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Abstract: This report presents a study of techniques used to speedup a scientific simulation
code. The techniques include sequential optimizations as well as the parallelization with OpenMP.
This work is carried out on two different multicore shared memory architectures, namely a cutting
edge 8x8 core CPU and a more common 2x6 core board. Our target application is representative of
many memory bound codes, and the techniques we present show how to overcome the burden of the
memory bandwidth limit, which is quickly reached on multi-core or many-core with shared memory
architectures. To achieve efficient speedups, strategies are applied to lower the computation costs,
and to maximize the use of processors caches. Optimizations are: minimizing memory accesses,
simplifying and reordering computations, and tiling loops. On 12 cores processor Intel X5675,
aggregation of these optimizations results in an execution time 21.6 faster, compared to the original
version on one core.
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Optimisation et parallélisation OpenMP du code

Emedge3D.

Résumé : Ce rapport présente des stratégies pour la réduction du temps d’exécution
d’un code de simulation numérique. Ces stratégies interviennent autant au niveau optimisation
séquentielle qu’au niveau de la parallélisation OpenMP. Cette étude a été menée sur deux
architectures à mémoire partagée : une carte à la pointe de la technologie comprenant 8x8 coeurs
et une autre plus commune intégrant un processeur de 2x6 coeurs. Comme pour beaucoup
d’applications du même type, les performances de la parallélisation du code numérique cible
sont limitées par la bande passante mémoire. Les techniques que nous présentons dans ce
document montrent comment contourner cette limitation. Afin d’obtenir des accélérations
efficaces, différentes stratégies sont mises en oeuvre au niveau des calculs, mais aussi au niveau
de l’accès aux données. Les optimisations en question sont la minimisation du nombre d’accès
à la mémoire, la simplification et le ré-ordonnancement des calculs et le tiling pour maximiser
l’utilisation des caches mémoire. Sur le processeur Intel X5675 (12 coeurs), l’accumulation de
ces optimisations et la parallélisation permet d’obtenir un code 21.6 fois plus rapide par rapport
à la version initiale sur un seul coeur.

Mots-clés : mémoire partagée, optimisation, parallélisation, calcul scientifique, limitation
par la bande passante mémoire.
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1 Introduction

Nuclear fusion is an actual challenge for energy production. A main goal is to produce energy
at large scale with the desirable property of having a low environment impact. One way to
reach nuclear fusion is to confine plasmas within a strong magnetic field, using a toric device
called tokamak, such as the tokamak JET in Culhlam, Great Britain, or the ITER project in
France. As real experiments are very expensive, and complex to set up and analyze, physicians,
mathematicians and computer scientists collaborate to develop simulation codes, in order to
understand and predict the plasma’s behavior inside tokamaks.

Emedge3D [5] is a C scientific code which has been developed to simulate the behavior of
plasmas at the tokamak’s edge. This code is driven by a physical fluid model whose equations
can be written in the compact form:

∂tU = L(U) + NL(U),

where U = U(t,X) is the vector of physical variables (3D scalar fields), X = (x, y, z) is the
vector of 3D variables, L is a spatial differential linear operator and NL a nonlinear differential
spatial operator. This equation is solved using state of the art of numerical schemes.

However, the simulations we target in terms of scale are currently unreachable because of
long execution times. The execution complexity lies in the time and multi-scale phenomena
being simulated. Indeed, barrier relaxations physical phenomenon appears at large time values,
typically 1000 time units, and as the timestep is very small (about 10−4: limited by numerical
schemes). Therefore, the code needs a huge amount of time steps to produce a consistent
solution. In addition, phenomena such as magnetic islands also appear at a very small space
scale, implying to compute spatial operators on a large number of cells, resulting in numerous
computations and data accesses per time iteration.

Ours efforts to reduce the execution time take place at two levels. At the first level, we
design the numerical schemes with the objective of significantly increasing the time step value,
thereby lowering the number of time iterations needed. At the second level, we focus on code
optimization and parallelization.

The aim of the present study is to optimize and parallelize Emedge3D on shared memory
machines with the OpenMP paradigm [3]. We are here especially interested in running the code
efficiently on the following many-core boards: a 64 (8×8) cores Intel E7-8837 @ 2.67 GHz SMP.
Also, a 12 (2 × 6) cores Intel X5675 @ 3.06 GHz Intel has been used for comparison throughout
the study, as it is a more common processor found in clusters.

As in other scientific applications [11, 7], this code is memory bound, and this limits the
speedup that can be achieved through parallelization. Hence, a first phase of optimization is
required to improve the code in several aspects: improve data locality, simplify computations,
minimize data loads from memory. In order to improve the latter, we use classical techniques
of loop reordering and loop tiling [12] to take benefit of caches.

For the linear part of the model, these sequential optimizations allow to obtain a 3.2 speedup
factor and parallelizing with tiling provides an additional factor 10 on the 12 cores Intel X5675,
leading to a 32 total acceleration factor on 12 cores.

In the following, Emedge3D will be first described. Then, the linear L and nonlinear NL
parts will be introduced and their progressive optimizations will be detailed. Finally, we will
conclude with perspectives on this study.

2 Emedge3D

2.1 Physical and Numerical Aspects

Emedge3D is a fluid numerical simulation code. It shows the evolution over time of three
physical parameters (scalar fields) on a given 3D spatial domain. The three physical values are
the pressure p, the electrostatic potential φ, and the electromagnetic potential ψ. These three
unknown (p, φ, ψ) depend on the spatial variable X = (x, y, z) ∈ R

3 describing a simplified
toric geometry. The different directions are called radial (x), toroidal (y) and poloidal (z)
directions. Neumann boundary condition are imposed to the radial direction, and periodic
boundary conditions are applied to toroidal and poloidal directions.

This code aims at simulating physical phenomena such as transport barriers and their re-
laxations [2], and how to control these relaxations by for example inducing resonant magnetic
perturbations [8], and to characterize magnetic islands [10].
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The model, and hence the code, can be split into two parts: a linear part (in which spatial
operators to solve are linear), and a nonlinear part.

To reduce algorithmic costs, two discretizations are used to solve spatial operators (see
2.2.2): a semi-spectral representation of 3D fields to compute the linear part, in which toroidal
and poloidal directions are expressed in the Fourier basis, and the radial one in the real basis,
and a representation in real space for the 3 directions to compute the nonlinear part.

To solve the equations over time, a Runge-Kutta (RK) scheme of the desired order is per-
formed. Over space, the operators are solved with finite differencing methods or spectral meth-
ods, leading to a linear computational cost in most of the code.

If needed, the code allows to downgrade the model by desactivating operators.
In the following, we only consider the most expensive part of the code. We call Mx,My,Mz

the number of mesh points in the radial, toroidal and poloidal directions (respectively) for the
semi-spectral representation, and Nx, Ny, Nz (with Nx = Mx) the number of mesh points in
the radial, toroidal and poloidal directions (respectively) for the full real representation. In
terms of memory storage, this means we will have to manipulate 4D arrays in the semi-spectral
representation of the form (Re|Im,Mz,My,Mx), where Re|Im denotes the real or imaginary
part.

2.2 Operator Description

2.2.1 Linear Part

During each timestep, several operators have to be solved:

• three perpendicular (in plan (x, y)) diffusion operators:

∇⊥ · (ν(x)∇⊥W ), ∇⊥ · (χ(x, y)∇⊥p), ∇2
⊥ψ, (1)

with ∇⊥ = (∂x, ∂y, 0), W = ∇2
⊥φ, and J = ∇2

⊥ψ.

• two curvature operators:
Gp, G(δcφ− Γp), (2)

with G = cos(y)∂y + sin(y)∂x,

as many times as required by the desired RK scheme. The time complexity to solve these two
operators numerically is linear: Θ(Mx ×My ×Mz).

2.2.2 Nonlinear Part

Again, at each RK timestep, the code has to compute parallel gradients, also called Poisson
brackets:

∇‖ · (χ‖(x, y)∇‖p),∇‖J,∇‖φ,

with ∇‖ = {ψ, .} and {f, g} = ∂xf∂yg − ∂yf∂xg.

Considering two 3D complex arrays f̂(x, y, z) and ĝ(x, y, z) in the semi-spectral form, the
formula used to solve the Poisson bracket for a given radial position and for a given y = m, z = n
Fourier mode is :

{f̂ , ĝ}m,n =

Mz
∑

i=0

My
∑

j=0

(

(m− j)∂xf̂j,i∂y ĝm−j,n−i

−j∂y f̂ji∂xĝm−j,n−i

)

.

Even if this formula is numerically exact, the computational complexity for the whole array
in semi-spectral representation is in Θ(Mx ×M2

y ×M2
z ): it is a convolution. To reduce this cost,

the solution is to perform several 2D Discrete Fourier Transform (DFT) and to compute the
Poisson bracket in the real space, and finally go back to the semi-spectral representation. This
results in a computational complexity Θ(Mx ×My ×Mz × log(My ×Mz)) (due to 2D FFTs).
Poisson brackets are computed with a second order Arakawa method [1].

3 Linear Part

This part is dedicated to the optimization and parallelization of perpendicular diffusion and
curvature operators, solved in the semi-spectral representation of scalar fields. Optimizations
address mainly data organization and accesses while parallelization concerns the distribution
of computations regarding the data.

Inria
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3.1 Sequential Optimizations

For a sake of clarity, the initial code (although in C) had been written with an object oriented
approach. Practically, each time an operator was applied on one or several fields, the code
accessed the whole 4D arrays described in Section 2.1. Algorithm 1 sketches the original form
chosen to solve the operators in Equations (1) and (2). In this algorithm, for each function call,
one traversal of the input (∗_in) and output (∗_out) data structures is involved.

Algorithm 1 Linear part algorithm.

∇2
⊥(p_out , p_in , ...);

∇2
⊥(W_out , W_in , ...);

∇2
⊥(psi_out , psi_in , ...);

G(p_out , phi_in , ...);

G(p_out , p_in , ...);

G(W_out , p_in , ...);

The first optimization consists in improving data locality: complex arrays dimensions order
are transposed from (Re|Im,Mz,My,Mx) to (Mz,My,Mx, Re|Im). This results in a code
running 2.3 times faster. As a second optimization, local variables have been used to store data
loads into registers (similarly to the optimization described in Algorithm 6). For the diffusion
operator, this yields a reduction from 35 to 15 data accesses per iteration, and a 1.4 acceleration
factor.

3.2 Parallelization

The parallelization consists in distributing the outermost dimension Mz over the threads using
an OpenMP static scheduling. Figure 1 shows the performance in terms of speedup of this
parallel version. We observe a limit in the speedup increase when using more than 4 and
16 cores on the 12 and 64-core boards (respectively). The reason is the memory bandwidth
requirement of the application, which scales linearly with the number of threads. This is verified
by running the Stream benchmark [6], whose performance is also plotted on Figure 1. It shows
that the memory bandwidth performance scaling factors matches the observed speedups.
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Figure 1: Bandwidth scaling factors and speedups on two multicore architectures.

3.3 Parallel Optimizations

The parallel optimizations tend to bypass the memory bandwidth limitation. The main objec-
tive here is to keep data as much as possible in processor caches, minimizing accesses to the
global memory.

The first parallel optimization consisted in extracting the outermost loop over Mz, solving all
operators on a same (x, y) slice. However, considering the target sizes for Emedge3D application,
the data volume accessed is still too large to take fully benefit of cache effects.
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The second parallel optimization applied is the reordering of function calls. Indeed, jux-
taposing calls that involve the same scalar fields might improve data locality. This intuition
comes from Equations (1) and (2): they show that the pressure scalar field appears in one
perpendicular diffusion and in two curvature operations, indicating these operators should be
solved in sequence. But this optimization, detailed in Algorithm 2, is still not sufficient for
significant improvements.

Algorithm 2 Linear parallel algorithm: sliced and calls-reordered version.

# pragma omp parallel for private (idz)

for ( idz =0; idz <M_z;idz ++ ){

G_Z(p_out , phi_in , ..., idz);

∇2
⊥ _Z(p_out , p_in , ..., idz);

G_Z(p_out , p_in , ..., idz);

G_Z(W_out , p_in , ..., idz);

∇2
⊥ _Z(W_out , W_in , ..., idz);

∇2
⊥ _Z(psi_out , psi_in , ..., idz);

}

The solution found to solve our scalability problem is to apply tiling accross the operators
involved in the algorithm. Indeed, tiling consists in dividing a large iteration space into smaller
chunks of desired size and depth [12]. It changes the execution order of a loop’s instructions,
which in turn modifies the order in which data are accessed. Algorithm 3 is the result of this
optimization.

Algorithm 3 Linear parallel algorithm: tiled version.

# pragma omp parallel for private (idz ,iblockX , iblockY )

for ( idz =0; idz <M_z;idz ++ ){

for( iblockY =0; iblockY < nblockY ; iblockY ++)

{

for( iblockX =0; iblockX < nblockX ; iblockX ++)

{

G_Z_tiled (p_out , phi_in , ..., idz , iblockX , blocksizeX ,

iblockY , blocksizeY );

∇2
⊥ _Z_tiled (p_out , p_in , ..., idz , iblockX , blocksizeX ,

iblockY , blocksizeY );

G_Z_tiled (p_out , p_in , ..., idz , iblockX , blocksizeX ,

iblockY , blocksizeY );

G_Z_tiled (W_out , p_in , ..., idz , iblockX , blocksizeX ,

iblockY , blocksizeY );

∇2
⊥ _Z_tiled (W_out , W_in , ..., idz , iblockX , blocksizeX ,

iblockY , blocksizeY );

∇2
⊥ _Z_tiled (psi_out , psi_in , ..., idz , iblockX , blocksizeX

, iblockY , blocksizeY );

}

}

}

3.4 Evaluation of the Linear Part

In order to find the best tile size, a profiling of the code has been done on the two multicore
architecture introduced in Section 1. Multiple domain sizes have been tested, but, as results
are very similar, only one domain size was chosen to illustrate our tests. In the following, we
consider the 3D domain size (Mx,My,Mz) = (256, 256, 192). Table 1 and 2 give the best times
(and hence the best tile sizes) results for a given number of threads and Figure 2 shows speedups
for these best tile sizes on two multicore architectures. These results clearly highlight that the
tile size to be used depends on the number of threads and on the machine architecture. Figure
2 shows that tiled codes with appropriate tile sizes are able to reach much higher speedups and
reduce execution times on both multicore architectures.

Inria
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Table 1: Best times by thread number on Intel X5675.

Tile size (Tx, Ty) Threads Time (µs) Speedup

(256,256) 1 1401605.00 1.00
(256,128) 1 1400773.00 1.00
(256,64) 2 717327.00 1.95
(128,32) 4 373240.00 3.76
(32,4) 6 259935.00 5.39
(32,4) 8 199425.00 7.03
(16,2) 12 137913.00 10.16

Table 2: Best times by thread number on SMP.

Tile size (Tx, Ty) Threads Time (µs) Speedup

(256,256) 1 1776686.00 1.00
(256,32) 1 1733988.00 1.02
(8,8) 2 952863.00 1.86
(4,16) 4 515770.00 3.44
(4,2) 6 357161.00 4.97
(2,8) 8 276104.00 6.43
(4,2) 12 182989.00 9.71
(4,2) 16 138960.00 12.79
(4,2) 24 95690.00 18.57
(4,2) 32 71879.00 24.72
(2,2) 64 44876.00 39.59

To explain those results, a profiling of cache performance was done with the PAPI library
[9]. Figure 3 shows L3 cache performance for Intel X5675 and SMP. These curves clearly show
that L3 cache performance per thread number is improved by using the appropriate tile size,
allowing the code to be less memory bound. For example, with tile size (16, 2) cache misses
drop linearly indicating tiles stay in the cache whatever the number of threads used. But with
tile size (128, 32), cache misses begin to increase when running with 8 threads, showing that
some tiles are reloaded from global memory to L3 cache. Moreover, performances on X5675
almost indicate the best tile size as a function of the number of threads used by the application
(see also Table 1).

4 Nonlinear Part

This part deals with the Poisson brackets computations, that is core to solve the nonlinear
part of Emedge3D. More precisely, it concerns optimization and parallelization of the Arakawa
method and DFTs. Here, optimizations address data operations, computation simplifications
while parallelization relates to distributing instructions.

For comprehension, data are stored in the following order :

• comp[Mx ∗Mz ∗My ∗ 2] for complex fields, meaning Re(comp(idx, idy, idz)) is stored at
position idx ∗ (Mz ∗ My ∗ 2) + idz ∗ (My ∗ 2) + idy ∗ 2 and Im(comp(idx, idy, idz)) at
position idx ∗ (Mz ∗My ∗ 2) + idz ∗ (My ∗ 2) + idy ∗ 2 + 1,

• real[Nx ∗Nz ∗Ny] for real fields, with the same storage format.

4.1 Initial State

As explained in Section 2.2.2, Poisson brackets are solved in the real space. We consider here
the data fields inputs and outputs to be in the semi-spectral decomposition, which implies that
this nonlinear part must include the DFTs computations (see Algorithm 4). In this algorithm,
f1comp and f2comp are the inputs of Arakawa’s method in the semi-spectral space. These data
fields are first transformed by FFTs giving f1_in and f2_in respectively. Then, Arakawa’s

RR n° 8336



8 Matthieu Kuhn , Guillaume Latu , Stéphane Genaud , Nicolas Crouseilles
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Figure 2: Performance corresponding to Table 1 and 2 tile sizes on two architectures.

method is applied on f1_in and f2_in, and the result is stored in f_out. Finally, f_out is
transformed back from real to semi-spectral representation by FFT.

4.2 Sequential Optimizations

4.2.1 Arakawa method

This classical numerical method is used to solve the Poisson bracket. In codes such as
Emedge3D, this scheme is very popular because of its energy conservation property [1]. In
the following, data accesses and computation simplifications are presented and evaluated.

For i and j given, the formula to compute Arakawa’s scheme is :

Ji,j(ξ, ψ) = −
1

∆x∆y
[

(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) (ξi+1,j + ξi,j)

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1) (ξi,j + ξi−1,j)

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) (ξi,j+1 + ξi,j)

− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j) (ξi,j + ξi,j−1)

+ (ψi+1,j − ψi,j+1) (ξi+1,j+1 + ξi,j)

− (ψi,j−1 − ψi−1,j) (ξi,j + ξi−1,j−1)

+ (ψi,j+1 − ψi−1,j) (ξi−1,j+1 + ξi,j)

− (ψi+1,j − ψi,j−1) (ξi,j + ξi+1,j−1)] .
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Figure 3: L3 cache performance for Table 1 and 2 tile sizes on two architectures.

After expansion, ψ∗,∗ξi,j eliminates each other so 8 additions can be saved up :

Ji,j(ξ, ψ) = −
1

∆x∆y
[

(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) ξi+1,j

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1) ξi−1,j

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) ξi,j+1

− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j) ξi,j−1

+ (ψi+1,j − ψi,j+1) ξi+1,j+1

− (ψi,j−1 − ψi−1,j) ξi−1,j−1

+ (ψi,j+1 − ψi−1,j) ξi−1,j+1

− (ψi+1,j − ψi,j−1) ξi+1,j−1] .

We have named this first optimization AddOpti.
Then, as there are numerous memory transactions, data loads on ψ and then on both ψ

and ξ have been explicitely transferred to registers in order to minimize them. We called
these optimizations SemiLoadReuse and LoadReuse respectively. Algorithms 5 and 6 (original
and then optimized) illustrate how these improvements are implemented. These optimizations
include AddOpti.

Moreover, it is also possible to save computations on ψ. Indeed, let us define the following
variables:

ψA
i,j = (ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) ,

ψC
i,j = (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) ,

ψE
i,j = (ψi+1,j − ψi,j+1) ,

ψG
i,j = (ψi,j+1 − ψi−1,j) ,

the last expression solving Arakawa’s scheme on a mesh point becomes:

Ji,j(ξ, ψ) = −
1

∆x∆y

[

ψA
i,jξi+1,j − ψA

i−1,jξi−1,j

+ψC
i,jξi,j+1 − ψC

i,j−1ξi,j−1

+ψE
i,jξi+1,j+1 − ψE

i−1,j−1ξi−1,j−1

+ψG
i,jξi−1,j+1 − ψG

i+1,j−1ξi+1,j−1

]

.

The last form shows that it is possible to reuse computations from one iteration to the other.
For example, at iteration i′ = i, j′ = j + 1, ψC

i′,j′−1 has already been computed at iteration i, j.

We have also tested two strategies based on the amount of temporary storage used: reuse ψC
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Algorithm 4 Nonlinear algorithm.

/* FFT 2D: Complex ----> Real */

int lenComp = M_y*M_z;

int lenReal = N_y*N_z;

for(idx =0; idx <M_x;idx ++)

{

int sliceComp = idx* lenComp ;

int sliceReal = idx* lenReal ;

fftw_execute_dft_c2r (p2D_C2R ,&( f1comp [ sliceComp ]), &( f1_in[

sliceReal ]));

fftw_execute_dft_c2r (p2D_C2R ,&( f2comp [ sliceComp ]), &( f2_in[

sliceReal ]));

}

ArakawaMultiplication (f1_in ,f2_in ,f_out ,...);

/* FFT 2D: Real ----> Complex */

for(idx =0; idx <N_x;idx ++)

{

int sliceComp = idx* lenComp ;

int sliceReal = idx* lenReal ;

fftw_execute_dft_r2c (p2D_R2C ,&( f_out[ sliceReal ]), &( f3comp [

sliceComp ]));

}

Algorithm 5 Arakawa initial algorithm.

void ArakawaMultiplication (psi , xi , result , N_x , N_y , N_z , dx ,

dy)

{

...

for(i=0;i<N_x;i++){

for(j=0;j<N_z;j++){

for(k=0;k<N_y;k++){

result [ resIndex ] = (psi[ijm1] + psi[ ip1jm1 ] - psi[ijp1]

- psi[ ip1jp1 ]) * ...;

}

}

}

}

Inria
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Algorithm 6 Arakawa algorithm: memory accesses optimized.

void ArakawaMultiplication (psi , xi , result , N_x , N_y , N_z , dx ,

dy)

{

...

for(i=1;i<NX -1;i++){

for(j=0;j<N_z;j++){

/* load values in registers */

/* idx=i-1, idz=j, idy =0 */

psi_im1jkm1 = psi[ im1jkm1 ];

/* idx=i-1, idz=j, idy =1 */

psi_im1jk = psi[im1jk ];

/* idx=i-1, idz=j, idy =2 */

psi_im1jkp1 = psi[ im1jkp1 ];

/* and so on for i and i+1 */

...

for(k=1;k<N_y -1;k++){

result [ resIndex ] = ( psi_ijkm1 + psi_ip1jkm1 - psi_ijkp1

- psi_ip1jkp1 ) * ...;

/* swap variables to avoid extra loads */

psi_im1jkm1 = psi_im1jk ;

psi_im1jk = psi_im1jkp1 ;

psi_im1jkp1 = psi[ im1jkp2 ];

/* and so on for i and i+1 */

...

}

}

}

}

(psiCReuse) only, or both ψC and ψA (psiACReuse). These optimizations include LoadReuse
or SemiLoadReuse (when specified in the version name).

Table 3 shows how the proposed optimizations impact Arakawa’s computation execution
times on Intel X5675. It indicates PsiACReuse is the best of the proposed algorithms. The
same results are observed on SMP.

Table 3: Arakawa: Times by sequential optimization on Intel X5675. Case size: (512,512,128).

Version Time (µs)

Original 1144520.00
AddOpti 987053.00
PsiCSemiLoadReuse 727701.00
PsiACSemiLoadReuse 697066.00
LoadReuse 687248.00
SemiLoadReuse 683341.00
PsiCReuse 676677.00
PsiACReuse 654606.00

4.2.2 DFTs

Each time a Poisson bracket is computed, the code has to perform three main steps (see Algo-
rithm 4):

• two backward transforms (from semi-spectral to full real) for the inputs of the Arakawa
method, f1comp and f2comp,

• and one forward transform for the output, f3comp.
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These steps consist in performing Mx times the 2D DFTs per data set: one for each point in
the radial direction. DFTs are computed with the sequential FFTW [4] library version 3.3.3
– this library is generally well regarded for the fine-tuned optimizations of the algorithms it
implements.

However, incrementing or decrementing toroidal or poloidal dimension size, keeping approx-
imately the same data volume, may change execution time by up to a factor 4. Indeed, FFT
computations is much more efficient considering powers of 2 sizes due to the algorithm employed.
In Emedge3D, plans for FFTs are defined at initialization once for the whole program execution.
This plan creation requires array sizes in the real space. As the data fields are initialized in
the semi-spectral representation (complex arrays of size (Mx,My,Mz)), real domain sizes must
be deduced to create the FFT plans, with the formula (Nx, Ny, Nz) = (Mx, (My − 1) × 2,Mz).
For example, with a 2D size (My,Mz) = (512, 128), the FFT execution time is 4 times longer
than a (My,Mz) = (513, 128) size. The reason why My = 513 is 4 times faster is that it gives
Ny = 1024 = 210 real size, leading to a 2D FFT of size (1024, 128), whereas My = 512 gives a
(1022, 128) FFT size.

4.3 OpenMP Parallel Version

As for Section 3.2, the outermost dimension is parallelized with OpenMP, i.e. the loop over
the radial dimension (to be compared to the poloidal direction for linear operators).

4.3.1 Arakawa method

Table 4 shows best time and hence best optimization depending on the number of threads on
Intel X5675. Speedups reached are not really satisfying because of the low compute intensity for
this function. This table also shows that the best OpenMP parallel version, i.e. SemiLoadReuse
is not the same as the best sequential one: PsiACReuse. Indeed, as scaling is once more limited
by the memory bandwidth, and as PsiACReuse implies adding an array, and hence some extra
data loads, this optimization is not profitable on the targeted architectures. Also, SemiLoad-
Reuse is better than LoadReuse because it uses less registers data movements, noticeable on
the assembly code generated by these two versions. On SMP the best optimization in parallel
is also SemiLoadReuse, giving a speedup of 19.99 relative to optimized version on the 64 cores.
This result is consistent with the Intel X5675 one.

Table 4: Arakawa: Best time by threads number on Intel X5675.

Version Threads Time (µs) Speedup

PsiACReuse 1 654606.00 1.00
PsiACReuse 2 338784.00 1.93
SemiLoadReuse 4 193072.00 3.39
SemiLoadReuse 6 151341.00 4.33
SemiLoadReuse 8 137241.00 4.77
SemiLoadReuse 12 126286.00 5.18

4.3.2 DFTs

To compute DFTs in parallel, the outermost dimension is parallelized with OpenMP, i.e. the
loop over the radial dimension. Table 5 compares DFTs for different domain sizes on Intel
X5675. Data volumes involved in one DFT operation are keys to understand these results. A
domain size (Mx,My,Mz) yields Mx ×My ×Mz × 2 number of points per data field. As values
are stored in double precision, this leads to a Mx ×My ×Mz ×2×8/(10242) MB data volume to
transform. In addition, DFTs are not computed inplace (because slower), so that the last data
size has to be multiplied by two to obtain the total size required for one DFT computation.
Table 5 is interpreted as follows:

• the two first sizes (128, 257, 8) and (128, 257, 16) imply 4 and 8 MB of data to access
respectively. As Intel X5675 has two L3 caches of size 12 MB, data volumes are cached
for the whole DFT operation.
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• the two last sizes (128, 257, 32) and (128, 257, 64) results in 32>24 and 64>24 MB of data,
exceeding L3 caches sizes and therefore memory bandwidth requirements.

The Table clearly highlights the more DFTs’ inputs exceed caches sizes, the less the parallel
algorithm is efficient. Even if FFT algorithm is known to be CPU intensive, the last result
means the domain size targeted in Emedge3D application (about (512, 512, 128)) is too large
to be balanced with DFT computations.

On SMP, the best speedup we achieve is 32.3 with a (1024, 65, 32) domain size. How-
ever, speedups on this archicteture are lower in a number of configurations. It seems that the
complexity of the SMP architecture, including NUMA effects, require further investigations to
better understand performance degradation in some cases.

Table 5: DFTs: Comparison small VS large number of points on Intel X5675.

DFT Size Threads Time (µs) Speedup

128x257x8 1 14401.00 1.00
2 7380.00 1.95
4 3763.00 3.83
8 1964.00 7.33

12 1446.00 9.96

128x257x16 1 29094.00 1.00
2 15431.00 1.89
4 7806.00 3.73
8 4020.00 7.24

12 2970.00 9.80

128x257x32 1 61598.00 1.00
2 32892.00 1.87
4 17100.00 3.60
8 9357.00 6.58

12 7273.00 8.47

128x257x64 1 131233.00 1.00
2 69716.00 1.88
4 36929.00 3.55
8 22447.00 5.85

12 19193.00 6.84

4.3.3 Limitations

In the two last sections, we showed both Arakawa method and DFTs parallel scalings are limited
by the memory bandwidth. As in Section 3.3, tiling loops could be used to limit global memory
accesses. However, applicable tile sizes are too large to improve data locality. Indeed, Arakawa
scheme for a given radial index idx requires 2D DFTs at positions idx − 1, idx and idx + 1
(stencil in the radial direction). In addition, 2D DFTs computations cannot be decomposed, i.e.
it cannot be computed on smaller portions of the 2D array. An algorithm using 1D DFTs has
been developed and tested but resulting speedups are not better due to the needed additional
transpositions (involving more memory operations).

5 Overall Results

This section presents a summary of the optimizations and parallelizations performed in the
previous algorithms. Table 6 shows one RK step on Intel X5675 with (512, 512, 128) domain
size. The test case used for this benchmark is called RMP_C1 [8] and simulates the transport
barrier relaxation. The table shows that the linear part performances are satisfactory, with
a good parallel scaling relative to optimized times. Concerning the nonlinear part, speedups
for DFTs are acceptable, but Arakawa’s ones are still limited because of its weak compute
intensity. It explains why the percentage for Arakawa’s computation in the parallel version
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grows compared to the previous versions. We also notice that total speedups appear to be
governed by DFTs speedups, in agreement with computational costs of the overall algorithm.

As explained in 4.3.2, DFTs parallel results on SMP are highly domain size sensitive, and
so are the performances for one RK step. Again, further investigations have to be performed
to improve those results.

Table 6: Optimization and parallelization overall results on Intel X5675. Speedupinit is com-
puted as a function of initial times, and Speedupopt as a function of optimized times.

Code DFTs Arak Linear Total

Time (s) 13.47 2.29 5.30 21.06
Initial
1 core

Percent 63.9 10.9 25.2 100

Speedup 1 1 1 1

Time (s) 4.10 1.34 1.70 7.14
Optimized
1 core

Percent 57.5 18.7 23.8 100

Speedupinit 3.3 1.7 3.1 3

Time (s) 0.58 0.25 0.16 0.99
Parallel
12 core

Percent 58.6 25.2 16.2 100

Speedupopt 7.0 5.3 10.5 7.2
Speedupinit 23.1 9.0 32.6 21.6

6 Conclusion

In this work, we have focused on the optimization and OpenMP parallelization of the scientific
code Emedge3D. Our main contribution is to reach an overall speedup of 21.6 on the 12 cores
Intel X5675 by overcoming the memory bandwidth limitation. The principal strategy to achieve
this objective consists in maximizing the use of processor caches. Therefore, our work focuses
on the optimization of memory operations, using loads into registers, reorderings of instruction
calls, and simplifications of computations in both parts of the code. Tiling loops was particularly
critical for the linear part, allowing to reuse data field loads into caches from one operator call
to another.

Unfortunatly, tiling is not applicable for the nonlinear part, whose parallel scaling is still
suffering from memory bandwidth limitation. In addition, results on the SMP architecture are
quite disappointing, especially for DFTs computations due to lack of cache reuse.

A way to increase accessible memory bandwidth is to parallelize the application on several
computation nodes. In a future work, we will target a MPI parallelization of the code to
overcome the memory bandwidth limitation.
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