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Abstract: We present new models, numerical simulations and rigorous analysis for the op-
timization of the velocity in a race. In a seminal paper, Keller [11, 12] explained how a runner
should determine his speed in order to run a given distance in the shortest time. We extend this
analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic
energy (or accumulated oxygen deficit) and an energy recreation term when the speed decreases.
We also take into account that when the anaerobic energy gets too low, the oxygen uptake cannot
be maintained to its maximal value. Using optimal control theory, we obtain a proof of Keller’s
optimal race, and relate the problem to a relaxed formulation, where the propulsive force rep-
resents a probability distribution rather than a value function of time. Our analysis leads us to
introduce a bound on the variations of the propulsive force to obtain a more realistic model which
displays oscillations of the velocity. Our numerical simulations qualitatively reproduce quite well
physiological measurements on real runners. We show how, by optimizing over a period, we recover
these oscillations of speed. We point out that our numerical simulations provide in particular the
exact instantaneous anaerobic energy used in the exercise.
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Optimisation de stratégies de course à partir de l’énergie
anaérobie et des variations de vitesse

Résumé : Nous présentons de nouveaux modèles, des simulations numériques et une ana-
lyse rigoureuse de l’optimisation de la vitesse dans une course. Dans un article fondateur, Keller
[11, 12] a expliqué comment un coureur devrait déterminer sa vitesse pour atteindre une distance
donnée en un temps minimal. Nous étendons son analyse qui repose sur l’équation du mouve-
ment et l’énergie aérobie, pour inclure un bilan sur l’énergie anaérobie (ou le déficit accumulé
d’oxygène) qui prend en compte un terme de recréation d’énergie quand la vitesse diminue. Nous
incluons également dans le modèle une baisse de la consommation maximale d’oxygène quand
l’énergie anaérobie est trop faible. Grâce à la théorie de la commande optimale, nous établissons
rigoureusement la structure de la course optimale dans le modèle de Keller, et relions le modèle
général à une formulation relaxée, dans laquelle la force de propulsion à un instant donné corre-
spond à une probabilité de distribution. L’analyse conduit à l’introduction d’une borne sur les
variations de la force de propulsion pour obtenir un modèle plus réaliste dans lequel apparais-
sent des oscillations de la vitesse. Nos expériences numériques reproduisent bien, d’une manière
qualitative, les mesures physiologiques sur des coureurs. Nous montrons qu’en optimisant sur
une période, on retrouve les oscillations de vitesse, et soulignons que les simulations numériques
fournissent en particulier l’énergie anaérobie instantanée utilisée.

Mots-clés : Course à pied, énergie anaérobie, recréation d’énergie, commande optimale, arc
singulier, contrainte sur l’état, conditions d’optimalité.



Optimization of running strategies 3

1 Introduction

The issue of optimizing a race given the distance or time to run is a major one in sports compe-
tition and training. A pioneering work is that of Keller [12] relying on Newton’s law of motion
and energy equilibrium. For sufficiently long races (> 291m), his analysis leads to an optimal
run in three parts

1. initial acceleration at maximal force of propulsion,

2. constant speed during the most part of the race,

3. final small part with constant energy equal to zero.

This analysis has some drawbacks and does not describe well some physiological properties, in
particular the last part: it is unbelievable that a runner can go on running with zero energy.
Additionally, Keller does not prove that the optimal race has exactly these three parts like this,
but rather makes up a race with these three optimal pieces together. Some authors [1, 13, 24]
have tried to improve this model, in particular the last part of the race, but still relying on the
same strategy and mathematical arguments, leading to an almost constant speed. The idea of
the constant speed is a controversial one. On some marathon runs, the constant speed theory
is used to guide runners who can choose the color of balloon they follow which corresponds
to a constant speed run. Nevertheless, recent physiological measurements [3] seem to indicate
that in order to optimize his run, a runner varies his velocity by an order of 10%. This allows
him to recreate anaerobic energy. Other references concerning the optimality of a run include
[15, 17, 23]. Keller’s paper [12] has some interesting ideas that we will rely on to build a more
satisfactory model, using additionally the hydraulic analogy and physiological improvements
described in [16]. Nevertheless, the formula of [16] rely on averaged values while we want to
make instantaneous energy balance taking into account optimal control theory. We aim at fully
accounting for measurements of [3].

Human energy can be split into aerobic energy called eae, which is the energy provided by
oxygen consumption, and anaerobic energy ean, which is provided by glycogen and lactate. A
very good review on different types of modeling can be found in [16] and a more general reference
is [2]. In this paper, we will focus on improving the model of Keller [12]. At first sight, one may
believe that Keller’s equations only only with aerobic energy: he speaks of oxygen supplies. In
fact, as we will show below, we believe that it well describes the accumulated oxygen deficit:
e0
an − ean, here e0

an is the value at t = 0 of ean the anaerobic energy. This will use the hydraulic
analogy introduced by Morton and other authors (see [15, 16]).

We will call vMA the maximal aerobic velocity (it is also called vV O2max). When one runs
below vMA, the value of V̇ O2max (maximal oxygen uptake) has not been reached. The role of
the anaerobic energy is to compensate the deficit in V̇ O2 which has not reached its maximal
value. When one goes above vMA, the anaerobic energy has two effects: giving energy to run
above vMA and to maintain V̇ O2 at its maximal value. This is why when ean gets too low, V̇ O2
cannot be maintained to its maximal value. Next, when one is between 0.8vMA and vMA, if the
runner varies his velocity, the excess of aerobic energy available due to slowing down allows the
runner to fuel its anaerobic supplies.

In our model, we will account for

• the drop in V̇ O2 at the end of the race, when the anaerobic supply get too low,

• the use of anaerobic energy at the beginning of the race to compensate the deficit in V̇ O2
which does not reach its maximal value instantaneously,
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4 J. Frédéric Bonnans, Amandine Aftalion

• the fact that negative splitting of the race is better than running at constant speed,

• how varying one’s velocity allows to recreate anaerobic energy and thus to run longer or
faster.

The aim of what follows is to determine the equation governing the energy ean, or the accu-
mulated oxygen deficit. As a consequence, our simulations provide accurate estimates of the loss
of anaerobic energy in a race.

The paper is organized as follows: in section 2, we present our new models together with
numerical simulations. In section 3, we describe our mathematical analysis and proofs while a
conclusion is derived in section 4.

2 Numerical presentation of the models

In this section, we will present our numerical findings for Keller’s model and our ideas for
improved modeling fitting better the physiological measurements. Our numerical experiments
are based on the Bocop toolbox for solving optimal control problems [6]. This software combines
a user friendly interface, general Runge-Kutta discretization schemes described in [10, 5], and
the numerical resolution of the discretized problem using the nonlinear programming problems
solver IPOPT [22].

The aim of what follows is to determine the equation governing the energy ean. This will be
coupled with the equation of motion

dv

dt
+
v

τ
= f(t) (1)

where t is the time, v(t) is the instantaneous velocity, f(t) is the propulsive force and v/τ is
a resistive force per unit mass. The resistive force can be modified as another power of v, but
we will use this one in the simulations for simplicity. Note that we could take into account a
changing altitude, by adding to the right hand side a term of the form −g sinα(d), where α(d(t))
is the slope at distance d(t). We can relate sinα(d) to h(d), the height of the center of mass of
the runner at distance d, by

sinα(d(t)) =
h′(d)

1 + (h′(d))2
.

Here, we assume for simplicity that h is constant along the race.
Constraints have to be imposed; the force is controlled by the runner but it cannot exceed a

maximal value:
0 ≤ f(t) ≤ fmax. (2)

Then the aim is to optimize T the total time, given d =
∫ T

0
v(t) dt, with the initial conditions:

v(0) = 0, ean(0) = e0
an under the constraint ean(t) ≥ 0. (3)

Let us use the hydraulic analogy to account for Keller’s equations and justify our improve-
ments. This hydraulic analogy is described in [15, 16] in order to develop a three parameter
critical power model: the equations in [15, 16] are on averaged values of the energy and the
power, while we use instantaneous values.

Inria



Optimization of running strategies 5

Figure 1: Scheme of the container modeling.

2.1 First model: how Keller’s model describes the accumulated oxygen
deficit

We assume that the anaerobic energy has finite capacity modeled by a container of height 1
and surface Ap. When it starts depleting by a height h, then the accumulated oxygen deficit is
e0
an − ean and we have

e0
an − ean = Aph, (4)

where e0
an = Ap is the initial supply of anaerobic energy.

We assume that the aerobic energy is of infinite capacity and flows at a maximal rate of
V̇ O2max through R1. We refer to Figure 1 for an illustration: O is the infinite aerobic contained,
P is the finite capacity anaerobic container, h is the height of depletion of the anaerobic container.
An important point is the height at which the aerobic container is connected to the anaerobic
one. If we assume in this first model that it is connected at height 1 (at the top of the anaerobic
container, and not ϕ for the moment as on Figure 1), then it means that the aerobic energy
always flows at rate σ̄ = V̇ O2max and the available flow at the bottom of the anaerobic container,
through T is

W = σ̄ +Ap
dh

dt
= σ̄ − dean

dt
.

Since the energy is used at a rate fv, where v is the velocity and f is the propulsive force, we
have that W is equal to the available work capacity hence to fv. This allows us to find the

RR n° 8344



6 J. Frédéric Bonnans, Amandine Aftalion

Figure 2: Race problem with Keller’s model. Plot of the velocity v, the accumulated oxygen
deficit (AOD) e0

an − ean, the propulsive force f , and σ̄ vs time.

equation governing the evolution of the anaerobic energy

dean
dt

= σ̄ − fv. (5)

We point out that this is exactly the energy equation studied by Keller, except that we have
justified that it models the accumulated oxygen deficit, while Keller describes it as the aerobic
energy.

Some improvements are needed for this model to better account for the physiology:

• change the height where the aerobic container is connected,

• take into account that when the energy supply is low, then the flow of energy drops signif-
icantly.

Before improving the model, we describe our numerical simulations of (1)-(2)-(3)-(5) using
bocop.

We plot, in figure 2, the velocity v, the force f , the accumulated oxygen deficit (AOD)
e0
an − ean. We have added σ̄, though it is constant, just to be consistent with the next figures.
We take σ̄ = 41.56, fmax = 9, e0

an = 2409 and d = 800m. The optimal time is 106.01, and we
have 2000 discretization steps, i.e. the time step is close to 0.053 s. We display in figure 7 a
detailed view of what happens at the end of the race for the AOD and the force.

We observe that the race splits into three parts

Inria



Optimization of running strategies 7

• The race starts with a strong acceleration, the velocity increases quickly and the force is
at its maximal value,

• for the major part of the race, the force is at an intermediate constant value, the velocity
is constant with value close to 7.6 m/s. We will see that this corresponds to what is called,
in the optimal control theory, a singular arc.

• during the last part corresponding to the last two seconds, the force sharply decreases, the
energy reaches 0 and then stays at the zero level (AOD is constant equal to e0

an), and the
force slightly increases again; during all that time, the velocity decreases.

We insist on the fact that this is the first simulation not based on the hypothesis that there
are three arcs. Also, we can optimize either on the time to run or the distance to run, where
all previous simulations had to fix the time to run and optimize on the distance. Even if this
is mathematically equivalent in terms of optimization, fixing the distance requires an extra
parameter in the simulations. The next models introduce improvements.

2.2 Second model: improving the initial phase to reach V̇ O2max

We now assume that the aerobic container is connected to the anaerobic container at a height
ϕ ∈ (0, 1). This implies that there is an initial phase of the race where the flow from the aerobic
container to the anaerobic one is no longer σ̄, but is proportional to the difference of fluid heights
in the containers, so that,

σ(h) =

{
σ̄ h

1−ϕ when h < 1− ϕ
σ̄ when h ≥ 1− ϕ. (6)

This is illustrated in Figure 1. We still have the same balance on total work capacity namely

W = fv = σ(h) +Ap
dh

dt
. (7)

So this and (4) lead to the following equations for ean:

dean
dt

= λσ̄(e0
an − ean)− fv when λ(e0

an − ean) < 1, (8)

where 1/λ = Ap(1 − ϕ). Numerically, we expect that λ(e0
an − ean) reaches 1 in about 20 to 40

seconds, so that we choose ϕ = 0.8.
In the second phase, when λ(e0

an − ean) has reached 1, we are back to equation (5), that is

dean
dt

= σ̄ − fv when λ(e0
an − ean) > 1. (9)

This model accounts, in a more satisfactory way, for the beginning of the race, where V̇ O2
does not reach instantaneously its maximal value V̇ O2max.

2.3 Third model: drop in V̇ O2 at the end of the race

We want to keep the same initial phases as in the previous model, but take into account that
there are limitations when the energy supply is small. It is a very important measurement of [3]
that V̇ O2 drops in the last part of the race. Morton [16] suggests to write that the work capacity

RR n° 8344



8 J. Frédéric Bonnans, Amandine Aftalion

is proportional to ean when ean is small. We prefer to assume that σ drops (drop in V̇ O2) when
ean is too small. So we add a last phase to the run: when ean/e0

an < ecrit, then

σ̄ is replaced by σ̄
ean

e0
anecrit

.

We can choose for instance ecrit = 0.2. We add the final stage:

dean
dt

= σ̄
ean

e0
anecrit

− fv when
ean
e0
an

< ecrit. (10)

The coupling of the 3 equations (8), (9) when ean

e0an
> ecrit on the one hand, and (10) on the

other hand, leads to a better running profile. This model is much more satisfactory than Keller’s
initial model. It takes care of fatigue with a much better physiological description than [1, 13].
This model can be summarized as follows

dean
dt

= σ(ean)− fv (11)

where

σ(ean) =


σ̄ ean

e0anecrit
if ean

e0an
< ecrit

σ̄ if ean

e0an
≥ ecrit and λ(e0

an − ean) ≥ 1

λσ̄(e0
an − ean) if λ(e0

an − ean) < 1

(12)

together with (1)-(2)-(3).
Let us now describe our numerical findings. The results are displayed in Figure 3. Since σ is

not constant, the singular arc has no longer a constant velocity but there is a negative split of
the run. Let us be more specific:

• The very first part of the race is still at maximal force with a strong acceleration,

• then the force smoothly decreases to its minimal value at the middle of the race, and so
does the velocity.

• then the velocity and force smoothly increase again

• the last part of the race is at maximal force, corresponding to the final sprint.

The final time is 110.3. Let us point out that depending on the number of computational points,
the software indicates a very last part at constant energy, on a couple of points of discretization.
The choice of σ(ean) modifies the intensity of the split of the run. Here, we have chosen a
symmetric σ, but any profile can be entered into the computation.

We now want to take into account the observation of energy recreation when slowing down.

2.4 Fourth model: energy recreation when slowing down
We want to add energy recreation to (11), (12). Namely, we replace (11) by

dean
dt

= σ(ean) + η(a)− fv (13)

where a = dv
dt is the acceleration and we choose η(a) = ca2

− where a− is the negative part of a.
In other words,

η(a) = 0 if a ≥ 0 and η(a) = c|a|2 if a ≤ 0. (14)

Inria



Optimization of running strategies 9

Figure 3: Recreation with variable σ: Plot of the velocity v, the accumulated oxygen deficit
(AOD) e0

an − ean, the propulsive force f , and σ vs time.

RR n° 8344



10 J. Frédéric Bonnans, Amandine Aftalion

Figure 4: Recreation when slowing down: speed, energy, force, σ.

When the runner slows down, this recreates anaerobic energy. This dependence on acceleration
is motivated by experiments of V.Billat [18].

Because of this new term, the hamiltonian gets non convex, so that by Pontryagin’s maximum
principle (see our analysis in section 3.3.2) the optimal solution oscillates between the maximal
and minimal value of the force (i.e. fmax and 0). This is in fact to be understood in a relaxed
sense, as a probabilty of taking the maximal and minimal values of the force. However, for the
runner, the information to vary its propulsive force takes some time to reach the brain so that the
runner cannot change his propulsive force instantaneously. We choose to take this into account
by bounding the derivative of f :

|df
dt
| ≤ C. (15)

The simulations of (1)-(2)-(3)-(12)-(13) are illustrated in figure 4. We take C = 0.1 in (15) and
c = 10 in (14). The optimal time is 109.53, which is very good.

We see that the force, having a bounded derivative, does not oscillates between its maximal
value and 0, but between its maximal value, and some lower value, the derivative of the force
reaching its bounds. Consequently, the velocity oscillates and so does the energy which gets
recreated. These oscillation reproduce in a very convincing way the measurements of [3].

2.5 A periodic pattern

The previous experiments show a behavior of the optimal control which looks, in the time interval
[15, 96], i.e., except for the initial and final part of the trajectory, close to a periodic one. We

Inria



Optimization of running strategies 11

Figure 5: Zoom of the case with recreation when slowing down (2000 time steps)

Figure 6: Optimization over a period

have approximately ean(15.4) = 1845 and ean(95.9) = 528, and so the average decrease per unit
time is ed = 16.36. We observe that over this time interval the speed varies between 6.6 and 7.9
m/s, and the force varies between 6.8 and 9.

This leads us to consider the problem of maximizing the average speed over a period T (the
period itself being an optimization parameter): the periodicity conditions apply to the speed
and force, and the energy is such that e(0) = e(T ) + Ted. In other words, we wish to solve the
following optimal control problem:

Min− 1

T

∫ T

0

v(t)dt; v(0) = v(T ); e(0) = e(T ) + Ted; f(0) = f(T ).

v̇(t) = f(t)− φ(t); ė(t) = σ + η(a(t))− f(t)v(t);

|ḟ(t)| ≤ 1, for a.e. t ∈ (0, T ).

(16)

We can fix the initial energy to 0.
Now we can compare figure 5, where we made a zoom on the solution computed before over

the time interval [32, 38], with the solution of the periodic problem, displayed in figure 6, with
period 5.79. We observe a good agreement between those two figures, which indicates that
computing over a period may give a good approximation of the optimal trajectory.

RR n° 8344



12 J. Frédéric Bonnans, Amandine Aftalion

3 Mathematical analysis
We have to study optimal control problems with a scalar state constraint and a scalar control,
that in some of the models enters linearly in the state equation. We mention among others
the related theoretical studies by Bonnans and Hermant [4] about state constrained problems,
Maurer [14], who considers problems with bounded state variables and control appearing linearly,
Felgenhauer [9] about the stability of singular arcs, and the two recent books by Osmolovskii
and Maurer[19] and Schättler and Ledzewicz [21].

3.1 Statement of the model
we consider the following state equation

ḣ = v; v̇ = f − φ(v); ė = σ(e)− fv, (17)

where the drag function φ satisfies

φ is a C2 function; φ(0) = 0, φ′ positive, vφ′(v) nondecreasing. (18)

Since φ′(v) > φ′(1)/v, it follows that φ(v) ≥ φ(1) + φ′(1) log v for all v > 0, and so,

φ(v) ↑ +∞ when v ↑ +∞. (19)

We assume for the moment (in section 3.3 we will discuss a more general recreation model) that
the recreation function σ(e) satisfies

σ(e) is C2 and nonnegative. (20)

We will frequently mention Keller’s model that correspond to the case when

φ(v) = v/τ and σ(e) is a positive constant. (21)

As before, the initial condition is

h(0) = 0; v(0) = 0; e(0) = e0 > 0, (22)

and the constraints are

0 ≤ f(t) ≤ fM ; e(t) ≥ 0; t ∈ (0, T ); −d(T ) ≤ −D. (23)

The problem is to minimize the time T needed for reaching the final distance d(T ) = D.
The optimal control theory is introduced and discussed in Appendix D.

3.2 Main results
If 0 ≤ a < b ≤ T is such that e(t) = 0 for t ∈ [a, b], but e(·) does not vanish over an interval
in which [a, b] is strictly included, then we say that (a, b) is an arc with zero energy. Similarly,
if f(t) = fM a.e. over (a, b) but not over an open interval strictly containing (a, b), we say that
(a, b) is an arc with maximal force. We define in a similar way arc with zero force, etc. We say
that ta (resp. tb) is the entry (resp. exit) time of the arc.

If the distance is small enough, then the strategy consists in setting the force to its maximal
value. Let DM > 0 be the supremum (assumed to be finite) of the distance for which this
property holds. using standard arguments based on minimizing sequences and weak topology
(based on the fact that the control enters linearly in the state equation, the following can be
easily proved:

Inria
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Lemma 3.1. The above problem has at least one optimal solution.

Theorem 3.2. Assume that D > DM . Then: (i) An optimal strajectory starts with a maximal
force arc, and is such that e(T ) = 0. (ii) If σ is a positive constant, an optimal trajectory has
the following structure: a maximal force arc, followed or not by a singular arc, and a zero energy
arc.

This will be a consequence of Theorem 3.16 and Remark 3.3.
Since, by proposition A.1, the optimal solutions are solutions of problems of maximizing the

achieved distance in a given time, we consider in the sequel problems with a given final time.

3.3 Recreation when decreasing the speed
3.3.1 Framework

We next consider a variant of the previous model where the dynamics of the energy is a sum of
functions of the energy and the acceleration, so that the dynamics are as follow:{

v̇(t) = f(t)− φ(v(t)),
ė(t) = σ(e(t)) + η(f(t)− φ(v(t)))− f(t)v(t);

(24)

with initial conditions
v(0) = 0; e(0) = e0 > 0, (25)

The constraints are as follows:

0 ≤ f(t) ≤ fM ; e(t) ≥ 0; t ∈ (0, T ). (26)

The recreation optimal control problem is as follows:

Min−
∫ T

0

v(t)dt; s.t. (24)-(26). (27)

Denoting the acceleration by a := f − φ(v), we may rewrite the above dynamics, skipping the
time argument, as {

v̇ = a,
ė = σ(e) + η(a)− fv;

(28)

We will assume that

η is a convex and C1 function, that vanishes over R+. (29)

This implies that η in nonincreasing.
A typical example is η(a) = c|a−|β , with c ≥ 0, β ≥ 1, and a− := min(a, 0). Let us denote

the recovery obtained with a zero force (note that this is a C1 and nondecreasing function with
value 0 at 0) by

R(v) := η(−φ(v)), (30)

and set
Q(v) := vφ′(v) + φ(v)−R′(v)(1− φ(v)/fM ) + φ′(v)R(v)/fM .

= (vφ(v))′ + (φ(v)R(v))′/fM −R′(v).
(31)

We will assume that (we can do this hypothesis later)

η = cη̄, with c ≥ 0, η̄(s) > 0 for all s > 0, (32)

and that c and η̄ are such that

Q is an increasing function of v. (33)

RR n° 8344



14 J. Frédéric Bonnans, Amandine Aftalion

Remark 3.3. Assume that φ(v) = cαv
α for some cα > 0 and α ≥ 1, and that

η̄(a) = (−a)β , for all a < 0. (34)

Then R(v) = ccβαv
αβ , and so

Q(v) =
d

dv

(
cαv

α+1 + c
cβ+1
α

fM
vαβ+α − ccβαvαβ

)
(35)

is positive and increasing for small enough c if1

α+ 1 ≤ αβ, i.e., 1 + α−1 ≤ β. (36)

For instance, in Keller’s model, α = 1 and the above condition holds iff β ≥ 2.

Note that this holds when η vanishes. An optimal control does not necessarily exist as the
following theorem shows:

Theorem 3.4. Let (32) hold with c > 0, σ(·) be a positive constant, and (33) hold. Then no
optimal control problem exists.

This will be proved at the end of the section, as a consequence of the analysis of the relaxed
problem that we now perform. The theorem motivates the introduction of a relaxed problem.

3.3.2 Relaxed problem

In the relaxed formulation for which we refer to [8], we replace the control f(t) with a probability
distribution Ξ(t, f) with value in [0, fM ]. Denoting by IEΞ(t) the expectation associated with this
probability measure, and by Ξ̄(t) the expectation of f at time t, the state equation becomes{

v̇(t) = Ξ̄(t)− φ(v(t)),
ė(t) = σ(e(t))− Ξ̄(t)v(t) + IEΞ(t)η(f − φ(v(t))).

(37)

The relaxed optimal control problem is

Min−
∫ T

0

v(t)dt; (37) and (25)-(26) hold. (38)

The Hamiltonian function is the same as for the non relaxed version, and its expression is

H[p](f, v, e) := −v + pv(f − φ(v)) + pe(σ(e)− fv + η(f − φ(v)). (39)

The costate equation is therefore, omitting time arguments:{
−ṗv = −1− pvφ′(v)− peΞ̄− peφ′(v)IEΞ(t)η

′(f − φ(v)),
−dpe = peσ

′(e)dt− dµ.
(40)

By standard arguments based on minimizing sequences we obtain that

Lemma 3.5. For c ≥ 0 small enough, the above relaxed optimal control problem has at least one
solution.

1We use the fact that over the compact set [0, vM ], the fonction
∑
γ v

δ + cγvγ , with 0 < δ ≤ min γ, is positive
and increasing iff (given the γ) the cγ are small enough.

Inria
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By lemma D.2, any feasible point of the above relaxed optimal control problem is qualified.

Lemma 3.6. For c ≥ 0 small enough, the above relaxed optimal control problem has the same
value as the original one, and therefore, any solution of the original problem is solution of the
relaxed one.

Proof. Let Ξ be a feasible point of the relaxed problem. For c ≥ 0 small enough, by lemma D.2,
for any ε > 0, there exists a feasible point Ξ′ of the relaxed problem such that ‖Ξ′ − Ξ‖ ≤ ε in
the norm of L∞(0, T,M([0, T ])), with associated state (v′, e′) which can be approximated [8] by
a classical control f whose state (vf , ef ) satisfies in the uniform norm ‖vf − v′‖+‖ef − e′‖ ≤ εf ,
for arbitrary εf > 0. When εf ↓ 0 we have that f is feasible for the (unrelaxed) optimal
control problem, and the associated cost converges to the one associated with Ξ′. The conclusion
follows.

We have then that Pontryagin’s principle holds in qualified form, i.e., with each optimal tra-
jectory (f, v, e) is associated at least one multiplier (p, µ) such that the relaxed control minimizes
the Hamiltonian, in the sense that

Ξ(t, ·) has support in argmin{H[p(t)](f, v(t), e(t)); f ∈ [0, fM ]}, for a.a. t. (41)

Lemma 3.7. Let t1 ∈ (0, T ] be such that e(t1) = 0. Then: (i) we have that

v(t1) ≥ σ(0)/fM . (42)

(ii) An arc of maximal force cannot start at time t1, or include time t1.

Proof. (i) If v(t1) < σ(0)/fM , then for some ε > 0, σ(0)− v(t1)fM > 2ε, so that for t0 ∈ (0, t1)
close enough to t1, since η is nonnegative, we have that

ė(t) ≥ σ(e(t))− f(t)v(t) ≥ σ(e(t1))− fMv(t1)− ε > ε > 0, (43)

and so e(t1) = e(t0) +
∫ t1
t0
ė(t)dt > 0, which is a contradiction.

(ii) Let t ∈ (0, T ) be an entry point of a maximal force arc. Since η vanishes on R+, and
fM ≥ φ(v(·)), along the trajectory, we have 0 ≤ ė(t+) = σ(0) − fMv(t). By point (i) this is an
equality, and so ė(t+) = 0, and

ë(t+) = σ′(0)ė(t+)− fM v̇(t+) = −fM v̇(t+) < 0, (44)

implying that the energy cannot be positive after time t. This gives the desired contradiction.

Lemma 3.8. We have that (i) T ∈ supp(µ), so that e(T ) = 0, and{
(ii) pe(t) < 0 t ∈ [0, T ).
(iii) pv(t) < 0 t ∈ [0, T ).

(45)

Proof. (i) If T 6∈ supp(µ), let te := max supp(µ). Then te ∈ (0, T ), and e(te) = 0. We analyze
what happens over (te, T ). Since pe has derivative ṗe = −peσ′(e(t)) and is continuous with zero
value at time T , it vanishes, and so, ṗv = 1 + pvφ

′(v). Since pv(T ) = 0 this implies that pv has
negative values. As pe vanishes and pv is negative, the Hamiltonian equal to −v + pv(f − φ(v)
has a unique minimum at fM . It follows that (te, T ) is included in a maximal force arc, which
since e(te) = 0 is in contradiction with lemma 3.7(ii). Point (i) follows.
(ii) If pe(ta) ≥ 0 for some ta ∈ (0, T ), then, by the costate equation, pe should vanish on (ta, T ]
and so (ta, T ) would not belong to the support of µ, in contradiction with (i). This proves (ii).

RR n° 8344



16 J. Frédéric Bonnans, Amandine Aftalion

(iii) Let on the contrary tc ∈ [0, T ) be such that pv(tc) ≥ 0. Then the Hamiltonian is a sum of
nondecreasing functions of f and has a unique minimum point at 0. Therefore tc belongs to a
zero force arc, along which

ṗv = 1 + pvφ
′(v) + peη

′(−φ(v))φ′(v) (46)

remains positive (remember that pe(t) < 0 and that η is nonincreasing), and so this arc cannot
end before time T . But then we cannot meet the final condition pv(T ) = 0. The conclusion
follows.

Since pe(t) < 0 over (0, T ), we deduce by (41) that if (32) holds with c > 0, then H is a
concave function of f with minima in {0, fM} for a.a. t, and so, by (41):

Corollary 3.9. If (32) holds with c > 0, then an optimal relaxed control has support over
{0, fM} for a.a. t.

3.3.3 Reformulation of the relaxed problem

The previous corollary motivates the study of the case when we restrict the relaxed control to
those having values in {0, fM}. These relaxed control can be parameterized by their expectation
f(t) at any time t: the probability to take the value 0 is 1−f(t)/fM . Remembering the definition
of the recovery obtained with a zero force in (30), the dynamics can now be written in the form,
since η(fM − φ(v)) = 0 along the trajectory: v̇(t) = f(t)− φ(v(t)),

ė(t) = σ(e(t))− f(t)v(t) +

(
1− f(t)

fM

)
R(v(t)),

(47)

with initial conditions (25). The optimal control problem is

Min−
∫ T

0

v(t)dt; (47) and (25) hold, and 0 ≤ f ≤ fM a.e., e ≥ 0 on [0, T ]. (48)

Remark 3.10. When η identically vanishes, the above problem still makes sense and coincides
with the formulation of the original model of section 3.1. So we will be able to apply the results
of this section to Keller’s problem.

The Hamiltonian is

HR = −v + pv(f − φ(v)) + pe(σ(e)− fv) + pe

(
1− f

fM

)
R(v). (49)

The costate equations are −ṗv = −1− pvφ′(v)− pef + pe

(
1− f

fM

)
R′(v),

−dpe = peσ
′(e)dt− dµ.

(50)

Of course we recover the expressions obtained in section 3.3.2 in the particular case of relaxed
controls with support in {0, fM}, and therefore all lemmas of this section are still valid. By
construction the Hamiltonian is an affine function of the control f , and the switching function
is

ΨR = HR
f = pv − pe(v +R(v)/fM ). (51)
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Lemma 3.11. Any optimal trajectory starts with a maximal force arc.

Proof. Since v(0) = 0, we have that ΨR(0) = pv(0) is negative by lemma 3.8(iii). We conclude
with the PMP.

The following hypothesis implies that the energy is nonzero along a zero force arc.

Either σ(0) > 0, or η is nonzero over R−. (52)

Lemma 3.12. Let (52) hold. Then the jump of µ is equal to 0 on [0, T ].

Proof. a) Let t ∈ [0, T ) be such that [µ(t)] > 0. Necessarily e(t) = 0, and so t ∈ (0, T ), and
ΨR(t−) ≤ 0 (since otherwise t belongs to a zero force arc and then by (52) we cannot have
e(t) = 0). We have that [pe(t)] = [µ(t)] > 0, and so [ΨR(t)] = −(v(t) + R(v)/fM )[pe(t)] < 0,
implying ΨR(t+) < 0. Therefore, for some ε > 0, (t, t+ ε) is included in a maximal force arc, in
contradiction with lemma 3.7(ii).
b) If [µ(T )] 6= 0, since lim pv(t) = 0 and lim pe(t) = −[µ(T )] when t → T , and v(T ) > 0, we get
limt↑T ΨR(t) = [µ(T )](v(T ) +R(T )/fM ) > 0, meaning that the trajectory ends with a zero force
arc, but then by (52), the energy cannot vanish at the final time, contradicting lemma 3.8(i).

By lemma 3.12, the switching function is continuous. When the state constraint is not active,
its derivative satisfies

Ψ̇R = 1 + pvφ
′(v) + pef − pe

(
1− f

fM

)
R′(v)

+peσ
′(e) (v +R(v)/fM )− pe (1 +R′(v)/fM ) (f − φ(v)).

(53)

The coefficient of f cancel as expected and we find that, separating the contribution of R(·):

Ψ̇R = 1 + pvφ
′(v) + pe(φ(v) + σ′(e)v)

+peσ
′(e)R(v)/fM − peR′(v)(1− φ(v)/fM ).

(54)

Subtracting ΨRφ′(v) in order to cancel the coefficient of pv, we obtain that

Ψ̇R −ΨRφ′(v) = 1 + peσ
′(e) (v +R(v)/fM ) + peQ(v), (55)

where Q was defined in (31).

Lemma 3.13. For given 0 ≤ t1 < t2 ≤ T , Assume that (t1, t2) is included in a singular arc over
which σ is constant. Then, over (t1, t2), Q(v) is constant and, if the function Q is not constant
on any interval, v is constant.

Proof. Along a singular arc, dµ vanishes, so that if σ is constant, so is pe. By (55), so is also
Q(v) = −1/pe. The conclusion follows.

Remark 3.14. If η is analytic over R− and φ is analytic over R+, then Q is analytic over R+,
and therefore is either constant over R, or not constant on any interval of R+.

We say that t̄ ∈ (0, T ) is a critical time if Ψ(t) = 0, and we say that t̄± is energy free if
e(t) > 0 for t in (t̄, t̄± ε), for ε > 0 small enough. As for (55), we have that, for such times the
existence of left or right derivatives:

Ψ̇R
t± = 1 + peσ

′(e) (v +R(v)/fM ) + peQ(v), (56)

where Q(·) was defined in (56). We now need to assume that (33) holds.
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Figure 7: Race problem with Keller’s model: zoom on end of race: AOD and force.

Lemma 3.15. Let σ be a positive constant, and (33) hold. Then, along an optimal trajectory:
(i) There is no zero force arc, and hence, Ψ(t) ≤ 0, for all t ∈ [0, T ]. (ii) The only maximal force
arc is the one starting at time 0.

Proof. (i) Let (ta, tb) be a zero force arc, over which necessarily Ψ is nonnegative. By lemma 3.11,
ta > 0, and so Ψ(ta) = 0 and Ψ̇(ta+) ≥ 0. Since σ is constant and positive, over the arc, e(t) > 0,
pe is constant, the speed is decreasing, and so by (56), we have that Ψ̇(tb−) > Ψ̇(ta+) ≥ 0 meaning
that the zero force arc cannot end before time T , contradicting the final condition e(T ) = 0.
(ii) On a maximal force arc (ta, tb) with ta > 0, since the speed increases, (56) implies Ψ̇(tb−) <
Ψ̇(ta+) ≤ 0, and since Ψt ≤ 0 along the maximal force arec, it follows that Ψ(tb) < 0, meaning
that the maximal force arc ends at time T . But then [pe(T )] = [µ(T )] > 0, in contradiction with
lemma 3.12.

Theorem 3.16. Let σ be a positive constant, and (33) hold. Then an optimal trajectory has the
following structure: maximal force arc, followed or not by a singular arc, and a zero energy arc.

Proof. The existence of a maximal force arc starting at time 0 is established in lemma 3.11. Let
ta ∈ (0, T ) be its exit point (ta = T is not possible since T > TM ), and let tb ∈ (0, T ) be the first
time at which the energy vanishes (that tb < T follows from lemmas 3.8(i) and 3.12). If ta < tb,
over (ta, tb), by lemma 3.15, Ψ is equal to zero and hence, (ta, tb) is a singular arc. Finally let us
show that the energy is zero on (tb, T ). Otherwise there would exist tc, td with tb ≤ tc < td ≤ T
such that e(tc) = e(td) = 0, and e(t) > 0, for all t ∈ (tc, td). By lemma 3.15, (tc, td) is a singular
arc, over which ė = σ− fv is constant. which gives a contradiction since the energy varies along
this arc. The result follows.

Proof of theorem 3.4. By lemma 3.6, any solution of the classical problem is solution of the
relaxed one. By theorem 3.16, the trajectory must finish with an arc of zero energy, over which
0 = ė(t) = σ− f(t)v(t) + η(f(t)−φ(v(t)). The r.h.s. is a decreasing function of f(t). We deduce
that f(t) is a continuous function of v(t), and hence, of time over this arc. On the other hand,
since pe < 0 a.a., the Hamiltonian is a concave function of f which is not affine on [0, fM ], and so
attains its minima at either 0 or fM . Therefore f(t) is constant and equal to either 0 or fM over
the zero energy arc. For f(t) = 0 we have that ė(t) is positive. That f(t) = fM is not possible
since we know that the trajectory has only one maximal force arc. We have obtained the desired
conclusion.
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Remark 3.17. We plot in figure 7 a zoom on the end of the race. While we have proved that for
the continuous problem, there is a switching time from the singular arc, with constant speed, to
the zero energy arc, we observe in the discretized problem a progressive transition between 104
and 105 seconds.

3.4 Bounding variations of the force

It seems desirable to avoid discontinuities of the force that occur with the previous model, and
for that we introduce bounds on ḟ . The force becomes then a state and the new control ḟ is
denoted by g. So the state equation is (note that we have taken here σ = 0)

v̇ = f − φ(v); ė = σ(e) + η(a)− fv; ḟ = g, (57)

with constraints
0 ≤ f ≤ fM ; e ≥ 0; gm ≤ g ≤ gM . (58)

We minimize as before −
∫ T

0
v(t)dt. The Hamiltonian is

H = −v + pv(f − φ(v)) + pe(η(f − φ(v))− fv) + pfg. (59)

The costate equation −ṗ = Hy are now −ṗv = −1− pvφ′(v)− pe(η′(a)φ′(v) + f),
−dpe = σ′(e)pedt− dµ,
−ṗf = pv + pe(η

′(a)− v).
(60)

The state constraint e ≥ 0 is of second order, and we may expect a jump of the measure µ at
time T . The final condition for the costate are therefore

pv(T ) = 0; pe(T ) = 0; pf (T ) = 0. (61)

We may expect and will assume that the above two inequalities are strict. By the analysis of
the previous section we may expect that the optimal trajectory is such that g is bang-bang (i.e.,
always on its bounds).

4 Conclusion

We have established a system of ordinary differential equations governing the evolution of the
velocity v, the anaerobic energy ean, and the propulsive force f . This is based on the equation
of motion (relating the acceleration a = dv/dt to the propulsive force and the resistive force)
and a balance of energy. Several constraints have to be taken into account: the propulsive
force is positive and less than a maximal value, its derivative has to be bounded, the anaerobic
energy is positive. Keller [11, 12] used in his model the evolution of the aerobic energy, which
is not satisfactory. Here, using a hydraulic analogy initiated by Morton [15, 16], we manage to
write an equation for the instantaneous accumulated oxygen deficit instead. In our model, in
difference with respect to Keller’s, we introduce variations in σ, modeling the oxygen uptake,
V̇ O2: indeed, one of the roles of the anaerobic energy is to compensate the deficit in oxygen
uptake, V̇ O2, which has not reached its maximal value at the beginning of the race. Conversely,
when the anaerobic energy gets too low, the oxygen uptake V̇ O2 cannot be maintained to its
maximal value. We make two further extensions: we introduce a physiological observation that
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energy is recreated when the acceleration is negative, that is when decreasing the speed, and the
fact that the derivative of the propulsive force has to be bounded.

Our model could be used, in the simulations, given the velocity profile of a runner, to compute
the evolution of his anaerobic energy. This is an important challenge for sportsmen to determine
instantaneous anaerobic energy consumption.

In this paper, we use our system for the optimization of strategy in a race: given a distance,
we want to find the optimal velocity leading to the shortest run. Our main results are illustrated
in Figures 3, 4. Without the energy recreation term, we find that negative splitting of the
race (running the second half quicker than the first half) is the best strategy. Our numerical
simulations on the final model provide oscillations of the velocity and energy recreation that
qualitatively reproduce the physiological measurements of [3].

Using optimal control theory, we manage to get rigorous proofs of most of our observations.
We prove in particular that in the case of Keller, the race is made up of exactly three parts:
run at maximal propulsive force, run at constant speed (corresponding to a singular arc), run
at zero energy. It cannot be made of any other arcs. For this purpose, we relate the problem
to a relaxed formulation, where the propulsive force represents a probability distribution rather
than a function of time. We also find that the concavity of the Hamiltonian results in speed
oscillations and we show how, by reducing the problem on optimizing over a period, we recover
the latter.

A Abstract distance and time functions
In this section we establish in a general setting the relation between the distance and time
functions, defined as above. Set

UT := L∞(0, T ); YT := L∞(0, T ;Rn). (62)

Given δ : Rn → R, F : R× Rn → Rn, and KT ⊂ UT × YT , we consider the “abstract” problems
of minimal time

(PD) MinT ; ẏ(t) = F (f(t), y(t)), t ∈ (0, T ), y(0) = y0; (f, y) ∈ KT ; δ(y(T )) = D,

and of maximal distance

(PT ) Max δ(y(T )); ẏ(t) = F (f(t), y(t)), t ∈ (0, T ), y(0) = y0; (f, y) ∈ KT .

In our examples y = (h, v, e) and δ(y) = y1 is the distance.

Proposition A.1. Denote by T (D) and D(T ) the optimal values of the above problems. Assume
that (i) These functions are finitely valued, nondecreasing and continuous over R+ with value 0
at 0. (ii) any feasible trajectory (f̂ , ŷ) for (PD) with cost function T̂ is feasible for (PT̂ ) (ii) any
feasible trajectory (f̄ , ȳ) for (PT ) with cost function D̄ is feasible for (PD̄). Then (a) T (D) is
the inverse function of D(T ), and (b) any optimal solution of (PT ) (resp. (PD)) is solution of
(PD(T )) (resp. (PT (D))).

Proof. (a1) Given ε > 0, let (f̂ , ŷ) be as above and such that T̂ ≤ T (D) + ε. Then

D ≤ D(T̂ ) ≤ D(T (D) + ε). (63)

The first inequality is due to the fact that the trajectory (f̂ , ŷ) is feasible for (PT̂ ), and the second
one holds since D is nondecreasing. Passing to the limit when ε ↓ 0 and using the continuity of
D, we deduce that

D ≤ D(T (D)). (64)

Inria



Optimization of running strategies 21

(a2) Given ε > 0, let (f̄ , ȳ) be as above and such that D(T )− ε ≤ D̄. Then

T (D(T )− ε) ≤ T (D̄) ≤ T. (65)

The first inequality holds since T is nondecreasing, and the second one is due to the fact that
the trajectory (f̄ , ȳ) is feasible for (PD̄). Passing to the limit when ε ↓ 0 and using the continuity
of T , we deduce that T (D(T )) ≤ T .
(a3) Combining with (64) we get T (D) ≤ T (D(T (D))) ≤ T (D), so that for all T = T (D), we
have that T = T (D(T )). Point (a) follows.
(b) Easy consequence of point (a).

B Strategy of maximal force

The strategy of maximal force is the one for which the force always has its maximal value. Then
speed is an increasing function of time, with positive derivative, and asymptotic value

vM = φ−1(fM ) (vM = τfM in Keller’s model). (66)

Note that, by (18)-(19), φ−1(fM ) is a locally Lipschitz function R→ R. So we have that

v(t) < vM , v̇(t) > 0, and v(t) ↑ vM if f(t) = fM for all t ≥ 0. (67)

We first discuss the existence of a critical distance DM at which the energy vanishes.

Lemma B.1. (i) The energy cannot remain nonnegative for all time t ≥ 0 if, for some εM > 0,

sup
e≥0

σ(e) < fMvM = fMφ
−1(fM ). (68)

(ii) If the energy vanishes at time tM , then the maximal force strategy does not respect the
contraint of nonnegative energy over [0, t] for any t > tM .

Proof. (i) By (68), there exists εM > 0 such that supe≥0 σ(e)) + ε < fMvM . For large enough
time, ė(t) ≤ −εM so that e(t)→ −∞; point (i) follows.
(ii) If the conclusion does not hold, then e attains its minimum over (0, τ) at time tM , and so
we have e(tM ) = 0 and ė(tM ) = σ(0)− fMv(tM ) = 0. Since the speed has a positive derivative,
it follows that

ë(tM ) = σ′(0)ė(tM )− fM v̇(tM ) = −fM v̇(tM ) < 0, (69)

and therefore in any case e(t) < 0 for t > tM , close to tM , which gives the desired contradiction.

C The Bellman function

More generally we denote the maximal distance one can run in time T by D(T, v0, e0), starting
with initial condition v0 = v0, e0 = e0.

Lemma C.1. The function D(T, v0, e0) : R3
+ → R is an increasing function of every of its three

arguments.
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Proof. That D is a increasing function of T is easy to prove. When changing the initial energy
from e0 to ê0 > e0, given an optimal control and state (f̄ , v̄, ē), we see that f̄ is feasible for the
new problem, since the state has the same speed v̄ and a new energy ê ≥ ē. It follows that D is
an increasing function of e0. Finally, let us change the initial speed to v̂0 > v0. If, for a zero force
strategy, the corresponding speed v̂ is always greater that v̄ over (0, T ), the conclusion holds.
Otherwise, let ta ∈ (0, T ) be such that when applying the zero force over (0, ta), we have that
v̂(ta) = v(ta). Define the strategy f̂ to have value 0 over (0, ta), and to be equal to f otherwise.

Clearly, the distance at time ta is greater than the corresponding one for the original strategy,
and the energy denoted by ê satisfies ê(ta) > ē(ta) (equality is not possible since it would mean
that f̄(t) = 0 = f̂(t) for all t ∈ (0, ta), but then v̂(ta) > v̄(ta)). Since we know that D is an
increasing function of energy), the conclusion follows.

D Qualification

We consider the model with energy recreation of section 3.3. We assume that the functions σ,
Φ and η̄ are of class C1. Set as before η = cη̄ for some c ≥ 0. The mapping (v[f ], e[f ]) is of
class C1 and the directional derivative in the direction δf ∈ U is solution of the linearized state
equation, i.e., 

δ̇v(t) = δf(t)− φ′(v(t))δv(t), t ≥ 0,

δ̇e(t) = σ′(e(t))δe(t)− δf(t)v(t)− f(t)δv(t)
+η′(a(t))(δf(t)− φ′(v(t)δv(t)) t ≥ 0,

0 = δv(0) = δe(0).

(70)

We denote the solution of this system by (δv[δf ], δe[δf ]). Let us write the constraints in the
form

f ∈ UM and e[f ] ∈ K, (71)

where
UM := {f ∈ U ; 0 ≤ f(t) ≤ fM a.e.}; K = C([0, T ])+ (72)

Let f ∈ UM be a feasible control, i.e., which is such that f ∈ UM and e[f ] ∈ K. The constraints
are said to be qualified at f (see [20] or [7, section 2.3.4]) if there exists δf ∈ U such that

f + δf ∈ UM ; e[f ] + δe[δf ] ∈ int(K). (73)

In other word, the variation δf of the control is compatible with the control constraints, and
the linearized state δe allows to reach the interior of the set of feasible states. Remember that
e(0) > 0.

Lemma D.1. If c is small enough, the optimal control problem (27) is qualified.

Proof. a) We first obtain the result when c = 0. If e(t) is always positive the qualification holds
with δf = 0. Otherwise, let ta be the smaller time at which the energy vanishes. with δf = −f .
Obviously f + δf ∈ UM , and since δf is a.e. nonpositive, so is δv. Next, since c = 0, we have
that

δ̇e(t) = σ′(e(t))δe(t)− δf(t)v(t)− f(t)δv(t), t ∈ (0, T ); δe(0) = 0, (74)

that implies δe ≥ 0. Let tb be the essential supremum of times for with f(t) is zero. Clearly,
tb < ta, and for any ε > 0, there exists α > 0 such that

v(t) ≥ α and −δv(t) ≥ α, for all t ∈ [tb + ε, T ]. (75)
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Then for t in (tf + ε, T ]:

δ̇e(t) ≥ σ′(e(t))δe(t)− (f(t) + η′(a(t))φ′(v(t)))δv(t))
≥ −Cδe(t) + 2αf(t).

(76)

Taking ε ∈ (0, ta − tf ), it follows that δe(t) > 0 over [ta, T ], and so e(t) + δe(t) is positive over
[0, T ], and hence uniformly positive as was to be shown.
b) We now show that for c > 0 small enough the qualification can be obtained, again by taking
δf = −f . Given a sequence ck of positive number converging to 0 and fk ∈ UM , we may extract
a subsequence such that fk converges to f in L∞ weak∗, and since ck ↓ 0, the associated states
(vk, ek) uniformly converge to the associated state (v, e). Since δfk converges to δf in L∞ weak∗,
we deduce that (δvk, δek) uniformly converge to (δv, δe). By point (a), ek + δek is (uniformly)
positive over [0, T ], as was to be shown.

We now consider the relaxed formulation of section 3.3.2.

Lemma D.2. If c is small enough, the optimal control problem (38) is qualified.

Proof. The proof is essentially the same, up to technical details (the main point is that for the
variation of the control we still take the opposite of the control), and is left to the reader.
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