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A Robust Polytopic Approach for State-Dependent Sampling

Christophe Fiter, Laurentiu Hetel, Wilfrid PerruquetthdaJean-Pierre Richard

Abstract— This work aims at decreasing the number of
sampling instants in state feedback control for perturbed inear
time invariant systems. The approach is based on linear maix
inequalities obtained thanks to Lyapunov-Razumikhin stalility
conditions and convexification arguments that guarantee th
exponential stability for a chosen decay-rate. First, the rathod
enables to perform a robust stability analysis regarding tme-
varying sampling and to maximize a lower-bound estimate of
the maximal allowable sampling interval, by computing the
adequate Lyapunov-Razumikhin function. Then, it makes it
possible to design a state-dependent sampling control sahe
that enlarges even further the maximal allowable sampling
intervals.

. INTRODUCTION

state-space into conic regions, each providing an adnhéssib
value of the next sampling instant. This allows to reduce the
number of online computations with respect to self-trigger
control. Up to now however, only ideal Linear Time-Invatian
(LTI) systems have been considered.

In the present work, we consider the case of perturbed
LTI systems, with state-bounded unknown exogenous dis-
turbances, and we provide tools for 1)rabust stability
analysis regarding time-varying samplingnd 2) astate-
dependent sampling contréfor both applications, we ensure
the exponential stability for a given decay-rate, thanks to
Lyapunov-Razumikhin stability conditions and convexifica
tion arguments. The main contributions are:

Networked Control Systems are often required to share-athe consideration of an unknown exogenous disturbance
limited amount of resources, which leads to fluctuations o¥ith convex embedding techniques in a robust stability
the sampling interval. From the control theory point of viewanalysis regarding time-varying sampling;
these variations bring up new challenges. - the optimization of the Lyapunov-Razumikhin Function

In the past decade, several works have concerned teRF). taking into account both the effects of the sampling
robust stability of sampled-data systems with respectteti and the perturbation. It optimizes the Iower.-bound of the
varying samplind[1], [2], [3], [4], [5], [6]. [7], [8], [9], [10], sampling map for the state-dependent samphng scheme;
[11]). Intensive research has also been conducted to adaghe design of a state-dependent sampling scheme for the
dynamically the sampling in order to reduce the process&fSe of perturbed LTI systems. _
and/or network loads while ensuring the desired control The paper is organized as follows. First, we state the
performances. There exist three main approaches: problem in Section Il anq propose the main stability re§glts
- Event-triggered controk[12], [13], [14], [15], [16]), in N Sect_|on Il Th_en, Sectlons _IV and V prowde the stab|l|§y
which intelligent sensors send information to the congroll @nalysis regarding time-varying sampling and the design
when special events occtire( crossing a frontier of the state Of @ state-dependent sampling scheme. Finally, simulation
space). This requires a dedicated hardware. results are shown in Section VI before concluding in Section
- Self-triggered contro([17], [18], [19], [20], [21]), which VII. D_ue to space restrictions, all the proofs are left to the
emulates event-triggered control without dedicated hargy t€chnical report [22].
by computing at the sampling instant a lower-bound of Notations:R, = {i e R,A >0}, R* = {A e RA#
the next admissible sampling interval. In these works, the}- Amax(1) denotes the largest eigenvalue of a symmetric
computations for the sampling law are made online. matrix M € R™*". S (resp.S;;*) is the set of positive (resp.

- State-dependent sampliffd 1]): This scheme considers the POSitive definite) symmetric matriceB = 0 (resp. P - 0)

offline design of a sampling map thanks to a covering of th® R"”". The symmetric elements of a symmetric matrix
are denoted by. |z| is the largest integer not greater than
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x € R, and||.|| is the Euclidean norm oRR™. The cardinal
of a finite set is denotedK|.

II. PROBLEM STATEMENT
Consider the perturbed LTI system
#(t) = Ax(t) + Bu(t) + Ew(t), Vt € Ry, 1)

wherez : Ry — R", u: Ry — R™, andw : Ry — R™»
represent respectively the system state, the controlifumct
and the exogenous disturbances. The matrite®, and £
are constant with appropriate dimensions.

The control is a piecewise-constant state feedback:

u(t) = —Kx(tk), Vt € [tk,tk+1), Vk €N, (2)



where K is fixed and such thatl — BK is Hurwitz. The Problem 2: Given a quadratic LRA/, design a lower-
sampling instantg;, satisfy bound approximation of the optimal sampling m@g(x) =
max Tmax(z) such that (C1) holds.
fieer =t = 7t 2(t0)) = 7 € [0, Tma(f))], Y € 1?:;) Ill. MAIN STABILITY RESULTS
with a scalar§ > 0 that ensures the well posedness of the In this section, our aim is to derive sufficient stability
system (no Zeno phenomenon issue), a sampling functieenditions from Proposition 1 that depend solely on the
7: Ry x R* — R4, and a maximal sampling mapnax :  time variables and on the sampled-state
R™ — R,. This sampling map defines the upper-bound oBy introducing the dynamics of systein (C1) and using
the sampling intervals and can be seen as a maximal timeeme algebraic manipulations, we obtain:
invariant sampling function, to be designed.
The exogenous disturbance is assumed to be state-boundeliemma 2: Consider scalars > 1,5 > 0,0 < 8 < 1“2(5),
in a similar way as in [17]: andW > 0, and a mafimax: R” = Ry, 0 < § < max(z) <
. If there exist a matrix? € S;* and a scalae > 0 such
IW >0, |w(t)||* < W|z(te)||?, YVt € [tr,trr1), Yk € N.  that for allz € R, and allo € [0, Tmax(z)],

4) T

Such a perturbation can represent model uncertaintiesl loc Alo)z + Ju(0) A(o)z + Ju (o)

nonlinearities, or some kind of measurement noises. z & &z <0, (5
We denote byS the closed-loop systeni(1), (2), (3), w(o) w(o)

(4)}. For given sampling functiom and disturbancev, the  with the matrices

solution of S with initial value z( is denoted byz(t) = 7

ety 20). Ao)=1+ [ etds(a- BE) (6)
In this work, our main objective is to provide a way :

to enlarge the maximal sampling mapax from (3) while Ju(0) :/ e 7% Bw(s)ds, (7)

ensuring the exponential stability of the system for a chose 0

decay-rates, also calleds-stability (.e. such that there and

exists a scalaty for. vyhich all t.rf';\jectories satisfyz(t)|| < ATP 4+ PA+caP +23P —PBK PE

~e~Bt||zo|| for any initial conditionaz). - . P 0 (®)
In order to check thg-stability of S, we use a Lyapunov- « « 0 ’

Razumikhin approach ([23]), which is suggested by the _

delayed nature of the system, since it uses a Zero-Ordet-Hd'en the systens is globally 5-stable.

control [24]. It allows for deriving stability conditiondase )

to the ones from discrete-time analysis, while guarangeein Note that in (5) appear the sampled statg;) = =

a good behaviour of the system between two consecuti@@d the timet —#; = o, but also other terms that result
sampling instants. from the unknown exogenous disturbanegy) and.J,, (o).

Using equation (4) about the exogenous perturbation, it
is possible to remove these unknown terms and to derive

Proposition 1: Consider scalarae > 1,5 > 0,0 < 5 < o . s .
1112(;4)’ andW > 0, and & maprmay : R — Ry, 0 < § < suff|C|erf1t stab|I|ty.cqnd|t|onI'_5.|n tf}e r:‘or::n:l?c%f LMIs ind of
Tm() < 3. If there exists a quadratic functiovi(z) — @ Set of parametric inequalities of the form Il(o)a < 0,
2T Pz, P € S+* such that parametrized by the time.
For all x € R", for all o € [0, Tmax(z)], : Theorem 3:Consider scalarsx > 1, 6 > 0,0 < g <
V(%maxyw(o-’ ) 4 2BV (rpmw(0, ) <0 (C1) “2(;‘) andW > 0, and a maprmax : R” - R4, 0 < § <
wheneverV (¢, (0, 2)) > V(z), Tmax(z) < &. Then, the systens is globally 5-stable if
there exist scalars > 0, n > 0, andu > 0, matricesP, ¥,
then the systens is globally 8-stable. ¥y € St*, andV¥s € Sf*, such that
. _ T
Note that if 5 = 0 and the inequality/ (¢, w (0, 2)) < My + VU + Uy 2 ul, {% . n ﬂ{ﬁ ] <0, (9)
0 in (C1) is reinforced to be strict, then the Lyapunov- 2
Razumikhin theory ensures the asymptotic stability. and
Throughout this work, we focus on solving two problems. #TT(0)z < 0, Y € R", Yo € [0, Tmax(2)], (10)

The first one concerns the design of the LRF

Problem 1: Find a quadratic LRR such that there exists with
a sampling mapmax satisfying (C1) with a minimum value (o) = A(o)T"MiA(0) — A(o)" PBK — KT BT PA(0)
7% = inf,ern Tmax(x) as large as possible. — P+ My(0)T U My(0) + My(o) T 05 My(0)

The second problem concerns the design of the sampling + WwyI + oW pAmax(ETE) fa(o)I,
Map Tmax: (11)



= AP+ PA+eaP +28P, Ms = PE, convex embedding approach:
Ms(0) = —PBK + MA(0), My(o) = ETPTA(0),

d (12) Convex embedding according to tinfehe matrix function
an A is continuous on the compact g6t Tm%{gbab] Therefore,
m @ma(A+AT)o _ it is possible to design a convex polytope defined by a finite
fa(o) = B Amad A + AT) £ 0 (13) set of verticesA, ({202 “with k€ (o) (a finite
o otherwise. ’ set of indexes), such that
Remark 1: For any given state € R™, the condition (10) (AK(T,;%{Q*’E‘D) =<0, Vi € K( ,%%{ibab))
remains the same for any staje= Az, A € R*. Therefore, ) (17)
it is sufficient to work with homogeneous sampling maps of (global)
<
degree) (i.e. satisfyingrmax(A\z) = Tmax(x) for all z € R”, (A(U) 0, Vo & [0, Tmax ])

A € R*) and to check condition (10) over the umitsphere. The form of the matrix functiom\ given by (15) enables

This is very similar to the homogeneity properties broughto build these vertices as linearly dependentiyn¥,, U,

up for the stability conditions in [19] and [11]. 1, and . One possible construction of a convex polytope
Remark 2: In Theorem 3,P corresponds to the LRF satisfying (17) is proposed in the Appendix, Section VIIl.

matrix, ¢ is a tuning parameter introduced by the use ofhis construction is based on the results from [1], which

the S-procedure, and the scalaysand i, as well as the provide tools to build convex hulls around exponential ixatr

matrices¥; correspond to degrees of freedom introduce€lnctions using Taylor polynomials.

during the majorations of the perturbationgs) andJ,, (o) With such a convex embedding, and using the results

from Lemma 2. from Lemma 7 and Theorem 3, we obtain the following
In the next sections, we show how to adapt the obtainestability Theorem for systems with time-varying sampling.

stability conditions so as to perform a robust analysis with

respect to time-varying sampling, compute all the pararsete Theorem 5:Considers > 0 a tuning parameter. Let a

efficiently, and perform a state-dependent sampling controscalar0 < T(QIObaD < & and the constant samplln map

defined in (14). Let scalars > 1,5 > 0,0 < § < 52,

IV. TIME-VARYING SAMPLING AND (globa)
OPTIMIZATION OF THE PARAMETERS anedIVCV( ngba?r;d matrices..(mi ) satisfying (17), with
K .

In this section, we consider a constarite( state- |f there exist matrices?, ¥, U, € St*, Uy € S, and

independent) sampling map: scala(rsI |)> 0 and > 0, such that the LI|V|t|)S|) 9) and
— global (globa
Tmax() = Tr(n%lgbal) vz € R”, (14) Ag(mmax ) = 0 are satisfied for alk € K(rmax ), then
the system (1), subject to perturbations (4), is globaly
and look for a solution to Problem 1 by computing: stable with respect to the control (2) for any time-varying

- a state-independent upper-bound estimatiglf®® = *  sampling bounded by, 42*®

for time-varying sampling as in the framework of robust

control techniques.g. guaranteeings-stability for any time- Based on this result, we provide in the following an
varying sampling bounded by*), algorithm to compute a lower-bound estimate of the maximal
- the associated LRF (x) = 27 Px (as well as Theorem 3 allowable sampling interval for time-varying sampling. It
parametersl,, Uo, U3, £, n and p). is adapted to the polytopic description presented in the
To this aim, we first rewrite the condition (10) in TheoremAppendix, Section VIII, which is based on Taylor series
3 as a parameter-dependent LMI as follows. approximations. These approximations induce an estimatio

error which can be upper-bounded by a scalar
Lemma 4:The condition (10) in Theorem 3, with the Algorithm:
sampling map (14), is satisfied if and only if the parameteiStep 1: First, we consider Theorem 5 and the polytopic
dependent LMI description (21) and (22) witv = 0. The search forP,
Uy, Uy, U3, n andy is then an LMI problem, and we ma
R(o) Ms(0)T May(o)T b m2 S 1S jobal \ y
optimize the search of the Iarge:s,;&g (denotedr*) and
Alo) =] = -0, 0 <0 (15 .
o its associated parameterby using a line-search algorithm.
¥ o8 Step 2:Then, we compute the value of the upper-bound
is satisfied for allo € [0, Trgg;{gbal)] with corresponding to the obtainef, ¢, _\Ifl, Uy, U3, n and pu. .
Using this value, it becomes possible to evaluate the matrix
R(o) = A(0)"MiA(o) — A(0)" PBK — K"B"PA(0)  inequalitiesA,. (Tm%{Sba')) < 0 in Theorem 5 so as to obtain
—eP + Wil + oW pdmax(ET E) fa(0)1. an estimation of the largest upper-bound for time-varying
(16) samplingr* < 7* which satisfies the stability conditions.

Step 3:The maximal sampling map is then defined as
Then, in order to reduce the number of conditions— —

regarding the time variable to a finite number, we use Tmax(z) = 7%, Vo € R™.




V. STATE-DEPENDENT SAMPLING that are lower-bounded by* in the case of state-dependent
ampling.

The obtained sampling map (18) can then be used to
rform a state-dependent sampling control following the
mpling law (3).

The state-dependent sampling aims at emulating selt
triggered control while trading online computations for of
fline computations, thus reducing the processor load durirﬁ
the real-time control of the system. In this formulatiorg th
sampling map is defined over regions of the state-space: VI. NUMERICAL EXAMPLE

Tna(®) = Trgia)x’ Ve € Ry, Vs € {1,--- ,q). (18) Consider the system from [12]:
. 0 1 0 10
Here, the homogeneity brought up in Remark 1 motivates us(t) = [_2 3} x(t) — [1} [_1 4] z(t) + [O 1} w(t).

for working with conic regions of the form . o . .
We use the polytopic description presented in the Appendix,

Re={z e R",2Td,x >0}, &, = cIJST € R™™  (19) Section VIII, with a polynomial approximation degree term
N =5, andl = 100 polytopic subdivisions.

Possible constructions of such conic regions are presentedrirst, we apply the algorithm proposed in Section IV to
in [11], using the spherical coordinates of the state or thgerform a robust stability analysis with respect to time-
discrete-time behaviour of the system. varying sampling for different values of parametgrandv’.

Using the results from Theorem 3 and the convexhe obtained upper-bounds for time-varying samplings
embedding approach presented in the previous sectigfe given in Table I, while Table Il presents a comparison
(with identical notations), we obtain the following statyil with some upper-bounds from the literature, in the unper-
property for systems with state-dependent sampling: turbed case, without decay-rate. These upper-bounds are

quite close to the practical upper-bound obtained for syste
Theorem 6:Let a matrix P € St*, and scalars > 0, with periodic samplingTschur = 0.5948s.

In(a) n

a>10>00<3 < == andW > 0 be given.

Let matrices¥,, ¥, € S}*, U3 € S}*, and scalarg) > 0 =0 | 8=01] 5=03
and . > 0, such that the LMIs (9) are satisfied. Consider W‘Z 50%2(3?5)%) 8:23%2 8:338;2 8:3?832
the sampling map (18) defined on conic regions E19), with W =0.01 (10%) | 0.4271s | 0.3364s | 0.1573s
sampling intervals—mgx, e ,Té%)x satisfying0 < § < TmZ)X < W =0.04 (20%) | 0.2719s | 0.1814s -

&. Assume there exist matrices, (nim), With & € K(nu) % = 8‘(1)2 8852; g'éggz 0'05_183 -

a finite set, satisfying for alt € {1,--- , ¢}, andp; > 0,
TABLE |

(An(ﬂ%)x) + [Psf’s 8] <0, Vk € IC(T,%)X)) MAXIMUM UPPER-BOUNDST* FOR TIME-VARYING SAMPLING
(20)
ps®s 0 (s)
(A(U) + [ * O] =0, Vo € [0, 7ma ) , Method T* Method T

[2] 0.2757s [10] (LKF approach) 0.4305s

with A(o) introduced in (15). [4] 0.3126s || [25] (Lyapunov + embeddings) 0.4578s

. A s 3 0.3347 7 0.5200

If thqe)zre %XIS'[ scalarg, > 0 such that the LMIsA,{(Tr%a)x) + {8} 0.3347‘? {9} 0.5376:?

PsPs iofi . [5] 0.4244s Theorem 5 0.5421s

[ . | =0 are satisfied for als € {1,---,¢} and 6] | 042445 || i1 (LRF * embeddings) | 0.5938s
(s i -

k € K(mmax), then the systens is globally S-stable. TABLE Il

MAXIMUM UPPER-BOUNDST* FOR TIME-VARYING SAMPLING,

Theorem 6 provides sufficient conditions for Theorem 3,
WITHOUT PERTURBATIONS NOR DECAYRATE

and enables to analyse the stability of the system for a given
sampling maprmax defined on conic regions. Just as in the
previous section, the matricés, (rha), x € K(Tvax), canbe  Second, we set a number= 100 of equal conic regions
designed following the approach described in the Appendifisotropic partition on the unit sphere= €, 6 € [, 7],
Section VIII. see the design in [11]), and apply the method proposed
One approach to compute a lower-bound approximatidn Section V, to design the maximal sampling maps for
of the optimal sampling mag.¢€. a solution of Problem 2), different parameter$ andW. Figure 1 presents the results
consists in using the LMI conditions from Theorem 6 (withobtained with3 = 0.3. Recall that for each parameter
given parameter®, ¢, ¥, ¥, U3, n, x andv), in order to  set, B-stability is ensured for any state-dependent sampling
maximize the sampling intervalsiis on each region with a (potentially time-varying) with values under the respesti
line search algorithm. curve in Figure li(e. satisfying (3)). In the figure, the upper-
Note that using the LRF/(z) = 2T Pz and the param- boundsr* for time-varying sampling are reminded since they
eterse, ¥, Uy, U3, n, u and v computed thanks to the represent a global lower-bound for their respective samgpli
algorithm in Section IV allows for designing sampling mapsnap.



. design is based on a Taylor series approximation of oMer

0ol —— W=0 (0%), '=0.3709 performed onl subdivision intervals of0, 7].

0sl p=0.3 T W=0.0025 (5%), T'=0.2799 The objective behind the division of the time inter-
W0.08 (10%), 10,1573 val [0,5] into an union of smaller intervals (namely

0.7f W=0.0225 (15%), T =0.0464 i —

U ['% (4 + 1)%]) is to refine the precision of the

Tmax(s)

€10,

Jco{nvex er}nbeddlng It allows for designing small convex

polytopes for each time interval subdivision, instead of

designing one large one for the whole time interval.
Consider a scalad < ¢* < 4. In this construction, we

define the set of vertex indexes

T T I ;qa*)_{o,---,zv}x{o,-~-,rlJ}, (21)
g

Fig. 1. S le depend i for a d & with integersN > 0 and/ > 1, and design the vertices
ig. 1. State-angle dependent sampling mag: for a decay-ratg8 = 0.3 &  / _« . *
and different values ofV/ Az (0™) forall (i, j) € K(co”), as

A jy(0®) = A jy(o™) + v, (22)

In Figure 2, we present the inter-execution times obtainefith _
i;;]er{'z1 rstig]tyciigo:atfgfr@n@: ((t))|?\) gnl%% (:t )(Tll)01 (v win Ay (0*) = (Zho Ay (z)k) if j < {%l :
! I Styingw - ollLLtR))- A * i X s\ k .
Agi gy (0%) = (Xho D) (07 = JT) ) otherwise

(23)
= o4t ) Lo; —K"BT"P+TT M T ,PE]
=3 0.2W Awpgy=| * ~, 0o |,
"‘g 0 . ; ; ' . k*l _ZIJ?; T
0 5 10 15 20 ij FT (A )T MIT F%‘j (A ) PE
t k>l,_]) O )
= 20 0
= 10K (24)
> 0 ) X . ‘ Flj—I—l-N (A — BK), FQJZN;(A—BK), 25
0 5 10 15 20 fﬂz edsds, j = AN; + I, (25)
! and
Lo,j = Fl 7]\411—‘1 j —eP+ W?’]I
Fig. 2. Inter-execution timesmax(x(¢x)) and LRFV (z(t)) _FT PBK — KTBTpT, g+ Lo s
Ly, = F2 7(Mll“l ; — PBK) )
VIl. CONCLUSION (FT(%% L KBIPI2 + Ly,
T
We have introduced a design of a maximal state—dependenth22’j = I F M Uﬁfg%; PBKF)
sampling mapmax ensuring the exponential stability with a +( T o (Ai—1)T % klk fhact -
given decay-rate for perturbed linear state feedback syste 2 (ZZ 1L M1—>) L2+ Liej-
The proposed method, based on convex embeddings and T (26)
Lyapunov-Razumikhin type stability conditions, can bedise!! Amax(4 + A7) =0, the matricesLy,; are defined as
to perform both a robust stability analysis with respect Loj = Wpdmax(ETE) (j z) I,
to time-varying sampling and a state-dependent sampling LU - QW‘LL/\maX(ETE)]UI 7
control scheme. It presents several advantages: L2 = WiAma(ETE)I, (27)
- It makes it possible to maximize the lower-boutidof the L3, = 0.
proposed map. T )
- It provides the corresponding LRF parameters. Otherwise, ifAmax(A + A”) # 0, they are defined as
- The state-dependent map of the next maximal sampllngL _ WM)\AmaX(E ET) je (e)\max(AJrAT) g _ 1) I,
interval with respect to the past sampled state is designed _ "’ N (?E”;)) !
offline, which helps reducing the real-time processor load. L1.; = Wﬂm
maxA ATy 2 e T
VIll. APPENDIX: POLYTOPIC EMBEDDING . g (1+]l/\maTx(A+A ) _1) L
DESIGN BASED ON TAYLOR POLYNOMIALS Lisay = WpgnelE B em(A+aT)s
We propose a construction of the convex embedding (J”(Am“(AJAT))k + (Am”(ﬁi’f;))k ])I.

satisfying (17) that is adapted from the results from [1]r Ou (28)



Finally,

_ N
v > m[ax] Amax | A (0/—1-7“%) - ZA(k r)U/k
o’ €l0,2], '
ref0, 11} k=0

(29)

Remark 5: The matricesA; ; defined in (24) are

the coefficients of the Taylor polynomiaf A. Indeed,

it can be shown (see the proof of Lemma 7 in [22])19

that the polynomial approximation oA of order N for

o€ [j%,(j+1)%], with j € {0,---,1 — 1}, is expressed [20]

as YN Ap (0 —32)". The constanty defined in

(29) represents anupper-bound of the Taylor series [21]
approximation error it can be shown (see the proof of

Lemma 7 in [22]) thatr (o) = SN Ay (o — 52)° < vI
forallo e [j$,(j+1)F] andj € {0,--- ,1 —1}.

~ Lemma 7:Consider a scalad < o* < . The vertices
A j)(0*) defined in (22) with the set of indexés(c*)

defined in (21) satisfy the property (17): if the condition

Ay (e*) = 0 is satisfied for all(i,j) € K(o*), then
A(o) =0 forall o €[0,0%].
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