Skip to Main content Skip to Navigation
New interface
Preprints, Working Papers, ...

On countably skewed Brownian motion with accumulation point.

Abstract : In this work we connect the theory of Dirichlet forms and direct stochastic calculus to obtain strong existence and pathwise uniqueness for Brownian motion that is perturbed by a series of constant multiples of local times at a sequence of points that has exactly one accumulation point in $\mathbb{R}$. The considered process is identified as special distorted Brownian motion $X$ in dimension one and is studied thoroughly. Besides strong uniqueness, we present necessary and sufficient conditions for non-explosion, recurrence and positive recurrence as well as for $X$ to be semimartingale and possible applications to advection-diffusion in layered media.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Francesco Russo Connect in order to contact the contributor
Submitted on : Friday, August 2, 2013 - 4:04:23 PM
Last modification on : Wednesday, May 11, 2022 - 12:06:05 PM
Long-term archiving on: : Sunday, November 3, 2013 - 1:11:31 PM


Files produced by the author(s)


  • HAL Id : hal-00850095, version 1



Youssef Ouknine, Francesco Russo, Gerald Trutnau. On countably skewed Brownian motion with accumulation point.. 2013. ⟨hal-00850095⟩



Record views


Files downloads