
HAL Id: hal-00851148
https://inria.hal.science/hal-00851148

Submitted on 12 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communication and Topology-aware Load Balancing in
Charm++ with TreeMatch

Emmanuel Jeannot, Esteban Meneses, Guillaume Mercier, François Tessier,
Gengbin Zheng

To cite this version:
Emmanuel Jeannot, Esteban Meneses, Guillaume Mercier, François Tessier, Gengbin Zheng. Commu-
nication and Topology-aware Load Balancing in Charm++ with TreeMatch. IEEE Cluster 2013, Sep
2013, Indianapolis, United States. �hal-00851148�

https://inria.hal.science/hal-00851148
https://hal.archives-ouvertes.fr

Communication and Topology-aware Load Balancing
in Charm++ with TreeMatch

Emmanuel Jeannot∗, Esteban Meneses†, Guillaume Mercier‡∗, François Tessier§∗ and Gengbin Zheng†
∗Inria, France
†UIUC, USA

‡Bordeaux Polytechnic Institute, France
§University of Bordeaux, France

Abstract—Programming multicore or manycore architectures
is a hard challenge particularly if one wants to fully take advan-
tage of their computing power. Moreover, a hierarchical topology
implies that communication performance is heterogeneous and
this characteristic should also be exploited. We developed two
load balancers for Charm++ that take into account both aspects,
depending on the fact that the application is compute-bound or
communication-bound. This work is based on our TREEMATCH
library that computes process placement in order to reduce an
application communication costs based on the hardware topology.
We show that the proposed load-balancing schemes manage to
improve the execution times for the two aforementioned classes
of parallel applications.

I. INTRODUCTION

Simulation is now wide-spread in the fields of science
and technology, because actual experimentation, even when
possible at all, is becoming increasingly costly both in terms
of time and resources. This simulation step itself is often
conducted as a scientific application executed on a dedicated
computer. Moreover, since these simulations are expected to
be more and more refined and precise and to deal sometimes
with very large time scales, the required computing power is
therefore huge. As a consequence, to provide this computing
power to the scientific applications is a major challenge that
needs to be addressed.

From a hardware perspective, only the parallel computers
are able to deliver this sought-after computing power. However,
programming a parallel architecture is not a trivial undertaking
because of the intrinsic concurrency of these machines and of
the multiplicity of the computing nodes and cores. As a con-
sequence, dedicated paradigms, tools and environments have
to be used to ease the task of developing parallel applications.

Structuring the application and exposing its parallelism as
much as possible is an efficient solution advocated by several
programming environments such as Cilk [1] or Charm++ [2],
[3] for instance. Such environments rely on fine grain par-
allelism and create software computing entities that usually
outnumber the physical computing units available in the par-
allel architecture. This induces execution issues that have to be
handled by the environment’s runtime system. For instance, the
workload may vary from one core to the other, resulting in a
global imbalance that can harm the application’s performance.
As a consequence, load balancing schemes are usually pro-
posed in these environments and improve the performance by
optimizing the use of the available resources.

However, load balancing schemes fail to grasp an important
aspect of today’s parallel computers: their hierarchical and
heterogeneous nature, communication wise. Indeed, since the
advent of multicore/manycore CPUs, the organization of the
memory banks along with the presence of several cache levels
lead to non-uniform memory access times. That is, the time to
access or move data depends on the physical location of the
process inside of the computing node. Moreover, a good load
balancing scheme does not always guarantee that the com-
munication in the application will be optimized as well. As a
consequence, load balancing schemes can be enhanced in order
to take into consideration not only the load of the various cores,
but also the amount of communication between the processes
executing the various tasks of the parallel application. This
can be achieved by matching the communication pattern of
the application to the underlying hardware.

Therefore, the multiple application processes have to be
placed carefully on the various cores/CPUs of the machine.
This technique can improve application performance and ul-
timately scalability since communication costs are decreased.
So far, a compelling idea is to try and regroup on the same
computing node the processes sharing the most data so as to
reduce the application communication costs [4], [5]. However,
it now becomes necessary to push further this idea and apply
it to the subsets of application processes within a computing
node to take advantage of the complex structure of its memory.

In a previous work [6], we proposed a library called
TREEMATCH that computes a relevant process placement
and targets clusters of multicore NUMA nodes. Since
TREEMATCH yields promising results for message-passing
based applications on such targets [7], we believe that it could
benefit to other programming models, and in particular the fine
grain ones, by enhancing their load balancing schemes so as to
better take advantage of clusters of NUMA multicore nodes.
In this paper, we extend this library to deal with constraint
placement and we study the results achieved by two new
topology-aware load-balancers for applications developed with
the Charm++ framework. The choice of the load-balancer
depends on the class of the application: compute-bound or
communication bound. By introducing TREEMATCH in the
load balancing schemes of Charm++, we managed to outper-
form some other communication-aware schemes available.

This paper is organized as follows: Section II exposes the
motivation and context of the work while Section III lists vari-
ous related works. The TREEMATCH algorithm is described in
Section IV and its integration in the load-balancing scheme of978–1–4799–0898–1/13/$31.00 c© 2013 IEEE

Charm++ is described in Section V. The results achieved are
detailed in Section VI while Section VII concludes this paper.

II. MOTIVATIONS AND CONTEXT

As discussed in the introduction, scientific applications that
are in need of a massive computing power rely on parallel
computers since they are the only architectures able to deliver
the requested resources. However, a gap remains between the
performance achieved at the application level and the perfor-
mance of the underlying hardware. This issue can be addressed
in several ways: first, using an appropriate programming model
can help to improve the overall performance of the target
application. Indeed, according to the application structure and
its degree of parallelism, different programming models or
frameworks might be more efficient. For instance, coarse grain
applications with explicit communications are likely to use
an interface such as the Message Passing Interface (MPI),
while finer grain ones without explicit communications are
likely to employ a standard such as OpenMP for instance.
The target architecture is also a determinant factor in the
choice of the programming tools. For instance, for cluster-
based architectures featuring an interconnection network, it is
necessary to exchange messages between the nodes, thus a
message-passing based paradigm is likely to be the best fit,
while in the case of shared-memory machines, the range of
choices is wider since models with implicit communications
are also possible (e.g. PGAS, multithreading, etc.) 1.

Second, it is necessary to use an optimized implementation
of the chosen programming standard. This encompasses two
distinct aspects: on one hand the implementation of the func-
tions defined by the standard should obviously be the most
efficient possible, on the other hand, the interactions of this
implementation with the underlying target hardware should
also be carefuly defined and enforced. This is usually the role
of the underlying runtime system (e.g. a process manager for
an MPI implementation). This runtime system will also trigger
mechanisms that can improve the overall performance of the
application. A mechanism such as load balancing falls into
this category. By dispatching the workload dynamically (as
the application executes itself) on the various processors of
the architecture, one can expect a decrease in execution times.
However, most of load balancing schemes fail to fully take
into account other factors that impact application performance.
Such factors include objects migration (when balancing the
load, processing entities are likely to migrate from one core
to another one) and communication costs for instance.

However, these communication costs are increasingly dif-
ficult to understand, because the current parallel architectures
have undergone tremendous changes over the past few years.
Indeed, the amount of computing cores available inside a
node has increased dramatically. It is not uncommon to find
machines featuring a dozen of cores per processor, and this
number is expected to grow steadily in the forthcoming years.
Moreover, this trend also impacts the memory organization and
layout: memory banks are scattered throughout the node and
the cache levels now form a complex, multi-level hierarchy.
As a consequence, the communication costs within a single

1Our course, PGAS and OpenMP implementations for distributed memory
do exist, but their runtime system rely on the message passing paradigm for
their internode communications.

node are not homogeneous anymore. Practically speaking,
these costs for exchanging data or messages between processes
sharing the same node depend on their physical location (in
the node). This is known as Non-Uniform Memory Access
(NUMA) effects. An intuitive idea is therefore to place pro-
cesses that communicate the most to processors/cores that
are physically the closest to each other, because they share
more cache levels and the NUMA effects are less prominent.
Moreover, the increase of the memory resources does not
follow the same trend as the number of processors. Indeed, the
amount of memory available per core is expected to decrease.
As a consequence, the issue of reducing the communication
costs in a parallel application is going to become more and
more crucial, even for compute-bound applications as the
amount of communications in such applications is likely to
increase due to the scarcity of the memory resources.

The underlying physical architecture has thus to be mod-
eled in a convenient but realistic and usable fashion. One
way is to assess the performance of the hardware with sev-
eral benchmarks and to make use of these results to place
the processes accordingly. This quantitative approach lacks
dynamicity, requires to gather information prior to any appli-
cation run and is prone to measurement errors. Another way
to deal with this issue is to use a qualitative approach where
hardware organization and structure shall guide the placement.
The advantages of this approach are its flexibility since it does
not rely on a prior collection of information, its genericity and
dynamicity, provided that a relevant tool is used to perform
this step. Currently, no such standard tool exists, but one can
nevertheless rely on recent efforts such as HWLOC [8] that is
available for a wide range of hardware.

To sum up, our approach is to consider additional factors
when balancing the load for applications using a fine grain
programming model. These factors include the migration costs
and the communication costs between computing entities (e.g.
tasks, processes, objects, threads). As for the communication
costs, we decrease them thanks to a qualitative model of the
underlying hardware, which ensures dynamicity, flexibility and
genericity.

III. STATE OF THE ART

The issue of topology-aware mapping has been studied
previously [5], [9]. In particular, MPI implementations make
it possible to gather communication information such as the
number of messages or the amount of data exchanged. Besides,
some of these implementations feature means to bind processes
on processing units in their runtime systems (e.g. process
managers).

MPI 2.2 is a relevant example [10]. Beyond a static
placement, some works focus on online placement by relying
on a technique called rank reordering ([7], [4]). Finally,
Dummler [11] explored the issue of hybrid, MPI + OpenMP
application multithreaded process mapping. TREEMATCH [6]
is an algorithm which takes an application’s communication
pattern as input and the target machines’s architecture to
compute a relevant process placement.

Charm++ [2], [12] is a message passing-based program-
ming environment based on the C++ language. However, while
MPI considers processes in its programming model (with a

granularity that is most of the time coarse), Charm++ model
is based on a finer granularity by splitting computation in
smaller tasks called chares. These chares are characterized by
their CPU load, their input and output communication and
some other useful fields. This makes it easier to introduce
load balancing mechanisms. A strong advantage of Charm++
is therefore the possibility to design, plug and test load-
balancers transparently without changing the application code.
Moreover, several applications have been developed using
Charm++ in different scientific topics. For instance, it is the
case of NAMD [13] and LeanMD [14] (molecular dynamic
applications), or ChaNGa [15] (cosmological computations).

Common load balancing schemes, which take into account
the CPU load on each processing unit, have been extended in
some works to take into account the topology of the underlying
architectures. In a previous work, Bhatelé & Kalé [16] present
the benefits of topology aware mapping on a torus topology.
NucoLB and HwTopoLB [17] [18] apply load balancing based
on a quantitative approach of the topology links (latency and
bandwidth figures are necessary). Besides, this kind of strategy
requires to assess the target architecture communication perfor-
mance with appropriate tools before running any application.
Our solution based on TREEMATCH is fully dynamic because
we use only a qualitative approach for our representation of
the hardware topology.

IV. EXTENSION OF TREEMATCH TO ACCOUNT FOR
PLACEMENT CONSTRAINTS

0" 2" 4" 6" 8" 10" 1" 3" 5" 7" 9" 11"Cores:

Node:

Processors:

Caches:

0" 1" 2" 3" 4" 5" 6" 7"

0" 1" 2" 3" 4" 5" 6" 7"TreeMatchConst:

TreeMatch:

Fig. 1. A 2 : 3 : 2 topology tree modeling a node with two processors
featuring 6 PUs/cores each, where two PUs/cores share a common cache.
Note that the core numbering follows the physical one and not the logical one.
Two results are displayed. The basic TREEMATCH one and the TREEMATCH-
CONST one with constraints on leaves/cores number 0, 2, 4 and 1 as in the
example.

In this section, we present the process placement method
based on our TREEMATCH solution. The aim of our work is
to assign each process to its dedicated processing unit (usually
a core) in order to reduce communication costs between
processes. The core algorithm takes as input a matrix modeling
the amount of communication between processes and a repre-
sentation of the underlying hierarchical architecture modeled
as a tree, where the leaves represent the processing units
(PUs) on which the processes should be mapped (see Fig. 1).
TREEMATCH considers balanced trees, that is, trees in which
the arity of the node at each level is the same. This enables the
following compact notation of trees: a1 : a2 : . . . : an where
n is the number of levels and ai is the arity of all the nodes
at level i. Therefore, the tree depicted in Fig. 1 is modeled
with this notation as: 2 : 3 : 2. TREEMATCH relies on several

algorithms and a first version was proposed in [6] and [7]. In
this earlier version, when the number of PUs is larger than
the number of processes, the user has no means to specify
which PUs shall not be used and the algorithm decides where
to allocate the processes using the communication cost as the
sole decision criterion. However, such approach is suitable
only in the case of shared-memory machines and when no
load balancing is applied. In our case, we target clusters of
multicore nodes addressing load-balancing issues. Moreover, if
we consider eight processes to be mapped on the architecture
modeled in Fig. 1, there is no guarantee that the earlier version
of TREEMATCH would map the processes evenly. Indeed, as
shown in Fig 1, leaves number 8, 10 , 9 and 11 are not
used. It is not possible to mark a given subset of leaves as
unused. To ensure an allocation that comply to this type of
use, we have designed an enhanced version of the algorithm
that is now able to take into account constraints explicitly by
listing the PUs/leaves that cannot be used for the mapping. This
new version is called TREEMATCHCONST to account for the
constraints given by the user.

For instance, imagine that the user wants to prevent
PUs/leaves number 0, 2, 4, and 1 to be used for some reason.
We give this information as new input to the algorithm along
with the topology description and the communication pattern
as shown in Algorithm 1. For the sake of simplicity, we
assume that the number of constraints plus the dimension of
the communication matrix is equal to the number of leaves
of the tree. If it is not the case, a workaround consists of
padding the communication matrix with null values until we
reach the required dimension and then, once the result is
output, we simply ignore the mapping of the virtual processes
corresponding to the padded values.

TREEMATCHCONST is a recursive algorithm. In our exam-
ple, for the first call we have T , the tree depicted if Fig 1, m the
communication matrix displayed in Fig 2 and C = {0, 4, 2, 1}.
Let k be the arity of tree T for the corresponding recursive step
(k=2 for the first recursive step). At line 2 of the algorithm,
we k-partition the communication matrix but we take the
constraints into account. As the constraints state that three
leaves on the left subtree and one on the right subtree cannot
be used, we need to partition the communication matrix so
that exactly three processes are allocated on the left subtree
and exactly five on the right one, with the goal of minimzing
the communication cost between each partition. Unfortunately,
no graph partitioner is able to provide an unbalanced and
exact partitioning at the same time. For instance, Scotch [19]
provides only balanced partitioning while Metis [20] never
guarantees that a given partition has the exact specified size.
Therefore, we have implemented a simple, greedy, randomized
k-partitioner for performing this task. Being random, greedy k-
partitioning does not necessarily provide a very good solution,
so we perform this step a thousand times and keep the best
solution. In our example, the first three processes are mapped
on the left subtree and the five last processes on the right one.
We can then call recursively TREEMATCHCONST with new
inputs on each subtree. For instance in the left subtree we have
only the communication matrix corresponding to the irst three
processes (as shown in Fig. 3), the tree T is the one starting at
the processors level and is of arity k = 3 and the constraints
are C = 0, 4, 2. When the algorithm reaches the bottom of
the tree, the result can be aggregated. In our example, it is

Proc 0 1 2 3 4 5 6 7
0 0 1000 10 1 100 1 1 1
1 1000 0 1000 1 1 100 1 1
2 10 1000 0 1000 1 1 100 1
3 1 1 1000 0 1 1 1 100
4 100 1 1 1 0 1000 10 1
5 1 100 1 1 1000 0 1000 1
6 1 1 100 1 10 1000 0 1000
7 1 1 1 100 1 1 1000 0

Fig. 2. Communication matrix example

Proc 0 1 2
0 0 1000 10
1 1000 0 1000
2 10 1000 0

Fig. 3. Communication matrix of the left subtree after step 1

displayed by Fig. 1.

It is worth to note that regardless of the version of the
algorithm used, TREEMATCH uses structural information (a
topology tree) and never needs quantitative information about
the underlying hardware (e.g. bus speed, network bandwidth,
latencies, etc.), as opposed to other approaches such as Nu-
coLB [18] or Scotch [21]. We believe that this advocates for
our approach, as dealing with qualitative and structural infor-
mation does not require to assess the hardware performance
and is therefore insensitive to incorrect or partial measures.

Algorithm 1: The TREEMATCHCONST Algorithm
Input: T// The topology tree
Input: m // The communication matrix
Input: C // The constraints array

1 k ← arity at the top of the tree T .;
2 p←constraint k partition(k,m,C); // finds partitions of size

k taking the constraints into account
3 tab m ← split com mat(C, k, p); // Splits the communication
matrix in k parts according to the partition just found
above

4 tab C ← split constraints (C, k, T) ; // Constructs a tab of
constraints of size k: one for each partitions

5 if T is not a leaf then
// recursively calls TREEMATCHCONST on the k
subtrees of the root of T ;

6 foreach i in 0..k − 1 do
7 executes TREEMATCHCONST on the ith subtree of T , tab m[i],

tab C[i].

8 r ← aggregates results of each subtrees;
9 else

10 r ← assigns the process/constraint to T ;

11 returns r as result for T ;

V. LOAD-BALANCING IN CHARM++ WITH TREEMATCH

Charm++ is a runtime system and a programming lan-
guage implementing the message passing paradigm. Unlike
MPI, Charm++ does not manipulate processes but independant
computing objects called chares. These fine grain objects can
be in higher numbers than the hardware processing units (e.g.
CPUs, cores). Moreover, if this model is used jointly with a
dynamic load balancing system, it can easily level the CPU
consumption and consequently improve the execution time of
applications.

But while some applications are limited because of a
huge imbalance (LeanMD [14] for example), some others
feature chares which exchange lots of data (e.g. kNeighbor
or Stencil3D). These differents behaviors led us to create two
distinct load balancers based on TREEMATCH. The first one,
called TMLB MIN WEIGHT, applies a communication-aware
load balancing scheme by favouring the CPU load balance.
To do so, it solves a maximum weight matching problem in
order to minimize the chares migration. The second algorithm,
designed for communication-bound applications and called
TMLB TREEBASED, computes a placement of groups of
chares on each processing unit. Then, it considers each node
and enforces some load balancing while keeping as much
balanced as possible the chare placement in order to minimize
communication costs. We detail these two algorithms in the
following two sections.

A. Load balancing with communication and migration mini-
mization

As explained previously, some applications are very un-
balanced in terms of CPU load. However, such applications
also exchange data. Our goal is thus to address both issues,
that is, improve the load balancing whilst decreasing the
communication costs. That is why we designed an algorithm
that carries out some load balancing while keeping as close
as possible communicating chares, taking into account the
topology. However, if we only consider both problems, results
show marginal improvements. This stems from the chares
migration. When we consider all chares and reorder them
according to their communication exchanges or their load, the
probablity that a chare will stay on its original processing
unit is low. The goal is therefore threefold : to balance the
load, to minimize communication costs and to minimize chares
migration. We detail how we reduce these migrations in our
algorithm by solving a maximum weight matching problem.

This first load balancing algorithm can be found on Algo-
rithm 2. To explain it, we can consider an application which
creates a hundred chares and that shall be executed on four
cores. After a few iterations, Charm++ calls the load balancing
algorithm. First, it extracts the chares communication pattern
from the application monitoring (provided by the Charm++
runtime). This results in a 100× 100 matrix. Then, we create
a fake topology tree by decomposing the order of this matrix
in prime factors. In our example, the topology tree will be:
2 : 2 : 5 : 5. Then, we run TREEMATCH to find an appropriate
chares permutation in order to have the most communicating
chares as close as possible in the tree. Once we obtain this
permutation, we split it in a number of parts equal to the
number of cores of the underlying architecture (four in our
example). In this case, each part corresponds to the group
of chares of each of the four subtrees in the fake topology’s
second level.

Then, we apply the AssignChareOnCore function as
follows: we sort each part by decreasing load and thus each
part corresponds to a core. The main loop first assigns each
chare to its corresponding core by considering at each iteration
the less loaded core and its most loaded chare. When a core
has received all the chares of its part but remains the less
loaded, we select chares from an other part. This algorithm
keeps the most communicating chares together and applies

load balancing using the less loaded ones. Therefore, we can
make a fine CPU load balancing. Moreover, at each new
chare assignement, we update a migration matrix such as we
increment m mig[old core][new core] when the chare has to
move from old core to new core.

At the end of this phase, we have as many groups of
chares as we have cores. The remaining question is how
to map these groups of chares onto the physical cores. We
solve this problem with the goal of minimizing the chares
migration. Minimizing the migrations corresponds to solve a
minimum weight matching problem on the migration matrix.
Indeed, each entry m mig[i][j] gives the migration cost when
allocating group i on core j. A minimum weight matching of
this matrix is therefore an assignment of the groups to the cores
such that the sum of migration costs is minimized. Finding
such matching can be performed in polynomial time by the
Hungarian algorithm [22].

Algorithm 2: The TMLB MIN WEIGHT Algorithm
Input: m chares The communication matrix between chares
Input: n Order of m_chares
Input: fake T A fake topology tree with n leaves
Input: m mig The migration matrix between cores

1 ;
2 p←Permutation(m chares, fake T);
3 SortEachPartDesc(p, nbcores)
4 foreach i in 0..n do
5 c←LessLoadedCore();
6 chare←ChooseChare(c);
7 AssignChareOnCore(chare, c);
8 UpdateMigrationMatrix(m mig, chare)

99
10 h←HungarianAlgorithm(m mig);
11 foreach chare do
12 SetNewPe(chare, h)

B. Tree-based chares placement and load balancing

The algorithm of the previous section is designed for
compute-bound applications. In this section, we tackle the
issue of balancing the load for communication-bound appli-
cations. Here, the load balancer based on TREEMATCH first
reduces communication costs while balancing the load on each
processing unit. Our algorithm is presented on Algorithm 3.

For example, consider a 110 chares applications to be
executed on two nodes, eight cores architecture (four cores
per node). At the beginning of the execution, Charm++ groups
these chares to the cores. At each load-balancing step, the first
part of the algorithm consists in building the communication
matrix of these groups of chares, gathering the topology and
applying TREEMATCH to permute these groups to the cores so
that communication costs between cores are minimized. The
second part of our algorithm goes up in the topology tree
and considers the nodes, that is, the set of cores that share
the same memory banks. For each node in our architecture,
we apply locally and in parallel a load-balancing algorithm.
For example, assume that the first step assigns 55 chares to
each node. This means that these 55 chares are grouped in
four parts (one per core). In order to balance the load of
these chares on each of the four cores, we have to create a
fake topology on which we will be able to bind the chares.
Because of the grouping algorithm of TREEMATCH, we could
fail to find a good placement if the prime factorization contains

a large prime number. To avoid this problem, we use a
new feature in TREEMATCHCONST: the possibility to put
constraints on leaves in our topology. Thus, to create the
needed fake topology, we take the number of chares to be
bound and we increment this value to obtain a number for
which the prime factorization will be only decomposed in 2
and 3. This increment will improve the ability of TREEMATCH
to create groups and to find a good process placement. In our
case, the increment leads to consider a topology of 64 leaves
and yields the following binary tree: 2 : 2 : 2 : 2 : 2 : 2.
To map the 55 real chares to the 64 leaves of this tree and
keep a good chares balance, we apply constraints regularly on
each smallest subtree. These constraints will be given to the
TREEMATCHCONST algorithm that is based on an unbalanced
k-partitioning. Once we have a satisfactory chares permutation,
we assign them on their new core. This is done using the same
AssignChareOnCore method as in the previous algorithm.

Algorithm 3: The TMLB TREEBASED Algorithm
Input: m pu The communication matrix between Pe
Input: T The topology tree

22 p←Permutation(m pu, T);
3 foreach chare do
4 SetNewPe(chare, p)

55
6 foreach node in parallel do

Input: m chares The communication matrix between
chares in the current node

Input: n Order of m_chares
7 fake T ←CreateFakeTopology();
8 p←PermutationWithConstraints(m chare, fake T);
99

10 foreach i in 0..n do
11 c←LessLoadedCore();
12 chare←ChooseChare(c);
13 AssignChareOnCore(chare, c);

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained with our
two load balancers. We selected three applications: the first
one, called LeanMD [14], is a molecular dynamic application
known to have a huge load imbalance. We did our tests for
this application with TMLB MIN WEIGHT. The last two
applications, kNeighbor (an iterative application where each
chare communicates with k others) and Stencil3D (a three
dimensional stencil application)2 are known to exchange a
lot of data. That is why we conducted the tests using the
TMLB TREEBASED scheme. All experiments were carried
out on 16 nodes of the PlaFRIM platform. The nodes are
linked with an InfiniBand interconnect (HCA: Mellanox Tech-
nologies, MT26428 ConnectX IB QDR). Each node contains
two Quad-core-INTEL XEON NEHALEM X5550 (2.66 GHz)
processors. 8 Mbytes of L3 cache are shared between the four
cores of a CPU. There are also 24 GB of 1.33GHz DDR3
RAM on each node. The operating system is a SUSE Linux
(2.6.27 kernel). We used the repository version of Charm++
which was a 6.4.0 development version. Finally, for all these
experiments, the metric accounting for chares/process affinity
is the number of messages exchanged.

We compare our solutions with an execution without any
load balancing (DummyLB or Baseline) on one hand and on

2kNeighbor and Stencil3D are part of the Charm++ benchmarks suite.

the other hand with the standard load-balancers that are avail-
able by default in Charm++. These load balancers implement
greedy strategies or are the suggested ones for the application.
In particular, GreedyLB (resp. GreddyCommLB) uses load
(resp. load and communication) to assign chares on cores with
the following strategy: the highest loaded chare is mapped
on the less loaded core. RefineCommLB take objects from
overloaded cores and assign them in order to reach an average
load. RefineCommLB is one of the suggested strategies for
KNeighbor. We did not compare our approach to NucoLB as
it was designed for shared-memory machines.

A. LeanMD

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Particles per cell

LeanMD on 64 cores - 960 chares

Baseline
GreedyLB
RefineLB

TMLB_min_weight

Fig. 4. Execution time (including load-balancing) vs. number of particles
per cell of the LeanMD application on 64 cores for various load-balancing
strategies

LeanMD is a molecular dynamics application which is very
unbalanced. Among others parameters, the number of particles
per cell (per chare in a software manner) can be modified in
order to generate more computation and communication. We
made this parameter vary in our experiments. This application
provides some communication flow but it is insignificant
compared to the load imbalance. Our TMLB MIN WEIGHT
algorithm, which favours the load balancing, is a perfect case
for this test. The results we obtained with this load balancer
are presented on Figure 4. On this figure, we plotted the whole
execution time (including the load balancing time) according to
the number of particles per cell. We can see that except for the
small cases, we outperform the other algorithms. On problems
equal or larger than 2000 particles per cell, we reduce by 30%
the execution time without load balancing (Baseline).

When we compare the load balancing time for each strategy
we can notice that TMLB MIN WEIGHT takes on average
233 ms where RefineLB takes 1 ms. As for GreedyLB, the
load balancing is calculated in 14.5 ms. However, even if
TMLB MIN WEIGHT is slower than the two other load
balancers, this drawback is counterbalanced by the benefits
obtained regarding the total execution time of the application.

In Fig. 5 we present the number of chares that migrate
from one core to a new one for the same execution than the
one depicted in Fig 4. We see that GreedyLB does not take
into account this aspect as almost all the chares do migrate.
RefineLB is mainly an incremental strategy that balances the
load by moving as few chares as possible, therefore, the
number of migration is very small. The TMLB MIN WEIGHT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

N
u
m

b
e
r

o
f

m
ig

ra
te

d
 c

h
a
re

s

Particles per cell

Number of migrated chares in LeanMD
960 chares - 64 cores

GreedyLB
RefineLB

TMLB_min_weight

Fig. 5. Average number of migrated chares (among a total of 960 chares)
for each load balancer and for each set of runs of LeanMD.

strategy finds a good compromize between migration cost
and other factors impacting the execution time (e.g. load,
communication, topology). Without migration minimization,
the amount of migrations is much larger (around 680 mi-
grations) and so is the execution time (approximately a 5%
increase). Therefore this feature is necessary to achieve good
performance.

B. kNeighbor

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

250

300

kNeighbor on 64 cores
64 elements − 1MB message size

Fig. 6. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for several load balancing strategies with 64 chares and
1MB messages.

kNeighbor is a application designed to simulate intensive
communication between a fixed number of chares (seven by
default). Our results are presented in Figure 6, 7 and 8.

We carried out these experiments with respectively 64, 128
and 256 elements (chares). We can see that in all experiments,
our solution is faster than all the other ones. When there are
only a few elements, no load balancer yields good perfor-
mance as compared to the native charm++ load balancers.
When we reach 256 elements, the native load balancers can
achieve interesting improvements, especially RefineCommLB.
However, TMLB TREEBASED manages to outperform it, by

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

100

200

300

400

500

600

700

kNeighbor on 64 cores
128 elements − 1MB message size

Fig. 7. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for several load balancing strategies with 128 chares and
1MB messages.

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

500

1000

1500

2000

kNeighbor on 64 cores
256 elements − 1MB message size

Fig. 8. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for several load balancing strategies with 256 chares and
1MB messages.

roughly 10%. Moreover, we see that the relative performance
of TREEMATCH improves with the input size.

The Figure 9 represents the execution time of each load bal-
ancing strategy used in our kNeighbor experiments. Each load
balancer follows a linear trajectory while the number of chares
is doubled at each step on the x-axis. TMLB TREEBASED is
clearly slower than the other strategies but yields a good chare
placement that improves the total execution time as shown in
Figures 6, 7 and 8.

C. Stencil3D

Stencil3D is a 3-dimensional stencil with regular com-
munication with some fixed neighbors. Because of this, it
is not beneficial to apply a load balancing scheme every

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

64 128 256

E
xe

cu
ti

o
n
 t

im
e
 (

in
 m

s)

Number of chares

Execution time of load balancing
strategies (running on 64 cores)

DummyLB
GreedyCommLB

GreedyLB
RefineCommLB

TMLB_TreeBased

Fig. 9. Load balancing time of the different strategies vs. number of chares
for the KNeighbor application.

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

Stencil3D on 64 cores − 64 elements

Fig. 10. Execution time (including load-balancing) of the Stencil3D appli-
cation on 64 cores and 64 chares

ten iterations. The best results we achieved, for each load
balancer, was when we balanced the load only once, after
ten iterations. The experiments presented in Figure 10 follow
this principle. Like kNeighbor, Stencil3D is a communication-
bound application, so we applied TMLB TREEBASED. We
notice two important results. First, we obtain a gain of roughly
18% compared to the other strategies. Then, our algorithm
offers a better execution time stability as shown by the error
bars representing the standard deviation.

The load balancing time is very short for greedy strategies
in Stencil3d experiments. Except for RefineCommLB which
takes approximately 7.5 ms, the others greedy load balancers
take less than 1 ms to determine the new chares assignment.
Conversely, TMLB TREEBASED takes on average 214.8 ms.
As for the kNeighbor case, this load balancing time has to be
compared to the total execution time of the application. The
time needed by our strategy to find a good chare placement is
completely hidden by the gain in execution time.

VII. CONCLUSION

Efficiently executing high-performance applications on par-
allel computers is a hard task. One efficient solution consists

in structuring the application and exposing its parallelism
as much as possible in order to express all its parallelism.
However, fine-grain parallelism raises the question of efficient
load-balancing schemes.

In the literature, there exists many such load-balancing
strategies. However, architectural advances have led to highly
hierarchical computing platforms and therefore it is necessary
to propose new solutions and strategies taking into account the
load, the communication, the topology or the migration cost.

In this paper, we have studied two new load-balancing
strategies and we have implemented them in the Charm++
computing environment. Both strategies address the issue
of topology-aware load-balancing but one is targeted to-
wards compute-bound applications while the other targets
communication-bound applications. These solutions are based
on the TREEMATCH library that is designed for mapping
computation to tree-structured topologies and which have the
advantage of using only qualitative information.

We have tested them on a distributed memory platform
and compared them against standard Charm++ load balanc-
ing strategies. We have chosen real applications (LeanMD,
Stencil3D and Kneighbor). Our results show that the proposed
strategies lead to better execution times even if computing the
load-balancing is higher when using TREEMATCH.

Future works are directed towards extending the scalability
of the strategies by improving their parallelism and the gather-
ing of the information required by them. For instance, we want
to improve the adaptation of TMLB TREEBASED concerning
the choice of the hierarchy level where the algorithm is
distributed in order to improve its scalability.

ACKNOWLEDGMENTS

This work was supported by INRIA-Illinois Joint Lab-
oratory on Petascale Computing. Experiments presented in
this paper were carried out using the PLAFRIM experimental
testbed, being developed under the Inria PlaFRIM development
action with support from LABRI and IMB and other entities:
Conseil Régional d’Aquitaine, FeDER, Université de Bordeaux
and CNRS (see https://plafrim.bordeaux.inria.fr/).

REFERENCES

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime
system,” in Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, ser. PPOPP ’95.
New York, NY, USA: ACM, 1995, pp. 207–216. [Online]. Available:
http://doi.acm.org/10.1145/209936.209958

[2] L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA) 93.
ACM Press, September 1993, pp. 91–108.

[3] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime
Strategies via Migratable Objects,” in Advanced Computational Infras-
tructures for Parallel and Distributed Applications, M. Parashar, Ed.
Wiley-Interscience, 2009, pp. 265–282.

[4] B. Brandfass, T. Alrutz, and T. Gerhold, “Rank Reordering for MPI
Communication Optimization,” Computer & Fluids, Jan. 2012.

[5] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: an
Automatic Profile-Guided Parallel Process Placement Toolset for SMP
Clusters and Multiclusters,” in ICS, G. K. Egan and Y. Muraoka, Eds.
ACM, 2006, pp. 353–360.

[6] E. Jeannot and G. Mercier, “Near-optimal placement of mpi processes
on hierarchical numa architectures,” Euro-Par 2010-Parallel Processing,
pp. 199–210, 2010.

[7] G. Mercier and E. Jeannot, “Improving MPI Applications Performance
on Multicore Clusters with Rank Reordering,” in EuroMPI, ser. Lecture
Notes in Computer Science, vol. 6960. Santorini, Greece: Springer,
Sep. 2011, pp. 39–49.

[8] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “Hwloc: a Generic
Framework for Managing Hardware Affinities in HPC Applications,”
in Proceedings of the 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP2010). Pisa,
Italia: IEEE Computer Society Press, Feb. 2010. [Online]. Available:
http://hal.inria.fr/inria-00429889

[9] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures,” in ICS, D. K. Lowenthal, B. R.
de Supinski, and S. A. McKee, Eds. ACM, 2011, pp. 75–84.

[10] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur,
and J. L. Traeff, “The Scalable Process Topology Interface of MPI 2.2,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 4,
pp. 293–310, Aug. 2010.

[11] J. Dümmler and T. Rauber and G. Rünger, “Mapping Algorithms for
Multiprocessor Tasks on Multi-Core Clusters,” in Proceedings of the
2008 37th International Conference on Parallel Processing, 2008, pp.
141–148.

[12] L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with
Message-Driven Objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175–213.

[13] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. D.
Skeel, and K. Schulten, “NAMD—a parallel, object-oriented molecular
dynamics program,” Intl. J. Supercomput. Applics. High Performance
Computing, vol. 10, no. 4, pp. 251–268, Winter 1996.

[14] V. Mehta, “LeanMD: A Charm++ framework for high performance
molecular dynamics simulation on large parallel machines,” Master’s
thesis, University of Illinois at Urbana-Champaign, 2004.

[15] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn, “Mas-
sively parallel cosmological simulations with ChaNGa,” in Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2008, 2008.

[16] A. Bhatelé and L. V. Kalé, “Benefits of Topology Aware Mapping
for Mesh Interconnects,” Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), vol. 18, no. 4, pp. 549–566, 2008.

[17] L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O.
Navaux, F. Broquedis, J.-F. Méhaut, and L. V. Kale, “A Hierarchical
Approach for Load Balancing on Parallel Multi-core Systems,” in
Parallel Processing (ICPP), 2012 41st International Conference on.
IEEE, 2012, pp. 118–127.

[18] L. L. Pilla, P. O. Navaux, C. P. Ribeiro, P. Coucheney, F. Broquedis,
B. Gaujal, and J.-F. Mehaut, “Asymptotically optimal load balancing for
hierarchical multi-core systems,” in Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on. IEEE, 2012,
pp. 236–243.

[19] François Pellegrini, “Static Mapping by Dual Recursive Bipartitioning
of Process and Architecture Graphs,” in Proceedings of SHPCC’94,
Knoxville. IEEE, may 1994, pp. 486–493.

[20] G. Karypis and V. Kumar, “METIS - Unstructured Graph Partitioning
and Sparse Matrix Ordering System, Version 2.0,” Tech. Rep., 1995.

[21] F. Pellegrini, SCOTCH and LIBSCOTCH 5.1 User’s Guide, ScAlApplix
project, INRIA Bordeaux – Sud-Ouest, ENSEIRB & LaBRI, UMR
CNRS 5800, August 2008, http://www.labri.fr/perso/pelegrin/scotch/.

[22] S. Micali and V. V. Vazirani, “An o(
√

(v)e) algorithm for finding a
maximum matching in general graphs.” in Proc. 21st Ann IEEE Symp.
Foundations of Computer Science, 1980, pp. 17–27.

