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Diriving microalgal production in raceway systems to near optmal
productivities

Rafael Mifioz-Tamayé, Francis Mairet?, Olivier Bernard-3

Abstract—In this paper, we propose a simple operational problem can be solved by indirect methods such as the
criterion for raceway systems that when integrated in a strategy Pontryagins maximum principle or by direct methods (nu-
of closed-loop control allows to attain microalgal productivities merical optimization). The advantage of using Pontryagins

very near to the maximal producitivities. The strategy developed . . . . . .
was tested numerically by using a mathematical model of MaXImum principle is that of providing an analytic solution

microalgae growth in raceways. The model takes into account N this respect, a theoretical study on a simplified model of
the dynamics of environmental variables such temperature and microalgae growth provided guidelines on the form of the

light intensity and their influence on microalgae growth. controller to reach an optimal productivity [7]. A series of

I. INTRODUCTION simplifications were needed to provide a very simple model
. ' - . uitable for applying the Pontryagins maximum principle.
Microalgae are promising feedstocks for the production he distance between the proposed optimal strategy and

h|gh value co_mp_ound_s. The _commerC|aI use of mlcroalge}ﬁe optimal strategy for a more realistic model is therefore
includes applications in food industry and cosmetics. MoreOlifficult to assess

?vet;,_ rgfcro?lga% hat\./e bienHldentlﬂeddas ir%r:ewa?l;;ourc or complex models, the application of the Pontryagins
or biodiesel production [1]. However, despite these fa maximum principle is not straightforward. Hence, methods

characteristics, microalgae production in large scaleisbasOased on numerical optimization are, in practice, the most

is probably carried out far from an optimal working mOdeUsed. In the standard form, the numerical approach takes
Here, we mainly refer to the technology of raceways, WhicgE%I '

] ace in open loop fashion, without taking into account the
are nowadays the systems generally used for large miceal al state of the system. For a real implementation, however
production. B

The difficulty of achievi timal ductiviti £ mi available measurements (either online or offline) must be
€ difticulty of achieving optimal productivities ot mk- 54 14 compensate for disturbances and to correct model
croalgae in outdoor systems results from the high inteyacti

. ismatches [8]. An example of this type of strategy is the
of phenomena that take place during growth and the low IevrTtedictive co[nt]rol approacph in Whicrﬁhe optimalg{:ontrol
of control that we have on them. This factor makes the whol y

inefficient und . t that is fluctuati roblem is solved online. This strategy was developed for
process ineticient under an environment that 1s fluctuating, . optimization of biomass and oil productivities for the
by nature. The challenge of optimizing microalgal culturen

¢ i< a broad end that includ tor desi eterotrophic microalga&uxenochlorella protothecoid¢d].
systems IS a broad endeavour that includes reactor .(.eaﬂgn is approach, however,is computationally expensive and
strain selection. Furthermore, once the reactor configurat

. ) ) requires sophisticated algorithms of adaptation and podof
and the microalgal strain have been chosen, optimal perf focess stability is lacking.

mances can be achieved by acting on operational variabl SA practical alternative for optimizing system performance

such as nutrient feeding rate. In this aspect, mathematlclgl to translate the optimization problem into a regulatory

moge:sd are pg\_/verful FOOlSI’ blecalisﬁ I(?ptlmlzathnl Cf”“;l foblem. The objective then consists in finding a variable
modet driven. since microaigal Metabolism 1S mainly Ity 5 \hen regulated maintains the system close to optiynalit

enced lby nl:jtnlenthavallaébmty, (Ijlghtllnter:jsfy and ten?l?lre,th 10]. In the case of photobioreactors, the phenomenon of
several models have been developed to account for t transfer to the culture governs the performance of the

factors [2], [3], [4]. A work of synthesis has been performe stem [11]. Based on this principle, we propose in this work

tko pr_owde al rte_pres_ent?nvcte m:)del 2“3:0,?'9?' h?y;amﬂ:;sbbg simple operational criterion which when regulated to an
eeping a relative simple structure [6] that might be suéta adequate set point maintains the performance of a raceway

for control processes. near to optimal operation. The proposed strategy has the

TtT]e tgsk (t)f brfu:ﬁmg a{)roc§3fhclose lto or}t'm?.“ty :Jy acttm%dvantage to be straightforward to implement in a classical
on the inputs of the system is the realm of optimal control,, " . loop control.

The optimal control problem that we are considering cpasst As a basis, we use the model proposed by [6] for a

maximizing a diven criterion on a finite time horizon Thissplanar culturing device in combination to a model descgbin
9ag ' lipid production under nitrogen limitation [15], [16]. Tke
1 BIOCORE-INRIA, BP93, 06902 Sophia-Antipolis Cedex, Franc models have shown to reproduce experimental data of lab
raf ael . nunoz_tamayo@nria.fr scale systems. Here, we extend such models to account

2 Departamento de Mateatica, Universidad &cnica Federico Santa for characteristics of raceway systems. Gursilico case
Maria, Valpar#so, Child r anci s. nai r et @ism cl ’

3 LOV-UPMC-CNRS, UMR 7093, Station Zoologique, B.P. 28 06234 Study takes the configuration of a pilot-scale open raceway
Villefranche-sur-mer, Francel i vi er. bernard@nria. fr (Algotron) located at INRA-LBE, France.



II. MODELING Finally, the growth rate is represented by an average

Under the assumption that nitrogen and light are tharowth rate obtained by integration of (7) along the raceway
limiting factors for the growth of microalgae, we combineddepth. The resulting equation for the growth rate reads

the biomass model from [6] to the lipid production model

proposed in [15], [16]. It results in the following mass u(-) = Hor (1— QO) , (8)
balance equations for a completely mixed reactor at cohstan, Gn
volumeV with i oK
= 0 sl
M =T In Toil ok’
S=fisn/V = fis/V ~p()x, ) E(T'I'I::)(T ;:ns)lz
On :p() o (“() - R())Qn, (2) = (Topl*Tmin) [(Topl*Tmin)(T *Topt) - (Tom, Tmax) (Topt+Tmin - ZT)] .
x=(u(-) = fi/V-R())x, @)

4 = IX— vo(-)X — s The termgr represents the effect of the temperaturgC)).

X =P (+)x=yp()x=Togrx — fixi /V, @ \tis described by the model developed for bacteria by [19]

wheres (g N m~3) is the extracellular nitrogen concentrationand validated for microalgae by [5].

and o, (g N (g C)!) is the internal nitrogen quota. The Nitrogen uptake ratep(-)) is modeled by a modified

model includes the concentration of the total carbon bi@mag/ichaelis-Menten kinetics [15].

x (g C m~3) and the carbon biomass concentration of storage _ s [m n

lipids x (g C m3). The influent nitrogen concentration P(')ZP‘PFW (V+(1V)W> <1Q)' (9)

is sp (@ N m~3). The influent flow rate is (fhd1). The _ s _ : /-

functionsu(-) andp(-) represent the kinetics of growth rate '€ nltrqgen_uptak_e rate: 1 ex_presseq asa fgnctmn of the

and nitrogen uptake. average |rrad|an§e in the raceWayierg, itis con§|dered that
The temperature exerts a strong influence on the behavidifftrient uptake is regulated by the internal nitrogen quota

of microalgae systems, in particular in outdoor raceway4®€ y\(hen the cells are nut.rlent satura.ted, uptake. rate stops.

This effect is included in the model in two manners. Firstly~dditionally, the equation includes a light regulating tizc

it is assumed, in line with [3], that temperature has an homdin the form of a Hill-type function). Therefore, when the

geneous effect on uptake, growth and respiration rates. g&ells enter to the dark period, the nutrient uptake ratebetehi

ondly, following the work of [17], the chlorophyll:nitroge & Slowdown. o
ration (Chl a:N) ratio was set to be dependent on the The model includes an overall respiration r&ehat gath-

temperature and light. The equations are detailed later on®'s maintenance respiration and biosynthesis cost (assume

To model the growth rate, the following is assumail: ( to be proportional to nitrogen uptake rate):
1) Microalgal growth is uncoupled dynamically to nu- R(:) =ro@r +¢p(-), (10)

trient uptake. Growth kinetics follows the cell quotaWherero is the maintenance respiration atdis a biosyn-
model of Droop [18]. o thesis cost coefficient.

2) Light intensity is distributed spatially in the raceway.  aqggitionally, it is assumed that chlorophyll concentratio
The absorption of light in the raceway follows the(cm) is correlated to particulate nitrogemxcg) [6]. The

Lambert-Beer law. Thus, for a given dept) the cp:N ratio (@y) is influenced by light and temperature
corresponding light intensitly (UE m2s~1) satisfies following [17]

I, = loexp(—¢&2), ) 6yt = (01— g2T) +galexp(—gaT). 11)

where lo (LE m™?s™%) is the incident light and¢  |n this equation, it is implicitly assumed that the cells are
is the light attenuation factor, which depends on thghotoacclimated at the average light intengity
chlorophyll concentration Chl Environmental variables, notably light intensity (solaai
& —aChl+b. (6) diance) and temperature govern reactor performance. These
two variables incorporated in the kinetics of growth and
At the bottom of the reactor = L. The term{L is  nitrogen uptake can be accessible from online sensors or
known as optical depthA(. It should be noted thdh  meteorological stations. In addition, mathematical msdel
varies in time in an oscillatory fashion. Its amplitudenave been developed to predict light intensity [20] and
depends on the season and the geographical locatiggceway temperature [21] for a given location. In the presen
For a given day]o follows an increasing behaviour stydy, mathematical modeling supported by meteorological
until noon, then decreases until midnight. data was used for the location of Narbonne, France. The
3) Light intensity affects the growth rate. This effect isresults presented here correspond to typical environmenta
described by a Monod type kinetics. For a given deptbonditions for the month of June.
z (0< z<L) with intensity I, the growth rate at  Model parameters were taken from studies on the microal-
hypothetical infinite nitrogen quota is gaelsochrysisaff. galbang when available. The parameters
. g describinggr are those obtained fddannochloropsis ocean-
Hz=H L, +Kg 7 ica [5]. The values of model parameters are given in Table .




TABLE |

VALUES OF MODEL PARAMETERS

Parameters Definition Value
o Protein synthesis coefficient 30gC(gN)T
B | Fatty acid synthesis coefficien 3.80g C (g Ny?
& Dissociation light constant 50 uE m2s1
¢ Biosynthesis cost coefficient 1.30 g C (g Ny?!
y | Fatty acid mobilization 2.90g C (g Ny?!
coefficient
1% Reduction factor of nitrogen 0.19
uptake during night
] Theoretical maximum 211 d?
specific growth rate
o Maximum uptake rate 0.10g N (g C dy?
a Light attenuation due 2.0 mi(g Chiy 1
to chlorophyll
b | Light attenuation due to 0.087 nt!
background turbidity
g1 | Coefficient Eq. (11) 16.74 g N (g Chiy?
g | Coefficient Eq. (11) 0.39g N (g chlC)y?t
O3 Coefficient Eq. (11) 0.0014
g N (g ChlyuE m2s 1)1
gs | Coefficient Eq. (11) 0.0015 (Cy?!
Ks Nitrogen saturation constant 0.018 g N m3
Ksi Light saturation constant 150 uE m2s1
L Pond depth 0.30 m
m Hill coefficient 3.0
Q Saturation cell quota 0.25g N (g Ot
Qo Minimal nitrogen cell quota 0.05g N (g C)?
ro Maintenance respiration rate 0.01 d?
Sn | Influent nitrogen concentratio 50 g N m3
S | Pond surface 57 m?
Tmin | Lower temperature for -0.20 C
microalgae growth
Tmax | Upper temperature for 33.30 C
microalgae growth
Topt | Temperature at which 26.70 C
growth rate is maximal
\% Raceway volume 17.10 n¥

productivity (R) or the lipid productivity (P) for a given

DRIVING RACEWAY OPERATION TO NEAR

OPTIMAL PERFORMANCE.
A. Optimal problem statement

In this study, we are interested in designing a control lawoncentration to Chlin such a way that wheiy > 0 the
on the input flow rate f) that maximizes either the biomassefficiency of light absorption will be close tg;".

Wit x(), fi(t)) = fi(t) x (0.

For the sake of clarity, we will call GPthe optimal
controller that maximizes (13) and Cte optimal controller
that maximizes (14). The Matlab toolbox DOTcvpSB [22]
was used for solving (13),(14) numerically. DOTcvpSB uses
the approach of sequential discretization (control vector
parametrization) to solve the non-linear programming (NLP
problem.

(14)

B. Quasi optimal closed loop control

Solving the optimal control problems (13),(14) might be
computationally expensive and difficult to implement in
practice. For a real implementation, it will be desirable to
identify a controlled variable that when regulated towards
a set point will ensure that the system operates close to
optimality. In this respect and since light transfer is actl
phenomenon of the process of microalgal growth, we propose
the efficiency of light absorptiom( ) to be such a controlled
variable.

n= lo o L _ 1—exp(—&L).

As it will be shown hereatfter, this simple controller has a
very good ability to maintain the system close to the optimal
solution. In fact, several strategies where tested based on
preliminary studies, andj_ turned out to present the best
trade-off between simplicity and efficiency.

For a given microalgae, there exists a set pajjitthat
maintains the system near to optimal productivities. I1s thi
study a set poing* = 0.95 was selected. Note that regulating
nL implies the regulation of the optical depth Given the
form of the attenuation factor (6), regulating the opticapth
is equivalent to regulating the Chlorophyll concentration
For nf = 0.95, the set point for Chlorophyll concentration
is ChF = 4.95 g Chl nT3. This result is very convenient
because during darkness we can still regulate the Chlotophy

(15)

In the following, we show by means of numerical sim-

time horizonts. The maximal productivities can be obtainedulation, the performance of the raceway by regulating
by solving an optimal control problem that can be formulatetb the set point". This regulation can be achieved by any
as follows

With x the state vector andiax the upper bound of the
input flow rate. If the purpose of the controller is to optimiz

max K Yt x(), f

fi(t) Jio
S.t.

0 < fi (t) < fmax

i(t)) dt.
(12)

X =g(x, fi,t), x(0) = Xo.

biomass productivity & then

Wit x(), fi(t) = fi(t) x(t).

If the objective is to optimize lipid productivity,Pthen

(13)

adequate feedback controller. In this work, we use a standar
PI controller. Since our premise is that this controllemgs
the system to work almost optimally, we call it a quasi
optimal (QO) controller.

IV. RESULTS
A. Comparison of the QO controller to optimal strategy

Figure 1 displays the responses of the state variables and
the lipid and biomass productivities | (FP;) when applying
the QO controller and the optimal ¢Rontroller for a time
period of 30 days. To calculate the productivities, it was
assumed that carbon contributes to the 56% of ash-free dry
weight [23]. The productivities are divided by the surfade o
the raceway and the time. The QO control controller brings
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Fig. 1. Trajectories of state variables and productiviggen by the QO controller (solid blue line) and by the optimahtroller CR (dashed green
line). The productivities are given in dry weight basis. Thiemass and lipid productivities given by the QO controlles hoth 98% of those provided
by CR:. The top right plot shows the evolutiaq_ during the light period. The horizontal continuous lineresponds to the set point = 0.95.

the efficiency of light absorption very close to the definetd se¢he QO controller suggests that an optimal strategy cansist
point. Att =6.5 d, . is 95% ofn;". The maximal biomass in driving the biomass concentration to a certain value and t
productivity obtained with the optimal controller ¢ 168 allow it oscillate around this point. This result is coneigt
tons dry weight hal a1. This value is consistent with with the work developed by [12] and the theoretical results
productivities reported in the literature [1], [23]. Impantly, presented by [7], where an optimal controller was developed
the biomass and lipid productivity provided by the QOby forcing the biomass concentration to fulfill a periodjcit
controller were both 98% of those given by the controllecondition.

CP (Table 1l). After 25 d, the final lipid quotag( = X /X)

oscillates with a maximal value of 16%. This relative lowB. Is the strict compensation condition relevant for didrna
level of lipids is due to the fact that many of the parameterfight cycles?

used in the model were taken from studies witlgalbang

o - In cl h i ligh i i
which is known to have a low lipid content. n closed photobioreactors under light constant regime, it

has been proposed that maximal productivities are attained
To have an assessment of the maximal lipid productivityhen the light intensity at the rear of the reactor equals the
that can be attained, the optimal controller|GRat solves light of compensation (@, defined as the minimum value
(14) was calculated. For the model parameters used in ogf jight intensity required to guarantee a positive net gtow
case study, it resulted that optimizing lipid productis rate [13]. This condition is called the strict compensation
equivalent to optimizing biomass productivity. Thus, theondition. The light intensity at which the compensation
response of the system behaviour when applying the CBccurs is often expressed as a constant parameter. This may
controller was very similar to the response obtained whepe the case when the incident light intensity is constant.
applylng the C?Controner. This result is interesting becausq-kjwever, we m|ght notice that for a Varying ||ght system,
it is often claimed the conflict between optimizing lipidthe Jight of compensation depends on the actual state of the
productivity and optimizing biomass productivity. Indeed system and thus there is not a fixed value that will bring the
such a conflict occurs when light is constant. For a diurnajystem to operate under the strict compensation condition.
light cycle, however, our results suggest that there is not gor outdoor raceways, where microalgae are exposed
discrepancy between optimizing lipid productivity andiept g long periods of darkness, respiration affects negativel
mizing biomass productivity. For both performance indexegyrowth. It is clear that in the dark period, the compensation
the cells should growth as much as they can in the lighiondition do not play any role on the reactor performance.
period to accumulate enough carbon. The higher the biomaggen the incident light is higher than zero, the strict
the concentration, the higher the available carbon sotnate t compensation condition is such that = R. The light of
can be potentially directed to the lipid pool. compensation is thus a dynamic operational variable that
The results presented here are very promising. We shayepends of the state of the system. The optical depth of
that the QO controller performs as well as the optimathe reactor must then be adjusted accordingly to reach the
controllers, confirming our hypothesis that controllinge th light of compensation at the rear of the reactor. Note that
efficiency of light absorptionr{_) makes it possible to attain if the reactor volume is constant, the regulation acts on
high productivities both in lipid and biomass. The resparfse the attenuation factof. This strategy, however, may suffer



of reachability problems, as experienced in the study of
[14], where the light at the bottom of the photobioreactor
could not be maintained at the defined set point due to
the dynamic boundary imposed by the growth rate. To 00

enlarge the discussion in this point, we assess by means ol A

of simulations if the strict compensation condition could i A TR T A Y
be fulfilled in a diumnal light cycle and if it is relevant to - €31 A % 4 G- S A S
attain such a condition to achieve maximal productivities. = |:: - 1 SR '
The following optimal control problem was defined

t

min / f(IJL—R)Z dt. (16)

fi(t) Jto

The controller optimizing (16) is called GP oli i . ! I N O i
Figure 2 shows the ratio between the growth rate at the rear 20 25 30

of the raceway () and the respiration rate (R). The results Time (d)

are glve_‘n for th_e optimal controller GPIt is observed that, Fig. 2. The strict compensation conditiop (R=1) is not attained along

for the light period, the growth rate at the rear of the ragewaihe day. Response obtained for the optimal controlleg. CP

is higher than the respiration rate and that the compemsatio

condition is not strictly fulfilled all the time. The results

indicate that attaining the strict compensation througtioe

day might be no physically possible due to the dynamigp, and CR. This means that for an open loop configu-
bound imposed by the growth rate. ration, a wrong choice of the input flow rate will imply an
The optimal controller CPresulted in biomass and lipid unsatisfactory performance. To perform a fair comparigon,
productivities that were, 100% of those obtained with theddition to the optimal controllers previously calculatéte
optimal controllers Cand CPR. Our results suggest that optimal control problem (13) was solved by setting a cortstan
the closest the system is to the compensation conditigiow rate. The optimal flow rate was found to be 3.22 dn?
the closest the system operates optimally. However, th® = 0.19 d! ) and the resulting biomass productivity was
results also indicates that for a photobioreactor subgetité  93% of the one obtained with the optimal controller,CP
diurnal light cycle, the strict compensation condition @t n Table || summarizes the comparison of the performances of
a necessary condition to be fulfilled for achieving maximadifferent controllers and configurations evaluated (idaig
productivities. We have also verified that trying to impose ge QO controller) relative to the optimal productivities.
compensation condition valid around the midday light peak The relative high productivity obtained with the optimal

could be inefficient resulting in low proQuct|V|t|e§. ... constant flow rate is not surprising, since experimental

We must note that when the respiration rate is negligiblygies on artificial photobioreactors [14] have shown that
the strict compensation condition became= 0 implying  ith an adequate constant flow rate it is possible to attain
thatl_ ~ 0. Here, the compensation condition implies almosﬁigh productivities. This result may suggest that, when
full absorption of light which is rather difficult to main@i e microalgae are not nutrient limited, the environmental

throughout the day. Due to the limitation of reachability Of,conditions, namely light intensity and temperature exert

the strict compensation condition and the difficulty associsch 5 strong influence on the system behaviour that the
ated to the online determination pf and R, we suggest that j,nrovement of the performance that can be reached by
the strict cgmpensatlon condlthn is not a practical doer manipulating the dilution rate is only marginal. This fingin

for the design of control strategies. By contrary, the 8URt ight 4t first sight, discourages the endeavour of devel-

that we proposed of controlling the efficiency of light alysor oping any control strategy for raceways systems, since it

tion n. is technically feasible for real implementation andappears that even with a constant flow rate, a satisfactory
provides almost optimal productivities. In the near futuae

) - ] h performance can be attained. This result, however, must be
optimal framework of harvesting strategies will be progbse;,ien with caution. Indeed, we argue in favor of the QO
complementary to the QO control. controller over the other control strategies analyzed. Qfe
controller has the advantage to operate in closed loopdashi
Hence, it can be easily tuned for a real scenario that is
egy subjected to disturbances and technical failures. Thenapti
We were interested to assess the performance of the racentrollers can also be in closed loop fashion. However,
way in open loop (OL) configuration. To this end, the modeits implementation is more demanding than that of the
was simulated initially with an input flow ratg =5.13 m® QO controller. If the optimal controllers are used in open
d~1 (dilution rate D = 0.30 d%), which is a typical value loop, they are not adapted to account for model uncertainty
[24]. The lipid and biomass productivities were, respedyiv and potentian disturbances, which can lead to suboptimal
54% and 59% of those obtained with the optimal controllersperation. Figure 3 displays the productivities given bg th

C. Comparison of open loop configurations to optimal strat



QO controller and the optimal controller ¢Ronsidering
an uncertainty in the model parameters. The valuefiof [1]
was decreased 30% of the value used originally to calculate
the optimal controller. It is observed that the QO contolle [2]
provided a biomass productivity that is 17% higher than
that provided by the controller GPIt should be noted that
this result was achieved with a simple Pl controller. Wel3]
expect that by using a nonlinear controller based on thhk ligt
efficiency, the productivity might be even better. The desig [4]
of such a nonlinear controller is one of the perspectives of
this work.

(5]
TABLE I
PRODUCTIVITY PERFORMANCE OF OPEN LOOKOL) CONFIGURATION [6]
AND CLOSED LOOP CONTROLLER THE RESULTING PERFORMANCE IS
PRESENTED RELATIVE TO THE OPTIMAL STRATEGY 7]
100R/P;  100R/Pf
Qo0 98% 98% (8]
CP; 100% 100%
OL: fr=322nmP d? 93% 91% [9]
OL: fi=513nf d?! 54% 59%
* stands for the productivities obtained by the optimal controllers &l CR.
optimal constant flow rate.
[10]
[11]
[12]
100
[13]
‘Tﬂ)
o [14]
<
= 50
ﬂ-><
[15]
0 ‘ ‘ [16]
0 10 20 30
Time (d)
[17]
Fig. 3. Productivities provided by the QO controller (sdtildie line) and
the optimal controller CP(dashed green line) under parameter uncertainty.
The value offt was decreased 30%. 18]
V. CONCLUSIONS [19]

Controlling the efficiency of light absorption makes it
possible to attain maximal productivities. The overall-per[20]
formance of the QO controller developed here and its prac-
) ) . . S 21]
tical advantages for real implementation makes it a swétab
control strategy for optimizing microalgae production in

raceways. (22]

ACKNOWLEDGMENT 23]

We thank Bruno Sialve and Dr. Eric Latrille for providing
us with relevant data of the Algotron raceway at LBE-INRA,
and Dr. Doris Brockmann for kindly sharing her Matlab codézﬂ']
of raceway modeling.

REFERENCES

Y. Chisti, Biodiesel from microalgae., Biotechnol Adv Z8) (2007)
294-306.

J. F. Cornet, C. G. Dussap, J. B. Gros, C. Binois, C. Lassaur
simplified monodimensional approach for modeling coupling leetw
radiant light transfer and growth-kinetics in photobiareas, Chen
Eng Sci 50 (1995) 1489-1500.

R. J. Geider, H. L. Maclintyre, T. M. Kana, A dynamic regualat
model of phytoplanktonic acclimation to light, nutrientsdaemper-
ature, Limonol. Oceanogr. 43 (1998) 679-694.

O. N. Ross, R. J. Geider, New cell-based model of photd®sis and
photo-acclimation: accumulation and mobilisation of energgerves
in phytoplankton, Mar Ecol Prog Ser. 383 (2009) 53-71.

O. Bernard, B. Remond, Validation of simple model accountiar
light and temperature effect on microalgal growth, Bioresbechnol
123 (2012) 520-257.

O. Bernard, Hurdles and challenges for modelling and rabnof
microalgae for CO2 mitigation and biofuel production, Jolrag
Process Control 21 (2011) 1378-1389.

F. Grognard, A. Akhmetzhanov, P. Masci, O. Bernard, Optation
of a photobioreactor biomass production using natural JightProc.
49th IEEE Conf. Decision and Control (CDC), 2010, pp. 4635961
B. Chachuat, B. Srinivasan, D. Bonvin, Adaptation sigas for real-
time optimization, Computers and Chemical Engineering 33 (009
1557-1567.

H. De la Hoz Siegler, W. C. McCaffrey, R. E. Burrell, A. B&lvi,
Optimization of microalgal productivity using an adaptivendinear
model based strategy., Bioresour Technol 104 (2012) 537-546
S. Skogestad, Plantwide control: the search for thé&aogimizing
control structure, Journal of Process Control 10 (2000)-587.

A. Richmond, Principles for attaining maximal microalgabguctivity
in photobioreactors: an overview, Hydrobiologia 512 (2083-37.
J.-F. Cornet, Calculation of optimal design and ideabdurctivities
of volumetrically lightened photobioreactors using the stanctal
approach, Chemical Engineering Science 65 (2010) 985-998.

H. Takache, G. Christophe, J.-F. Cornet, J. Pruvospeirmental and
theoretical assessment of maximum productivities for the migasa
Chlamydomonas reinhardtin two different geometries of photobiore-
actors., Biotechnol Prog 26 (2010) 431-440.

M. Cuaresma, M. Janssen, E. J. van den End, C. Vichez, RiijHels,
Luminostat operation: a tool to maximize microalgae photosyitthe
efficiency in photobioreactors during the daily light cyzléioresour
Technol 102 (2011) 7871-7878.

F. Mairet, O. Bernard, T. Lacour, A. Sciandra, Modadlimicroalgae
growth in nitrogen limited photobiorector for estimating imass,
carbohydrate and neutral lipid productivities, in: Pro8&thl World
Congress The International Federation of Automatic Contvilano,
Italy, 2011.

F. Mairet, O. Bernard, P. Masci, T. Lacour, A. Sciandxgdelling
neutral lipid production by the microaldsochrysis aff. galbanander
nitrogen limitation., Bioresour Technol 102 (2011) 142-149

R. J. Geider, Light and temperature dependence of thbonato
chlorophyll a ratio in microalgae and cyanobacteria: impia@ss for
physiology and growth of phytoplankton, New Phytologis6 12987)
1-34.

M. R. Droop, Vitamin B12 and marine ecology. iv. the kimstiof
uptake, growth and inhibition imonochrysis luthetiJ. Mar. Biol.
Ass. U. K. 48 (1968) 689-733.

L. Rosso, J. R. Lobry, J. P. Flandrois, An unexpectedretation
between cardinal temperatures of microbial growth highédhiby a
new model., J Theor Biol 162 (4) (1993) 447-463.

C. Piedallu, J. G. Ggout, Multiscale computation of satdiation for
predictive vegetation modelling, Ann. For. Sci. 64 (20079899.

Q. Bchet, A. Shilton, J. B. K. Park, R. J. Craggs, B. GugsysUni-
versal temperature model for shallow algal ponds provides dugat
accuracy., Environ Sci Technol 45 (8) (2011) 3702-3709.

T. Hirmajer, E. Balsa-Canto, J. R. Banga, DOTcvpSB, avemfe
toolbox for dynamic optimization in systems biology., BMC Bitur-
matics 10 (2009) 199.

P. J. B. Williams, L. M. L. Laurens, Microalgae as biodies
biomass feedstocks: Review & analysis of the biochemistmrgetics
& economics, Energy and Environ. Sci. 3 (2010) 554-590.

E. Molina Grima, E.-H. Belarbi, F. G. Acin Feindez, A. Robles
Medina, Y. Chisti, Recovery of microalgal biomass and metabsili
process options and economics., Biotechnol Adv 20 (2003}-394.



