M. Amdaoud, M. Vallade, C. Weiss-schaber, and I. Mihalcescu, Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling, Proceedings of the National Academy of Sciences, vol.104, issue.17, pp.7051-7056, 2007.
DOI : 10.1073/pnas.0609315104

N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature, vol.403, pp.267-268, 2000.

R. Casey, H. De-jong, and J. L. Gouzé, Piecewise-linear Models of Genetic Regulatory Networks: Equilibria and their Stability, Journal of Mathematical Biology, vol.52, issue.1, pp.27-56, 2006.
DOI : 10.1007/s00285-005-0338-2

URL : https://hal.archives-ouvertes.fr/inria-00071250

M. Chaves, E. Farcot, and J. Gouzé, Probabilistic Approach for Predicting Periodic Orbits in Piecewise Affine Differential Models, Bulletin of Mathematical Biology, vol.228, issue.4, pp.10-1007, 2013.
DOI : 10.1007/s11538-012-9773-6

URL : https://hal.archives-ouvertes.fr/hal-00828847

M. Chaves, E. D. Sontag, and R. Albert, Methods of robustness analysis for Boolean models of gene control networks, IEE Proceedings - Systems Biology, vol.153, issue.4, pp.154-167, 2006.
DOI : 10.1049/ip-syb:20050079

M. Chaves, L. Tournier, and J. L. Gouzé, Comparing Boolean and Piecewise Affine Differential Models for Genetic Networks, Acta Biotheoretica, vol.11, issue.2, pp.217-232, 2010.
DOI : 10.1007/s10441-010-9097-6

URL : https://hal.archives-ouvertes.fr/hal-00847281

H. De and J. , Modeling and simulation of genetic regulatory systems : A literature review, J. Computational Biology, vol.9, pp.67-103, 2002.

H. De-jong, J. L. Gouzé, C. Hernandez, M. Page, T. Sari et al., Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, vol.66, issue.2, pp.301-340, 2004.
DOI : 10.1016/j.bulm.2003.08.010

URL : https://hal.archives-ouvertes.fr/hal-00173849

J. C. Dunlap, Molecular Bases for Circadian Clocks, Cell, vol.96, issue.2, pp.271-290, 1999.
DOI : 10.1016/S0092-8674(00)80566-8

R. Edwards and L. Glass, Combinatorial explosion in model gene networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.10, issue.3, pp.691-704, 2000.
DOI : 10.1063/1.1286997

E. Farcot and J. L. Gouzé, Periodic Solutions of Piecewise Affine Gene Network Models with Non Uniform Decay Rates: The Case of a Negative Feedback Loop, Acta Biotheoretica, vol.4, issue.3???4, pp.429-455, 2009.
DOI : 10.1007/s10441-009-9086-9

URL : https://hal.archives-ouvertes.fr/hal-00831799

A. F. Filippov, Differential equations with discontinuous righthand-sides, 1988.
DOI : 10.1007/978-94-015-7793-9

L. Glass, Combinatorial and topological methods in nonlinear chemical kinetics, The Journal of Chemical Physics, vol.63, issue.4, p.13251335, 1975.
DOI : 10.1063/1.431518

L. Glass and S. A. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, Journal of Theoretical Biology, vol.39, issue.1, pp.103-129, 1973.
DOI : 10.1016/0022-5193(73)90208-7

L. Glass and J. S. Pasternak, Stable oscillations in mathematical models of biological control systems, Journal of Mathematical Biology, vol.11, issue.3, pp.207-223, 1978.
DOI : 10.1007/BF02547797

A. Goldbeter, Biochemical oscillations and cellular rhythms, 1996.
DOI : 10.1017/CBO9780511608193

S. S. Golden and S. R. Canales, Cyanobacterial circadian clocks ??? timing is everything, Nature Reviews Microbiology, vol.177, issue.3, pp.191-199, 2003.
DOI : 10.1126/science.1079914

J. L. Gouzé and T. Sari, A class of piecewise linear differential equations arising in biological models, Dynamical Systems, vol.17, issue.4, pp.299-316, 2002.
DOI : 10.1080/1468936021000041681

H. Ito, H. Kageyama, M. Mutsuda, M. Nakajima, T. Oyama et al., Autonomous synchronization of the circadian KaiC phosphorylation rhythm, Nature Structural & Molecular Biology, vol.14, issue.11, pp.1084-1088, 2007.
DOI : 10.1093/emboj/cdg212

C. H. Johnson, J. A. Elliot, and R. Foster, Entrainment of Circadian Programs, Chronobiology International, vol.288, issue.5, pp.741-774, 2003.
DOI : 10.1081/CBI-120014569

Y. Kitayama, T. Nishiwaki, K. Terauchi, and T. Kondo, Dual KaiC-based oscillations constitute the circadian system of cyanobacteria, Genes & Development, vol.22, issue.11, pp.1513-1521, 2008.
DOI : 10.1101/gad.1661808

J. S. Markson and E. K. Shea, The molecular clockwork of a protein-based circadian oscillator, FEBS Letters, vol.14, issue.24, pp.3938-3947, 2009.
DOI : 10.1016/j.febslet.2009.11.021

I. Mihalcescu, S. Hsing, and . Leibler, Resilient circadian oscillator revealed in individual cyanobacteria, Nature, vol.269, issue.6995, pp.81-85, 2004.
DOI : 10.1073/pnas.022628299

T. Nagai, T. P. Terada, and M. Sasai, Synchronization of Circadian Oscillation of Phosphorylation Level of KaiC In??Vitro, Biophysical Journal, vol.98, issue.11, pp.2469-2477, 2010.
DOI : 10.1016/j.bpj.2010.02.036

M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama et al., Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro, Science, vol.308, issue.5720, pp.414-415, 2005.
DOI : 10.1126/science.1108451

T. Nishiwaki, Y. Satomi, Y. Kitayama, K. Terauchi, R. Kiyohara et al., A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria, The EMBO Journal, vol.101, issue.17, pp.4029-4037, 2007.
DOI : 10.1038/sj.emboj.7601832

J. S. Neill and A. B. Reddy, Circadian clocks in human red blood cells, Nature, vol.469, pp.498-503, 2011.

C. Phong, J. S. Markson, C. M. Wilhoite, and M. J. Rust, Robust and tunable circadian rhythms from differentially sensitive catalytic domains, Proceedings of the National Academy of Sciences, vol.110, issue.3, pp.1124-1129, 2013.
DOI : 10.1073/pnas.1212113110

X. Qin, M. Byrne, Y. Xu, T. Mori, and C. H. Johnson, Coupling of a Core Post-Translational Pacemaker to a Slave Transcription/Translation Feedback Loop in a Circadian System, PLoS Biology, vol.189, issue.6, p.1000394, 2010.
DOI : 10.1371/journal.pbio.1000394.s010

M. J. Rust, S. S. Golden, and E. K. Oshea, Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator, Science, vol.331, issue.6014, p.220, 2011.
DOI : 10.1126/science.1197243

M. J. Rust, J. S. Markson, W. S. Lane, D. S. Fisher, and E. K. Oshea, Ordered Phosphorylation Governs Oscillation of a Three-Protein Circadian Clock, Science, vol.318, issue.5851, p.809, 2007.
DOI : 10.1126/science.1148596

R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology, vol.42, issue.3, pp.563-585, 1973.
DOI : 10.1016/0022-5193(73)90247-6

R. Thomas and R. D. Ari, Biological Feedback, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00087681

J. Tomita, M. Nakajima, T. Kondo, and H. Iwasaki, No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation, Science, vol.307, issue.5707, pp.251-254, 2005.
DOI : 10.1126/science.1102540

N. G. Van-kampen, Stochastic Processes in Physics and Chemistry. North-Holland, 1992.

R. S. Wang, A. Saadatpour, and R. Albert, Boolean modeling in systems biology: an overview of methodology and applications, Physical Biology, vol.9, issue.5, p.55001, 2012.
DOI : 10.1088/1478-3975/9/5/055001

A. T. Winfree, The Geometry of Biological Time, 1980.
DOI : 10.1007/978-3-662-22492-2

D. Zwicker, D. K. Lubensky, and P. R. Ten-wolde, Robust circadian clocks from coupled proteinmodification and transcription-translation cycles, pp.22540-22545, 2010.
DOI : 10.1073/pnas.1007613107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012469