Efficient GCI detection for efficient sparse linear prediction

Abstract : We propose a unified non-linear approach that offers an ef- ficient closed-form solution for the problem of sparse linear prediction analysis. The approach is based on our previous work for minimization of the weighted l2 -norm of the prediction error. The weighting of the l2 -norm is done in a way that less emphasis is given to the prediction error around the Glottal Closure Instants (GCI) as they are expected to attain the largest values of error and hence, the resulting cost function approaches the ideal l0 -norm cost function for sparse residual recovery. As such, the method requires knowledge of the GCIs. In this paper we use our recently developed GCI detection algorithm which is particularly suitable for this problem as it does not rely on residuals themselves for detection of GCIs. We show that our GCI detection algorithm provides slightly better sparsity properties in comparison to a recent powerful GCI detection algorithm. Moreover, as the computational cost of our GCI detection algorithm is quite low, the computational cost of the overall solution is considerably lower.
Type de document :
Communication dans un congrès
Nonlinear Speech Processing (NOLISP), Jun 2013, Mons, Belgium. 2013
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00850456
Contributeur : H. Yahia <>
Soumis le : mardi 6 août 2013 - 16:36:42
Dernière modification le : mercredi 14 décembre 2016 - 01:07:08
Document(s) archivé(s) le : mercredi 5 avril 2017 - 19:46:11

Fichier

nolisp2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00850456, version 1

Collections

Citation

Vahid Khanagha, K. Daoudi. Efficient GCI detection for efficient sparse linear prediction. Nonlinear Speech Processing (NOLISP), Jun 2013, Mons, Belgium. 2013. 〈hal-00850456〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

206