Sparsity-based edge noise removal from bilevel graphical document images

Abstract : This paper presents a new method to remove edge noise from graphical document images using geometrical regularities of the graphics contours that exist in the images. Denoising is understood as a recovery problem and is accomplished by employing a sparse representation framework in the form of a basis pursuit denoising algorithm. Directional information of the graphics contours is encoded by atoms in an overcomplete dictionary which is designed to match the input data. The optimal precision parameter used in this framework is shown to have a linear relationship with the level of the noise that exists in the image. Experimental results show the superiority of the proposed method over existing ones in terms of image recovery and contour raggedness.
Type de document :
Article dans une revue
International Journal on Document Analysis and Recognition, Springer Verlag, 2014, 17 (2), pp.161-179. 〈10.1007/s10032-013-0213-4〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00852418
Contributeur : Thai V. Hoang <>
Soumis le : mercredi 21 août 2013 - 09:30:06
Dernière modification le : mercredi 14 mars 2018 - 16:48:18
Document(s) archivé(s) le : vendredi 22 novembre 2013 - 02:50:19

Fichier

IJDAR_denoising.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Thai V. Hoang, Elisa H. Barney Smith, Salvatore Tabbone. Sparsity-based edge noise removal from bilevel graphical document images. International Journal on Document Analysis and Recognition, Springer Verlag, 2014, 17 (2), pp.161-179. 〈10.1007/s10032-013-0213-4〉. 〈hal-00852418〉

Partager

Métriques

Consultations de la notice

448

Téléchargements de fichiers

177