the dif-
fusion tensor is replaced by a spherical diffusion function parameterized by a HOT,
or as its projection on to the unit sphere. The GDTI signal for the diffusion gradient
G is similarly described by:

S= Sexp( bD(g);  D(@)=
J

1]

T Qo
N QDo
i Do

Disiz:ikGin9i2 - Gis (2)

1 1
where,Dj,.j,::j, are the coef cients of théth order, three dimensional, diffusion
HOT D®, andg;, are the components of the unit gradient vegoiThe com-
plex shaped ADC is described in GDTI Wy(g). Sinceg is a unit norm vec-
tor, it can also be described by the two parametefs[0;p] andf 2 [0;2p) as
g=[sing cosf ;singsinf ;cosq]" = [ g; Oy g.]", which shows that the ADC or the
spherical diffusion function is the projection Bf®) on to the unit sphere.

This form of the diffusion function helps derive certain properties of the diffusion
HOT which greatly simpli es the GDTI model [4]. First, whénis oddD( @) =

D(g). However, since negative diffusion is non-physical, this implies khedn
only be even, or only even ordered HOTs are of interest in modelling the ADC.
Second, although kth order 3D HOT can haveX3ndependent coef cients, since
only its projection along a vectar is of interest -D (¥ has to be symmetric — or
its coef cients should be equal under any permutasqrof the coef cient indices
Djsiizzik = Ds (jy:joiin) - This reduces the number of independent coef cients of the
kth order HOT to a more tractable:
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(k+ 1)(k+ 2)
'

= 3

In other words, to describe the ADC more accurately using GDT], it is required to
estimate from the diffusion signal the coef cients of a 3D symmetric HOT of even
rank, such that the diffusion function or the estimated ADC is positive.

The independent coef cients of tHeh order diffusion HOT are in practice esti-
mated using the least squares (LS) approach [4] in a fashion almost identical to the
approach for estimating the six coef cients of the diffusion tensor in DTI. The LS
approach, although, rapid, since it involves only linear operations, does not guaran-
tee that the estimated HOT will result in a positive diffusion function even when
is considered even. In other words, the reason for consid&riade even, i.e. the
estimated ADC should be positive, is not satis ed by the LS estimation.

In this chapter we present two approaches for estimating, in partictllarder,
diffusion HOTSs from the diffusion signal that guarantee that the estimated ADC or
the diffusion function is positive. In the rst method, we take recourse to the fact that
3D symmetric &' order tensors can be rewritten through a mapping as 6D symmetric
2" order tensors. This makes it possible to reformulate the problem of estimating
a 4" order tensor with a positive diffusion pro le, to a problem of estimating a
2"d order tensor with a positive diffusion pro le, albeit in 6D. We solve this problem
by applying the Riemannian framework developed for symmetric positive de nite
(SPD) tensors of order 2, for estimating DTI diffusion tensors with positive diffusion
pro les.

In the second method, we base ourselves on the polynomial interpretation of
HOTSs. Therefore, the diffusion functidn(g) is re-interpreted as a homogeneous
polynomial in the components of the unit norm gradient vegtdrhis allows for a
powerful parameterization of the diffusion signal, which ensures that the estimation
process guarantees ¥ #rder HOT with a positive diffusion pro le. This param-
eterization comes from the properties of ternary quartics, which was rst pointed
out in [5, 6]. Also it has been proposed in [7] that the af ne invariant Riemannian
metric may not be well suited for diffusion data. The polynomial parameterization,
therefore, provides an alternative approach for estimatfhgrder diffusion tensors
with positive diffusion pro les, which employs the Euclidean metric that is better
suited for handling diffusion data [7].

We note that solutions to the problem of estimating arbitrary even ordered HOTs
with the positivity constraint have also been proposed in [8] and [9]. These methods
and the contents of this chapter can be seen brie y resumed in CHzptelow-
ever, in this chapter we present in greater detail the particular problem of estimating
4™ order tensors with the positivity constraint, sinéea¥der tensors commonly ap-
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pear in many problems, such as Diffusion Kurtosis Imaging (DKI: see again Chap-
ter??). The importance of the methods presented here is highlighted by the fact that
these methods have been recently used to estinfatder kurtosis tensors with
positivity constraint [10].

This chapter is structured as follows. Section 2 is devoted to the Riemannian ap-
proach. Sections 2.1 & 2.2 present the algebrd'®&2d 4" order tensors which al-
low us to formulate the Riemannian framework. The Riemannian estimation scheme
is put together in Section 2.3. Section 3 is devoted to the ternary quartic approach,
with rst the theory and then the algorithm in Section 3.3. Experiments and results
are described and discussed in Section 4. We conclude in Section 5.

2 A Riemannian Approach for Symmetric Positive De nite
4™ Order Diffusion Tensors

The problem of estimating a diffusion tensor from the signal, which satis es the pos-
itive diffusion pro le has been extensively considered in DTI. Negative diffusion,
which is non-physical, can also be a problem while estimating@gler diffusion
tensorD, which happens when the DTI-ADE Dg< 0, for some gradient direction

g. This can occur since the LS estimation process doesn't guarantee that the diffu-
sion tensor will have a positive diffusion pro le. This condition requires a dedicated
mathematical framework which constraints the estimation process to only diffusion
tensorsd such thag'Dg> 0; 8g2 2.

An adequate framework for such an estimation was proposed by identifying
the appropriate set of"? order tensors that satisfy the positive quadratic form,
namelyS ynf,, the set of SPD matrices, which satistySx > 0; 8x 2 R"nf0g,
andS 2 S yny, . In other words, if the estimation process were to only operate in
the space o8 ym; (in the case of DTIn= 3), then the estimated diffusion tensor
would satisfy the positive diffusion pro le. The mathematical framework that was
proposed, which allows to do this consists of an af ne invariant metrig oi, ,
the Riemannian metric [11, 12, 13, 14], and a similarity invariant metris gfif;
the Log-Euclidean metric [15], which naturally con ne operations on SPD matrices
to the space o8 yny;.

Deriving an equivalent Riemannian metric for the spacet®dfodder diffusion
tensors would, however, be far more involved due to the increase in order or the
multi-linear property of HOTs. Nonetheless, such a metric would be the right frame-
work to use in the estimation process of tHeatder diffusion tensor, since it would
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ensure that the estimated HOT satis es the positive diffusion pro le. However, given
the symmetry condition of a diffusion HOT, this problem can be simpli ed by re-
formulating the diffusion pro le of a 4 order HOT (Eg. (2)) to a bilinear form
dependent on a"@ order tensor. Mathematically, this would convert the problem
to the case of estimating &®2order tensor irS ynt,, like in DTI. However, the
conversion from a symmetridcMorder 3D tensor, results in a symmetrf¥ drder
tensor in 6D [16, 17, 18]. Therefore, we would have to consider the spaz:glog
instead of the space & ym .

In this section, we propose to use this approach of transforming a symmetric
3D 4" order Cartesian diffusion tensor to a symmetric 619 arder tensor, and
of applying the Riemannian metric of the spa&eyrrg, to estimate a4 order
diffusion tensor from the signal with a positive diffusion pro le in GDTI [19].

2.1 Algebra of2"d Order Tensors

To understand the algebra df #rder tensors, which is required to manipulate these
entities, and to transform them to isometrically equivaleit @der tensors, we
start with 29 order tensors, which are well studied and intuitively easy to under-
stand. Much of the following formulation of CartesiaffZnd 4" order tensors in
an Euclidean space can be found in [16, 17], where, essentially a tensor is used
interchangeably with the matrix of a linear transformation.

Given ann dimensional inner product space (vector space with an inner product)
V, annD 2" order tensoA = A (@ is de ned as then n matrix of the linear
transformation:

A:VIV, st x! Ax;x2V: 4)

The transpose of the linear transformation, with matix can be de ned from
the inner product ol as x;ATy = hAx;yi; 8x;y 2 V: The space of linear
transformations fronV to V, itself forms a vector space, which can be called
Lin(V) = fA:V ! Vg. The transpose oA can be used to de ne a natural inner
product on LirfV) (summation over repeated indices over their whole range):

hA;Bi := tr(ATB) = A;Bjj; AB2 Lin(V): (5)

If Vis R", then Lin(V) is R" ", and it is isomorphic t&R". Therefore a tensok
in R" " can be written as a vectar, in R Furthermore, the isomorphism is an
isometry, sincew;bi = bA;Bi ; where the rst inner product is the natural inner
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product of the vector spad%“z, and the second inner product is the newly de ned
inner product of Lifv)= R" "

A symmetric linear transformatiof fromV toV, can be de ned from the trans-
pose of its corresponding'@order tensor, ad = AT, which in terms of its com-
ponents can be described By = Aji. Itis then possible to decompose ¥ rder
tensor (or linear transformation) into its symmetric and skew-symmetric parts by
AS=(A+ AT)=2andA?=(A AT)=2respectively, such that = AS+ A2,

Finally the space of symmetric linear transformations 8y f A2 Lin(V)jA =
ATg, forms a subspace of L{). Since, annD symmetric 29 order tensor has
n(n+ 1)=2 independent coef cients, i¥/ is R", then Syn{V) is isomorphic to
RN D=2 and this mapping can be established in such a fashion that it is also an
isometry, just like in the case of L{(), or has; bsi = bAS; BSi, for ag; bs 2 RN D=2
andAS; BS 2 Sym(V). An example for such an isometric mapping when 3, can
be established between a symmetric 38 @der tensoB, andb, a vector or a 6D
1%t order tensor:

p— p— p—
b=[B11;B22;Bss; 2B12; 2B13; 2Bpg]'; (6)

whereB;; are the coef cients oB.

2.2 Algebra of4!" Order Tensors

The background for understanding the algebraldbdder tensors is formed by the

de nition of the inner product, the isometric mapping to vector¥ ¢tder tensors)

of higher dimensions, and the symmetry properties, in particular(8ynof the

space of 2 order tensors or LifV/). In an analogous way, we will de néorder
tensors as linear transformations from a vector space onto itself, de ne an inner
product for the vector space of these linear transformations, study their symmetries,
and establish an isometric mapping from the linear transformations to a vector space
of lower order and higher dimension, which will allow us to manipuldfeotder
tensors as'® order tensors.

The algebra of % order tensors can be described by proceeding in exactly the
way as done above fo"2 order tensors, but with Li{{V) as the vector space in
place ofV. Let annD 4™ order tensor€ = A Y bedenedasthe n n n
transformation array of the linear transformation (summation over repeated indices
over their whole range):
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A:Lin(V)! Lin(V); st C! AC= AjCq; C2 Lin(V): @)

Since an inner product for L{W) exists, it can be used to de ne the transpose of

the linear transformation, with the transformation ar/y, as:

D E D E
D;ATC = A D;C ; 8C;D2Lin(V): (8)

Again the space of linear transformations from @ to Lin(V) forms a vec-
tor space, which can be callédin(V) = fA: Lin(V)! Lin(V)g, and again the
transpose of A can be used to de ne an inner produdt an(V) (summation over
repeated indices over their whole range):

D E
A:;d) = tr(NTé’): Aijki Biji; A@;I?Z L in(V): 9

If VisR", then LinV) isR" ", andL in(V) isR"™ ™ " " which is isomorphic to
R™. Therefore amD 4" order tensor can be written as a vectoRf . However,
of greater interest is that in(V) is also isomorphic tR"” " which implies that
annD 4" order tensoA can be written as afgD 2" prder tensoA. Furthermore,
this isomorphism is also an isometw; Bi = ©0

Symmetries of ¥ order tensors present a richer set of possibilities than the sym-
metry of 29 order tensors, since a number of symmetries can be de ned by applying
different “symmetry rules” on the four coef cient indices. Indeed, we shall present
the major symmetry, the minor symmetry and the total symmetry. Total symmetry
is, however, the symmetry of interest to us, which in the mathematical approach to
tensors is thele nition of symmetryof a HOT, where the coef cients of the HOT
remain unchanged under any permutation of the coef cient indices. This is also
the symmetry condition required by the diffusion HOT in GDTI, as implied by its
properties. However, this symmetry is best called total symmetry (or complete sym-
metry), to differentiate it from the other possible symmetries that are derived from
physics and that carry important physical interpretations.

We shall, however, not present such physical interpretations here, but content
ourselves with counting the number of independent coef cients &t ardler tensor
under the various symmetries. To do this we will require the formula for counting
the number of ways of choosimgelements,frorm elements without order and with
repetition (combinationgmnn = n+ 2 1
Major symmetry of annD 4" order tensoA is de ned by the index symmetry rule
Ajj:k = Agiij- To count the number of independent coef cientshof which satis es
major symmetry, we consider the isometrically equivat@® 2" order tensoA,
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which has only two indice$ = ij andJ = kl. Therefore, major symmetry o%
can be translated as the index symmetry rulé ta{sAU = AJ|, WhereA0102 are the
coef cients of A, which implies thaA = AT. Therefore, the number of independent
coef cients of A , which satis es major symmetry, isV is used to indicate major
symmetry):
_ (P4 1),

M~ 2 '
Note that major symmetry fol , corresponds to the regular notion of symmetry
for the 2nd order tensdk. Therefore, symmetry properties Af such as decompo-
sition into a symmetric part and a skew symmetric part and eigen-decomposition,
can be attributed to théMorder tensoA by isomorphism. Major symmetry also
corresponds to the notion of symmetry induced by the de nition of the transpose of
a 4" order tensor, or a linear transformation from (\f) to Lin(V).
Minor symmetry of annD 4" order tensoA is de ned by the index symmetry
rule Ajj. = Aji:n = Ajj;k- To count the number of independent coef cientsfof
which satis es minor symmetry, the index rule can be seen as rst choosing 2 index
valuesfijg from n index values without order and with repetition, and then again
choosing 2 index valuelkg under the same condition. However, sirfégg and
flkg don't swap, their mutual order is important. Therefore, the number of indepen-
dent coef cients ofA , which satis es minor symmetry isM is used to indicate
minor symmetry):

(10)

n+ 2 1! ? n?(n+ 1)2
Ny = = —: 11
m 9 7 (11)

The number of independent coef cients of ab 41" order tensor with combined
major and minor symmetries can be computed by combining the reasonings of the
individual counts. First choose 2 index valda$g = | or flkg = J from n index
values without order and with repetition, which givedNy. Then choose 2 index
valuesf1Jg from these Ny index values without order and with repetition. There-
fore, the number of independent coef cientsAf, which satis es both major and
minor symmetries is: I

p . :
Nu+2 1

Total symmetry or just symmetry, is de ned for anD 4" order tensoA by the
index symmetry ruléhjj = As jjuiy, Wheres (ijkl) is any permutation of the in-
dicesfijklg. This is the symmetry satis ed by any HOT in the GDTI model, which
implies from Eq. (3), that the number of independent coef cients for &BDorder
GDTI HOT is Nx. However, the number of independent coef cients oh@n4t" or-
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der tensoA , which satis es total symmetry can also be counted as the number of

ways of choosing 4 index values frompossible index values, therefore:
!
n+4 1
Ny = : 13
T . (13)
If we considek = 4, itimpliesNy = 15, and if we considar= 3, itimpliesNr = 15.
This establishes the consistency betwhBigandNr.

Any 4 order tensoA satisfying major and minor symmetries can be decom-
posed in a unique manner into a totally symmetHtotder tensoA S and its asym-
metric partA 2 such thatA = A S+ A @ The coef cients of the totally symmetric
part and the asymmetric part can be computed from [16]:

Aisjkl =
Aﬁm

These, alongwith the de nition of the inner product between tiootder tensors
can be used to show thiah S;B & = tr(A B &) = 0:

These symmetries greatly reduce the number of independent coef cients of an
nD 4" order tensor from the total number of possible independent coef cients,
which isn*. Of particular interest are thé™order tensors which satisfy both major
and minor symmetries. These form a subspade of(V), called:

Aijki + Aijl + Ailkj

(14)
2Aii - Akjt - Aikj

Wi Wi

S ymerM)(V): fA:L in(V)! L in(V)jA satis es major & minor symmetri€g
(15)
which is isometrically isomorphic BN
Whenn= 3, Ny = 36, andN(mM) = 21. Therefores ymW,,M)(V) is isomor-
phic toR2L, which is the space of symmetric 60%order tensors. An example of
an isometric isomorphism that can be established in this case betweerad3Bet
tensorA g, ) and a 6D 29 order tensoA is [20]:

p

_ p_ p 1
AXXXX AXny AXXZZ 2AXXXy XXXZ

p < ?Axxyz
P %Ayyxy %Ayyxz gAyyyz
A=Bp éxxzz éyyzz ézzzz 2Pzzxy  2Pzzxz 2Pzzyz
2A><x><y p gAyyxy p gAzzxy 2Axy><y 2Axyxz 2Axyyz
gAxxxz p gAyyxz gAzzxz 2Axyxz 2Axzxz 2szyz

2Axxyz 2Ayyyz 2Azzyz 2Axyyz 2szyz 2Ayzyz

Aoy Ay  Ayzz
; (16)

p

whereA;j are the independent coef cients Af(mM)- This map, along with the
map in Eq. (6), which transforms a symmetri¥ drder tensor to a vector or &1
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order tensor, allows us to isometrically rewrite the effects of a linear transformation
Amimy IN'S YMgze vy (V) on a symmetric linear transformati®s in Sym(V), as
a matrix vector product whem= 3:

A B = Agrew ™ (17)
T
D% A B = d A yb® (18)

However, since diffusion HOTs from the GDTI model have to satisfy total sym-
metry, we are interested in the space of 3D @rder tensors, which satisfy total
symmetry. These also form a subspacé dh(V), called:

Syme(V)=fA:L in(V)! L in(V)jA satis es total symmetny; (29)

which is isometrically isomorphic t&®*°, sinceNt = 15 whenn = 3. Although
R15 corresponds to the space of symmetric 513 @rder tensors, the isometry to
symmetric 6D 29 order tensors (Eq. (16)) can be modi ed to represenm; (V),
with the added equalities:

AXXW: Axyxy; Axxzz= Axzxa Ayyzz: Ayzyz (20)
Acyz= Axyxz Ayyxz= Ayyzs Pozxy= Axzyz

Applying these equalities tA in Eqg. (16), is equivalent to decomposing the 3D
4 order tensom (., v with major and minor symmetries, into its totally sym-
metric partA (Sm M) [16]. In other words, an isometry fro® ym; (V) to the space
of symmetric 6D 29 order tensors can be established by considering the totally
symmetric part of the equivalent 30" order tensor with only major and minor
symmetries.

The nal isometry betweet$ ym (V) and the space of symmetric 6[%order
tensors is the transformation that converts a 8Dodder diffusion tensor from the
GDTI model to an isometrically equivalent symmetric 60 drder tensor. This
allows us to use the Riemannian metric on the spac8 gf;, to estimate the
41 order diffusion tensor with a positive diffusion pro le.

2.3 Estimating a SPB4" Order Diffusion Tensor

First we re-write the diffusion function in Eq. (2), which is written in terms of the
coef cients of thekth order tensoD ) and of the unit gradient vectay, in the
tensor terminology whek = 4:
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D E
D(g= D@W;G ; whereG=g g g ¢ (21)
E
= B;DYB ; whereB=g g (22)
D E
= b;Pb = b"Bb; (23)

whereD  is the 4" order diffusion HOT in GDTIG is a totally symmetric % or-

der tensor computed from the outer products 6f the gradient vector, similarly

B is a symmetric 2 order tensor computed from the outer productg,df is the
vector form ofB using the isometric map from Eq. (6), aBds the symmetric 6D
matrix form of D ) using the isometric map from Eq. (16). The rst two equalities
can be derived from the coef cients' equation in Eqg. (2), and the third equality can
be derived from Egs. (17) & (18). Therefore, the diffusion signal from the GDTI
model (Eq. (2)) whek = 4, can be written in tensor form as:

S= Sexp bb'bb : (24)

In this form, the problem of estimating th& #rder diffusion tensob (¥, from the
signal, with a positive diffusion pro le can be solved by estimating thé @der
tensorD, from the signal, ir yny, .

The objective function we minimize to estimaBefrom N diffusion weighted
images (DWIs) is the linearized form of the modi ed GDTI Stejskal-Tanner equa-

tion:
2

In +b/Bb; (25)

S
S
To estimated in S yn};, we have to consider the Riemannian manifoldojnt; ,

and the appropriate gradient descent in that manifold. These can be derived from
the details of the Riemannian framework presented in [11, 12, 13, 14]. It requires
computing the gradient cE(D) in that manifold, which at every point i ynt, is

de ned from the directional derivatives in the corresponding tangent plane.

The Riemannian gradient &(D) atB in the manifoldS yn, is [14]:
" #
+ bbb (bibl) B: (26)

ol

NY
Qoz

E(D) = 1

i=1

NE(D)= b

In

Qo

Qo=
ol

1

This allows us to design the appropriate gradient descent algorithm, with step length
e, in the Riemannian manifol8 yn, :
) # |
1 1
+b/Bb;  (bib]) BE B2 (27)

1
D.1=Blexp e B In

ARENTS
-Q,)OZ

ol
&lo

Il
o
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Minimizing the objective functior’E(B) in this way, it is possible to estimaf®in

S yrrg from the diffusion signal. SincB is isometrically equivalent to aMorder
tensorD ( with major and minor symmetrieB, (4 is guaranteed to have a positive
diffusion pro le. Finally we extract the totally symmetric part Bf¥ to compute
the totally symmetric % order GDTI diffusion tensoD (43, which is then also
guaranteed to have a positive diffusion pro le.

3 A Ternary Quartic Approach for Symmetric Positive
Semi-De nite 41" Order Diffusion Tensors

In this section, we revisit the problem of estimating a symmetric higher order Carte-
sian tensor with a positive diffusion pro le from the GDTI model, using a polyno-
mial approach. In this approach we consider the polynomial interpretation of HOTs
instead of considering the algebra of HOTs, and look at a polynomial solution to
the positivity problem. In particular, we considéf érder GDTI diffusion tensors,
where the diffusion function of such tensors can be seen as trivariate homogeneous
polynomials of degree 4 in the coef cients of the gradient vector. Such polynomials
are known as ternary quartics.

Polynomials form an alternate way of expressing the multi-linear form of HOTSs.
This expression was indicated in the original GDTI paper [4], but was used for
applying the positivity constraint in [5]. To make the relationship between the coef-
cients of a HOT and the coef cients of a homogeneous polynomial more evident,
the diffusion function of GDTI (Eq. (2)) was rewritten in [5] as:

D@= @& Dmnpdlohos: (28)
m+ n+ p=k
whereDpy.p are the coef cients of théth order tensob (¥ by a re-arrangement of
the indices.

In this form, it is clear that the diffusion function, which was considered as the
projection of the of &th order HOT on to a unit sphere, is a trivariate homoge-
neous polynomial of degrdein the three coef cients of the unit gradient vector
g=1[01,02;03]", where the coef cients of the polynomial are the coef cients of
the HOT. SinceD(g) is a homogeneous polynomial of even degree, the problem of
a positive diffusion pro le on the unit spher®(g) > 0; 892 RS st. jjgjj = 1, is
equivalent to the problem of nding a polynomil(x) > 0; 8x 2 R3=f0g. This
is exactly the same equivalence that was used in DTI, where the problem of pos-
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itive diffusion from a second order tensgf,Dg > 0; 8g2 &, was recast as the
problem of nding a positive de nite second order tensotDx > 0; 8x 2 R3=f Og,
which entailed the Riemannian framework ®rymy . Therefore, in this section we
consider a method of estimating the coef cients of a positive polynomial from the
diffusion signal, to estimate a GDTI HOT with a positive diffusion pro le.

3.1 Riemannian vs Ternary Quartics: A Comparison

It is interesting to note at this juncture, whkrs 4, how the Riemannian approach
presented in the previous section compares to the polynomial formulation. When
k = 4, the goal of the polynomial formulation, as we have just seen, is to nd a
trivariate homogeneous polynomial of degreeD4(x), where the coef cients of
the polynomial are the coef cients of thé"order GDTI diffusion tensoD (¥,
such that:

D4(x) > 0; 8x2 R3=f0g: (29)

In comparison, the Riemannian approach, using an isometric map, tries to nd a
symmetric 6D 29 order tensoP in S yng :

c'Bc> 0, 8c2 R®=f0g; (30)

where the coef cients of the totally symmetri€4rder GDTI diffusion tensor can
be extracted from the coef cients d3. However, although, this quadratic form
resembles the diffusion pro le from a totally symmetri€ order tensorp’ Bb
(Eq. (23)), estimatingb inS ymg’ isn't equivalent to the problem of computing a
4 order GDTI diffusion tensob (), with a positive diffusion pro le. This can be
seen from the isometrically equivalent inner product of the quadratic form:

D E
c;.DWC >0; 8C2S ym=f0g: (31)

The positive diffusion pro le constraint on the other hand only implies the condi-
tion: D E
B:DYWB >0, whereB=g g (32)

which can be seen in Eq. (22). Since tHé @rder tensoB in the diffusion pro le
is only of rank-1, it is rank de cient, whereas in general thé arder tensocC, in
the quadratic form would include both full rank, and rank de cient tensors. In other
words, the positive quadratic form condition is much stronger than the positive dif-
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fusion pro le constraint. Therefore, although the positive quadratic form constraint
would entail the positive diffusion pro le constraint, the solutions found from this
approach — the Riemannian approach, would only belong to a subset of all the solu-
tions possible from only the positive diffusion pro le constraint.

This can also be seen through examples, shown in [5, 6], by inspecting the
isometric map in Eq. (16) which transforms ¥ 4order tensor into a™ or-
der tensor. When this 66 matrix is positive de nite it cannot represent valid to-
tally symmetric &' order tensors whose homogeneous polynomials are of the type
P(g) = ad} + bgh + cdf, or P(g) = (ag? + bgd)? + ccf, etc., because these require
the matrix to be semi-de nite [6]. Since, the Riemannian framework pushes such
matrices away to an in nite distance from the estimation te3pthe solutions
found by the Riemannian estimation only form a subset of all possible solutions.

3.2 Hilbert's Theorem on Non-Negative Ternary Quartics

We now return to the problem of estimating a non-negative trivariate homogeneous
polynomial of degreé& from the signal. A particular aspect of this problem has been
addressed in [21], which describes a framework for estimating symmetric GDTI
HOTs of any even ordek and with a positive diffusion pro leon a unit sphere

This paper proposes that any polynomial (the GDTI HOTSs) that is non-negative on
a unit sphere can be written as sums of squares of polynomials of lower order:

P9 = & QI () (33)
i=1
wherek is evenP® (x) denotes a multi-variate polynomial of degieé Q¥ (x)g
denoteM multi-variate polynomials of degrele=2, and only an upper bound is
known for M. Therefore, in [21], the authors propose to estimate the coef cients
of the polynomialsQ®? (x) from the signal to estimate a polynompil (x) (or a
GDTI HOT) with a non-negative diffusion pro le.
SinceM is not known exactly, the authors in [21] proceed by oversampiingr
rather densely sampling the space of possible polynomials of Iower@fﬁ:@r(x).
It is claimed that increasing the density of the sampling increases the accuracy of
the decomposition oP®(x). However, it also increases the number of unknown
coef cients of the sef Qi(kzz) (x)g, which need to be estimated from the signal. The
authors then propose heuristically measured approximatiiSier M, for different
values ofk, from tests on synthetic data.
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The problem of estimating non-negative trivariate polynomials wkverd, or of
estimating non-negative ternary quartics, presents a very interesting problem with
a “complete” solution. In the case of ternary quartics, it can be shown that the en-
tire space of non-negative polynomials over enR@&(and not only over the unit
sphere), can be described by the sum of squares of quadratic polynomials. Exam-
ples in [22] of non-negative polynomials of degiee 4 that cannot be written as
sums of squares of lower order polynomials indicate that not all non-negative poly-
nomials of arbitrary degrelecan be decomposed into sums of squares of lower or-
der polynomials. Hilbert's theorem, which identi es all the classes of non-negative
multi-variate polynomials that can be always decomposed as sums of squares of
lower order polynomials is also presented in [22].

In fact, Hilbert's theorem states that degree 4 trivariate polynomials that are non-
negative and homogeneous, can always be written as a sum of squares of quadratic
homogeneous polynomials, where the number of terms in the sum is also known
and is exactly threa = 3) [22]:

Theorem (Hilbert): If P(Xx;y;2) is homogeneous, of degree 4, with real coef -
cientsandP(x;y;z2) 0 atevery(x;y;2) 2 R3, then there are quadratic homogeneous
polynomialsf;g; h with real coef cients, such that:

P= f2+ g+ h* (34)

All other classes of non-negative polynomials that can be decomposed into sums of
squares of lower order polynomials are all of degree less than four [22].

In this section, we, therefore, turn to Hilbert's theorem on non-negative, or posi-
tive semi-de nite (PSD) ternary quartics, for a parameterization of the GDTI HOT
when it is of order 4, to estimate diffusion HOTs with a non-negative diffusion pro-

le. Since such tensors are symmetric and non-negative, these are known as sym-
metric positive semi-de nite (SPSD) tensors. Based on Hilbert's theorem, [5] and
[6] have proposed two different parameterizations of tteodder tensor. A third
parameterization was proposed in [23]. In this chapter, we review all three parame-
terizations, but follow through mainly with the method in [23].

As a nal remark, we note that by adopting the polynomial formulation for the
GDTI HOT, we have gained over the Riemannian framework proposed in the previ-
ous section from the fact that we address the exact problem of estimating a diffusion
HOT with a positive diffusion pro le, whereas the Riemannian approach addressed
a more constrained problem. However, given the results on polynomials, namely
Hilbert's theorem on ternary quartics, we concede to the Riemannian approach by
the fact that we can only address the problem oiba-negativediffusion pro le
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with the polynomial formulation, whereas the Riemannian approach addressed the
positive de nitediffusion pro le constraint. However, we shall consider this a “neg-
ligible” loss, since in practice, due to numerical computations, we have never come
across a diffusion pro le that is exactly zero even along a single direction.

3.3 Estimating a SPSB" Order Diffusion Tensor

The basic approach behind all three “ternary quartic’ methods, [5, 6, 23], is the
same. The idea is to consider the diffusion pro le of '8 drder GDTI tensor as
a homogeneous trivariate polynomial in the coef cients of the gradient vegtor
(Eg. (28)), and to apply Hilbert's theorem on non-negative ternary quartics to rewrite
it as a sum of squares of three quadratic homogeneous polynomials. Therefore, by
estimating the coef cients of these quadratic homogeneous polynomials from the
signal, it is possible to reconstruct th& 4rder diffusion tensor by computing its
coef cients from the coef cients of the quadratic forms, a process also known as
the Gram-matrix approach [5, 24], such that the estimattdmler tensor has a
PSD diffusion pro le. The three methods differ from each other in the way they
parameterize the quadratic homogeneous polynomials to estimate their coef cients
from the diffusion signal.

In [5], the diffusion pro le of a 4" order GDTI tensor is written as:

D(g) = (v'c1)?+(v cp)?+ (v ca)%; (35)
=v'cCly; (36)
= VTGV; (37)

wherev = [ g2;03; 03, 0102; 9103, 9203] " contains the monomials formed by the co-
ef cients of the gradient vectag, v' ¢ are the three quadratic forms from Hilbert's
theorem, ands is known as the Gram matrix. The column vectorgontain the
coef cients of the quadratic forms, which have to be estimated from the signal,
C =[cijcojcs] is a 6 3 matrix, which assembles these coef cients to compute the
rank de cient or PSD 6 6 Gram matrix, which is used to compute the coef cients
of the 4" order diffusion tensor from the coef cients of the quadratic forms.

The authors in [5] use the Eq. (36) to parameterize the ternary quartic decompo-
sition by Hilbert's theorem, and estima®zfrom the DWIs, and compute th&br-
der tensor fronG. However, this parameterization is problematic since it produces
an in nite solution space, which can be seen by decompo€irigto two blocks
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C =[A;B]" whereA andB are 3 3 matrices. TheiCO, for any 3 3 orthogonal
matrix O, also results in the same Gram matrix, si@@(CO)' = CC" = G. In
other words, in this parameterizatidd, is unique only up to the equivalence class
of orthogonal matrice®(3).

In [5], the authors overcome this degenerate subspace issue by considering the
QR-decomposition (0RQ-decomposition) of the 33 submatrixA of C, where
Q is an orthogonal matrix andR is an upper triangular matrix. This implies
thatC =[RQ;B]" =[R;BQ"]"Q. ThereforeCC" =[R;BQ"]'Q Q'[R;BQ"]=
[R;BQT]" [R;BQT], which effectively quotients out the orthogonal group from the
computation of the Gram matri®.

In [6], the authors overcome this same issue in Eq. (36) by applying certain con-
straints orC from the properties of the Gram matrix, to remove the ambiguity of the
class of orthogonal matric&(3). Since the rank of the Gram matrix is known a pri-
ori from Hilbert's theorem to be three, they identify and isolate the positive de nite
part of the PSD Gram matrix using a modi ed lwasawa decomposition [25], which
is then parameterized uniquely by a Cholesky decomposition. In other words, they

rst collect the rank-3 positive de nite part o& into a 3 3 matrixW, and then de-
composéN using a Cholesky decomposition\as= LL T. This effectively equates
the 3 3 matrix A, from the paragraph above, whe@e= [A;B]", to the triangu-
lar matrix with positive diagonal elements In short, this procedure determines
a uniqueC in the in nite space of solution§ COg from the previous approach,
and removes the ambiguity of the class of orthogonal mat(8y. Therefore, the
authors in [6] effectively estimat€ = [L;B]" from the DWIs. Furthermore, the
Cholesky decomposition also distinguisiigdrom C, although both result in the
same Gram matrix. The authors then use this uniqueness prop&tymtlesign a
spatial regularization of the eld of estimated'4rder diffusion tensors.

Finally, we follow up in greater detail the third parameterization [23] using
the ternary quartic decomposition. Essentially, using Eq. (35) to parameterize the
Hilbert decomposition, we estimate tlegdirectly from the DWIs and assemble
these afterward to reconstruct From there we follow the same procedure as the
two other methods, and reconstruct the Gram matrix and compute the coef cients
of the 4" order diffusion tensor.

From Hilbert's theorem on non-negative ternary quartics we write the diffusion
function of a 4" order diffusion tensor aB(g) = y 2(g)+ y 2(9) + y 3(g), where:
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yi(9) = agi+ bigs+ g3+ 2aig102+ 2bigi1gs + 29.0203; (38)
=[au;bi;ci;p§ai;p§bi;p§g] (39)
BB 2002 200s: 20060 (40)

= x'v (41)

are the quadratic forms. Note that we have modi ed the form of the vactby
multiplying certain terms by 2, this is a minor difference in the notation conven-
tion from [5, 6]. Each quadratic form is known if its six unknown coef cientijn

can be estimated from the DWIs. Therefore, the diffusion pro le can be written as a
function of the unknowns to be estimated as:

D(X1;X2;X3) = X1 W X1+ ézvax2+ XgV\éTé(g; 3 (42)
wl 0 0 X1

=818 0 w0 58x. (43)
0 0w x3

= XTVX: (44)

To estimate the unknown coef cientg of the homogeneous quadratic forms
from a set of DWIs, we minimize the objective function based on the modi ed and
linearized Stejskal-Tanner equation:

1 1 S Tuv
> BIog S + X'ViX (45)

Qoz

E(X) =

whereN is the number of DWIs an¥; corresponds to the monomials from the
gradient directiong;. Although here we use the linearized form of the Stejskal-
Tanner equation, it is equally possible to use the non-linear form. The gradient of
the objective function with respect to the unknowhs computed to be:

NE(X) =

2 }Iog S iXTVX Vi VT X (46)
b S ST
We use the well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [26], a
sophisticated quasi-Newton optimization algorithm for non-linear problems.

Finally we compute the 15 independent coef cieAig, of the 4" order tensor
A ¥ from the coef cients of the Gram matri®, by using Eq. (37), which equates
D(g), the multi-linear form ofA (¥, to the quadratic form of the Gram matrix.
We use a mapping very similar to the one presented in [5, 24], where the inverse
mapping, i.eG interms ofAj is given by:
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° A a b A A d !
XXXX 27500y 2700z
1 1
a Ayy C Py e Py
b C Az f %Azzxz %Azzyz

G= ;o (47)

%Axxxy %Ayyxy f %1 (Axyxy 2a) % (Axyxz 4d) % (Axyyz 4e)
leAxxxz € %Azzxz % (Axyxz 4d) %(szxz 2b) % (szyz 4f )
d %Ayyyz %Azzyz % (Axyyz 4e) ?13 (szyz 4f ) %1 (Ayzyz 20)

wheref a;b; c;d;e; fg are six free parameters that determine the rank of the matrix.
In this case, since the rank & is known to be three, the free parameters are
determined from the construction of the Gram matrix, Ge= CC'. Therefore
these can be used to compute the coef ciefig .

In comparison to the approach in [6], since we estimate all the coef cients of the
three quadratic forms without any constraints, in effect we estimate 18 unknowns
from which we recover the 15 unknowns of tH8 drder diffusion tensor. This ac-
tually leaves us three degrees of freedom that can be applied as suitable constraints.
Also this approach doesn't distinguish betwe&gand C. However, since we only
deal with the estimation problem of th&4order diffusion tensor, this isn't impor-
tant, since botlC and C give the same Gram matrix, and hence the satherder
tensor. But if such were desired, the three degrees of freedom could be explored, to
distinguish betwee€ and C.

4 Experiments and Results

4.1 Synthetic Dataset

We conduct experiments on three datasets. First we consider a synthetic dataset
based on a multi-tensor model (to represent multi- ber crossings). For a single
ber pro le we use the diagonal tensdd = diag(170Q300,300 10 ® mnm?/s
and generate synthetic signals at a b-value of 3000 $/mivee estimate % or-
der HOTSs using the Riemannian and the “Ternary Quartic” (TQ) approaches and
plot their ADCs. Further, since the maxima of the ADCs don't correspond to
the ber directions, we also compute the diffusion ensemble average propagators
(EAPS)P(r) = (S(q)=S)exp 2piq'r dg, from the estimated@order tensors
[27, 28].

We visually compare the Riemannian approach, which guarantees a positive def-
inite diffusion pro le but solves a more constrained problem, to the Ternary Quartic
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Fig. 1 Synthetic Dataset. Comparing the diffusion pro les and the EAPs from the Riemannian
approach and the Ternary Quartic approach. (a) ADC Riemannian. (b) ADC Ternary Quartic. (c)
EAP Riemannian. (d) EAP Ternary Quartic. The Riemannian approach guarantees positive dif-
fusion, but solves a more constrained problem. The Ternary Quartic approach guarantees only a
positive semi-de nite diffusion, but solves the problem in the correct space.

approach, which guarantees only a positive semi-de nite diffusion pro le but solves
the problem in the correct space. The diffusion pro les of the estimaledrder

GDTI tensors and the EAPs computed thereof are presented in Fig-1. We notice
that the ADCs and the EAPs of the Ternary Quartic approach are somewhat sharper
than the Riemannian counterparts. We surmise that this is due to the fact that the
Riemannian approach cannot estimate certain types"abrdler tensors that can
have non-negative diffusion pro les, since these tensors require to have a semi-
de nite representation in the symmetric 6M%order tensor formulation used by

the Riemannian estimation. Such semi-de nite 619 @rder tensors are, however,
pushed to an in nite distance from the estimation tensor by the Riemannian metric.
Nonetheless, the overall angular structure of the two methods remain comparable.
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4.2 Biological Phantom Dataset

Next we conduct an experiment on a biological phantom data that was produced
from excised rat spinal cords. Only two cords were used to create a ber crossing
con guration with known physical directions. The biological phantom [29] was cre-
ated at the McConnell Brain Imaging Center (BIC), McGill University, Méaly
Canada. MR images were acquired on a 1.5T Sonata MR scanner using a knee caoil.
It was created from two excised Sprague-Dawley rat spinal cords embedded in 2%
agar. The acquisition was done with a single-shot spin-echo planar sequence with
twice-refocused balanced gradients, designed to reduce eddy current effects. The
dataset was acquired with 90 gradient directions, on a single g-shell with a b-value
of 3000 s/mm, q= 0:35 mm}, TR= 6.4 s, TE= 110 ms, FOV 360 x 360 Mm

128 x 128 matrix, 2.8 mm isotropic voxels and four signal averages per direction.
The SNR of theS) image was estimated to be approximately 70 for the averaged
phantom, and around 10 for the cord at b-value of 3000 mm

In this experiment we estimaté'4rder GDTI diffusion tensors from the phan-
tom dataset using both the Riemannian approach and the TQ approach. We then
compute the EAPs from the tensors using the methods in [27, 28] to validate the
coherence of their geometry with the known layout of the phantom and to see if it is
possible to infer the underlying ber bundle directions. For the sake of comparison
we also present the result of the orientation distribution function (ODF) computed
from the analytical g-ball estimation technique in [30], which is an angular marginal
distribution of the true and unknown EAP under a mono-exponential decay model
that corresponds to the GDTI model. The ODFs were directly estimated from the
signal.

The results are presented in Fig-2. The geometry of the EAPs computed from the
4 order tensors estimated using both the methods are coherent with the underlying
phantom model, and also agree with the geometry of the ODFs. It is interesting to
note that since the ODFs are angular marginal distributions of the true EAPs, the ra-
dial information of the true EAPs has been marginalized out by a radial integration.
Therefore, although the ODFs' angular structures resemble the angular structures
of the EAPs computed from thé™order tensors, the ODFs do not reveal anything
about the magnitude of diffusion due to the heterogeneous structure of the underly-
ing tissue. This is visible in the EAPs computed from the tensors from the size or
volume of the displacement probability at a constant displacement radius. Also, by
comparing (c) and (d) in Fig-2, again the EAPs from the TQ method look sharper
than the Riemannian counterparts.
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Fig. 2 Biological Phantom Dataset. (a) The layout of the phantom created using two excised rat
spinal cords. (b) ODFs estimated from the signal as reference geometry. (c) EAPs computed from
4t order tensors estimated using the Riemannian approach. (d) EAPs computedfromiet

tensors estimated using the Ternary Quartic approach. The EAPs were evaluated at the constant
probability radius ofrj = 17 nm.

4.3 In Vivo Human Dataset

Finally we conduct experiments on an in vivo human cerebral dataset. This dataset
was acquired on a 1.5T scanner using 41 gradient directions, with a b-value of 700
s/mm? with TR = 1.9 5, TE = 93.2 ms, 128 x 128 image matrix, 60 slices, with voxel
dimensions of 1.875mm x 1.875mm x 2mm. This dataset is from a public HARDI
database that can be found in [31].

We consider two regions of interest (ROIs) with 249352 and 987 voxels respec-
tively. For the 249352 voxels we compute the diffusion pro les of the tensors and
test for positive/non-negative diffusion along 81 directions distributed evenly on a
hemisphere. For the 987 voxels we compare the estimation time of the methods,
since the positivity constraint implies increased computational complexity.

For the positive/non-negative diffusion experiment, we test four approaches. First
we consider the standard Euclidean least squares approach (LS). Then we also test a
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(81 dirs) LS SH RM TQ
Positive 181757| 249263 249352 249352
Negative|| 67595 89 0 0

Table 1 Real dataset. The estimated diffusion functions from 2493%2orler GDTI tensors
checked for positive diffusion prole on a set of 81 pairs of directions distributed evenly on a
sphere. The Ternary Quartic and the Riemannian approaches are the only methods, which guaran-
tee positive diffusion.

method based on spherical harmonics (SH). Since SHs of the same rank are bijective
to Cartesian tensors of the same order, we rst estimate real and symmetric SHs of
rank 4 from the signal and then transform them to the tensor basis to oBtaildr

HOTs. And nally we consider the two proposed methods of this chapter, namely
the Riemannian approach and the TQ approach. The LS approach and the SH to
HOT approach don't consider any constraints, although the SH approach includes
Laplace-Beltrami regularization [32] to account for some signal noise.

The results of this experiment are displayed in Table 1. The Riemannian (RM)
approach and the TQ approach are the only two that estinfatrder diffusion
tensors with positive diffusion pro les. The LS approach, as known, estimates ten-
sors with lots of negative diffusion directions. Although the SH to HOT method
includes regularization, clearly that is insuf cient to guarantee positive diffusivity.
Positive diffusivity is only achieved when it is applied explicitly by either the Rie-
mannian approach or the TQ approach. In this experiment, we also tested for zero
diffusion and found that both the Riemannian method and the TQ method always
estimated tensors with strict positive diffusion pro les. Although the TQ method
only applies a non-negative constraint, clearly due to numerical computations it is
highly improbable to estimate tensors with exactly zero diffusion.

Although, the positivity constraint, applied using either the Riemannian approach
or the TQ approach, clearly performs well, it also implies an added computational
load. To get an idea of the additional computational complexity, we compare the
estimation time of the two — Riemannian & TQ — approaches with the standard and
linear LS approach on an ROI of the in vivo dataset with 987 voxels. The estimation
times are displayed in Table 2. The computations were conducted on a Dell D630

(987 tensors) LS| Rm| TQ
Estimation || 6s| 35s| 102s

Table 2 Real dataset. Comparison of the time for estimating 987ortler diffusion tensors that
are visualized in Fig-3.
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Fig. 3 In-vivo Human Cerebral Dataset. Effects of the non-negative and the positive de nite con-
straints that are guaranteed by the Ternary Quartic approach and the Riemannian approach are
evaluated on the EAPs computed from the estimated tensors. EAPs computed from tensors esti-
mated using the Euclidean LS approach, which doesn't consider any constraints, are shown for
comparison. No spatial regularization was used. The improvement in the results is only due to the
non-negativity constraints.

Latitude laptop with Intel(R) Core(TM)2 Duo CPU @ 2.20GHz and 2GB RAM.
The linearity and ef ciency of the LS method is in fact one of its main support-
ing factors. However, the increased estimation time due to the complexity of the
positivity constraint is still tractable.

Finally, we conclude the experiments, by computing the EAPs from tensors es-
timated using both the Riemannian method and the TQ method from the in vivo
human dataset (using [27, 28]). For comparison we include the EAPs computed
from tensors estimated using the LS method (using [27, 28]). The results are pre-
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sented in Fig-3, where a region of interest on an axial slice is shown. What stands
out prominently from Fig-3 is the increased spatial regularity in the results of the
Riemannian and the TQ methods when compared to the LS method. However, no
spatial regularization was used. Only the positivity constraint was employed, using
the two methods, for estimating th&4rder tensors. Clearly, the positivity con-
straint renders the estimation of the tensors much more robust to signal noise and
improves the results. This indicates the importance of the positivity constraint.

5 Discussion and Conclusion

In this chapter we considered the problem of estimatifigorder diffusion tensors

with a positivity constraint from the GDTI model. In GDTI Cartesian tensors of
order higher than two were used to attain greater accuracy in the modelling of com-
plex shaped ADCs. GDTI HOTs of ord&rwere assumed to be symmetric since
only their projections along vectors were used in the ADC modelling, and were
assumed to be of even order since negative diffusion is non-physical. However, in
spite of this design, the standard method for estimating GDTI HOTs from the sig-
nal, namely the least squares approach doesn't guarantee an estimated HOT with a
positive diffusion pro le. Least squares estimation, although linear and ef cient can
result in HOTs with negative diffusion pro les.

We reviewed two different approaches for estimatiffyotder GDTI diffusion
tensors with positive diffusion pro les and non-negative diffusion pro les respec-
tively. In the rst method, we considered the algebra 8F drder tensors to map
symmetric 3D ¥ order tensors to symmetric 6[9%order tensors. We then applied
the Riemannian framework for the spaceSof/nt; , to estimate ¥ order diffusion
tensors with strictly positive or positive de nite diffusion pro les. In the second
method, we considered the polynomial interpretation of the multi-linear form of
HOTSs, to reformulate the problem of estimating a HOT as a problem of estimating a
polynomial. In the case of%order diffusion tensors, we were able to use Hilbert's
theorem on non-negative ternary quartics to parameteffizerder tensors as a sum
of squares of quadratic forms. By estimating the coef cients of the quadratic forms,
we were able to reconstruct"border diffusion tensors with non-negative diffusion
pro les from the signal.

The Riemannian method we proposed, ensures a positive de nite diffusion pro-
le, but solves a problem more constrained than implied by the model. This can be
understood from the fact that the 3t #rder tensors were estimatedSnyny, , as



26 A. Ghosh, R. Deriche

6D 2'9 order tensors, which implies that the Riemannian method ensures that the
multi-linear form of the &' order tensor is positive de nite for all symmetric 3D

2" order tensor. However, the GDTI model requires that the multi-linear form of
the 4" order tensor needs to be positive de nite for only 3% rder tensors of
maximal rank one. Therefore, the Riemannian method ensures a positive diffusion
pro le, but the solution space is more constrained than the true solution space.

The second method we proposed — the Ternary Quartic method solves the prob-
lem in the correct space due to the appropriate polynomial parameterization. How-
ever, since the known polynomial results, i.e. Hilbert's theorem on ternary quartics,
only guarantee non-negativity, this method considers a theoretically weaker problem
of a positive semi-de nite diffusion pro le. But this method also uses the Euclidean
metric, which, as has been suggested in [7], is perhaps better suited for computing
with diffusion data than the af ne invariant Riemannian metric.

From the implementation and the results, we found that the shape of the ADCs
and EAPs computed from tensors estimated using the Riemannian method to be
similar to the shape of the ADCs and EAPs computed from tensors estimated using
the Ternary Quartic method. We did, however, remark a swelling in the shapes of
the tensors estimated using Riemannian method, which we suspect was the result
of the over constraint. A more detailed analysis is, therefore, necessary to identify
the sub-space spanned by the Riemannian approach, and also to quantify the impact
of this sub-space on the estimated results. Finally, in the tests for negative diffu-
sion pro les, we never came across zero diffusion from tensors estimated using the
Ternary Quartic method, which is probably due to numerical computations. There-
fore, we concluded that the concession of the weaker non-negativity constraint to be
negligible in practice.

We conducted tests on a hiological phantom with a known layout to evaluate
whether it was possible to infer the underlying ber directions from the geometry
of the EAPs computed from the tensors estimated using the two approaches. Our
experiments indicated that this could be answered in the af rmative and that the
geometry of the EAPs computed from the tensors estimated using the Riemannian
framework and the Ternary Quartic approach could reveal the underlying ber direc-
tions. We also experimented on in-vivo human cerebral data using both the Rieman-
nian framework and the Ternary Quartic approach to motivate the need for a positive
or non-negative diffusion pro le constraint. The experiments clearly indicated the
gains of applying such constraints. Finally, we also presented the computation time
to evaluate the increased complexity, and found this to be tractable.
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