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Intensity-based ultrasound visual servoing:
modeling and validation with 2D and 3D probes

Caroline Nadeau, and Alexandre Krupdember, IEEE,

Abstract—In this work we present an ultrasound (US) visual namely eye-to-hand con guration, consists in controlling a
servoing to control a robotic system equipped with a US probe. surgical instrument using the visual feedback of a xed US
To avoid the dif cult and time consuming image segmentation probe. The robotic manipulation offers a better accuracy

process, we develop a new approach taking as visual input L
directly the intensity of the image pixels. The analytic form of than the human one and the proposed applications concem

the interaction matrix that relates the variation of the intensity Nne€edle insertion procedures [3] or cardiac surgery [4]-[6].
features to the motion of the probe is established and used to The other con guration, namely eye-in-hand con guration,

control the six degrees of freedom (dof) of the robotic system. gllows the direct control of the US sensor mounted on the

Our approach is applied with a 2D and a 3D US probe and the _ ; ; :
results obtained with both sensors are compared in simulation. ;?gg(tadeSr(:; e[g]ector for diagnostic purpose [7], [9] or surgical

The 2D probe shows good performances for tracking tasks and . . .
the 3D one, that ensures a |arger domain of convergence, is In order to control one to six dof of the robotic man|pu|at0r,

more particularly used for positioning tasks. The intensity-based the efciency of the visual servoing approaches are highly
approach is validated through experimental results performed dependent on the choice of appropriate image features. De-
with a realistic abdominal phantom and with animal soft tissues. pending on the con guration, these features can be created by
Index Terms—Visual servoing, ultrasound, robotic system, the intersection of the surgical tool with the US beam (eye-to-
intensity-based control. hand con guration) [3]-[6] or by anatomical landmarks (eye-
in-hand con guration) [7]-[9].
|. INTRODUCTION In applications where a medical instrument is controlled in
Large majority of image-guided robotic systems desrder to reach a target, both tool and target are segmented in
veloped for surgical applications are based on a prthe US image. In [3], the Hough transform is used to extract
operative planning of the gesture and the registration of thise axis of the instrument, rigidly aligned within the US probe
planning in the intra-operative environment. Such a strateglane and an active contour is manually initialized to track
concerns for instance orthopedic or neurosurgical robots wherd¢arget tumor. Two dof of a needle-insertion robot are then
a pre-operative planning de ned by the surgeon is registeredntrolled by visual servoing to perform a percutaneous chole-
using ducial markers xed on the rigid surface of the bonecystostomy while compensating involuntary patient motions.
or the skull. However with this pre-operative control, thén the same way, in [4], a cross-shaped pattern is used as
gesture is reliable only as long as the patient and the anatorthie target and a passive marker is xed to the tool. Then
target remain still. In particular in operations performed oa Radon transform is performed to extract these features in
soft tissues, this strategy is not robust to organs motions amBD US image. However these transforms are specic for
deformations due to physiological motions. An alternative tidentifying long axes or detecting intersecting lines and can not
this strategy is then a visual servoing approach where the extended to detect all kinds of features. In [5], the four dof
robotic system is controlled in real-time using intra-operativef a surgical forceps inserted in a beating heart through a trocar
information provided by a vision sensor. Among the differereire controlled by visual servoing, using the two image points
non-invasive medical imaging modalities, the US imaging ireated by the intersection of the tool with the image plane and
the only one that provides a visual feedback in real tinmegmented using thresholding, morphological Itering and fast
using a non cumbersome transducer and a non ionizing enekgheling process. In relation with this work, the authors of [6]
and that can therefore be used without any restriction fdeveloped a predictive control scheme to keep the forceps
the patient as well as for the surgeon during a medicaisible in the US image.
intervention. Because of such advantages, and despite the low robotic systems where the US probe itself is controlled,
guality of the image it produces, US is a promising imaginghich are more particularly within the scope of this work, the
modality for image-guided robotic systems. image features can only be anatomic ones. In [7], ve features
The previous works dealing with US visual servoing can bextraction methods are compared to track an anatomical point
classi ed into two different system con gurations. The formercorresponding to the center of an artery in order to servo

. . . _the in-plane motions of the probe. These methods are based
This work was presented in part at the IEEE Int. Conf. on Robotics and

Automation, Shanghai, China, May 2011 [1] and at the IEEE Int. Conf. ain 'mag_e S'Imll|al"lty meagure such as cross correlat.lon and
Intelligent Robots and Systems, San Francisco, USA, September 2011 [2]Ssequential similarity detection or on contour segmentation by a
Nadeau is with Universit de Rennes |, IRISA and INRIA Rennes-Bretagnesigr [10] or Snake algorithm. For a Iithotripsy procedure [8]

Atlantique, Lagadic research group, 35042 Rennes, France. A. Krupa |?1. h . in th | of kid . high
with INRIA Rennes-Bretagne Atlantique and IRISA, Lagadic research grouf/1IC1 CONSISts In the removal of kidney stones using high-

35042 Rennes, FrancAlexandre.Krupa@inria.fr Intensity focused ultrasound (HIFU), two US probes and the



HIFU transducer are mounted on the end effector of a XY@onsidered US probe (2D or 3D) and an extensive simulation
stage robot to follow a target kidney stone while compensatinglidation is realized to conclude on the advantages of each
physiological motions. The translational motions of the robotjarobe for tracking or positioning tasks. Finally, robotic exper-
effector are controlled with the 3D position of the kidneyments involving an hybrid force/vision control demonstrate
stone estimated from its segmentation in two orthogonal UBe validity of the approach.

images. Finally, approaches have been proposed to control the

six dof of the probe with six geometric features built from Il. ULTRASOUND VISUAL SERVOING

2D moment_s extracted from a single US image [9] or thr_q@_ Image-based visual servoing

orthogonal images [11]. However the moments computation

requires a contour segmentation step whose ef ciency dependg-he prlncg)letz of tt?]etlmag?-t;as_ed \ll'fsuil servtomgty %OPS'StS n
on the organ shape and which is time consuming. moving a robo 'sod ba ase o_dwsu; reatusedracte rhom ¢
In this paper we propose a US visual servoing approagﬁe image provided by a considered vision sensor reaches a se

based directly on the image intensity for the control of bot?llc desired features observed at the desired pose of the

in-plane and out-of-plane motions of a US probe. The visuk bot: The visual servoing control law is designed to minimize
e visual error vector de ned axt) = s(t) s. In order to

features involved in the control law are the intensities of . .
set of pixels contained in a xed region of interest of thdrY to ensure an exponential decoupled decrease of this error,

image. Contrarily to geometric features, the extraction of thegée classical control law is given by [15]:
intensities does not require any segmentation step and such

.
a method can therefore deal with a large range of anatomic vp = T Es (S(t) s); @
structures with no restriction due to the organ shape or tigere| is a positive gain, whose unit is 2, tuning the
lack of contours. decrease of the visual error.

Intensity-based features have been recently introduced with, an eye-in-hand con gurationy,, is the instantaneous

success in camera-based visual servoing. In this case, the Wocity applied to the visual sensor afid’ is the pseudo-

age formation _principlg 3”°WS the modeling of the mtera(.:tio'ﬁyerse of an estimation of the interaction matrixthat relates
2??%?2;:;2"?52\]@&?02 Z: tgezet;e?;téris :cr']?: thgof:;trﬂe variation of the visual features to the veloaif(s= LsVp).
- riowever, du pecic g y According to [15], the control scheme (1) is known to be

of the US sensor, which provides information only along it . :
image plane, the control of the six dof of a 2D US probEocally asymptotically stable when a correct estimationof

<
requires additional out-of-plane information. In [13], Krugia Lsis used (i.e. as soon & Ls> 0).

al. proposed an intensity-based approach to control a 2D US

probe, using the speckle correlation observed in successikeThe US vision sensor

US images to control the out-of-plane motions of the probe. Traditionally, the visual servoing methods refer to vision
Nakadateet al. describe in [14] another intensity-based methodata acquired with a camera mounted on a robotic system. In
to track the out-of-plane translation of the carotid artery. Onfis case, the vision sensor provides a projection of the 3D
dof of the robotic system is then controlled using an inteworld to a 2D image and a set of 2D image features can be
frame block matching method to identify the artery motiorused to control the six dof of the system. In the particular case
However both of these works are position-based and requirgfagD US visual servoing, the image formation principle and
reconstruction of the pose of the robot effector from the imagiee geometry of the vision sensor are far different from the
measurements. ones of a camera.

On the contrary, we present here an image-based visuall) US sensor modelWith a 2D US probe, the created
servoing where the robot control is directly performed in thignage corresponds to a cross-section of the visual target (see
image plane, which guarantees a good robustness to calibratg 1). Therefore, only the physical points lying in the US
errors. In particular we are able to compute the interactigggam are represented in the US image.
matrix involved in the control law thanks to the 3D image Let the image plane, or probe plane, be de ned by the
gradient. Depending on the geometry of the considered W8am of US waves emitted by the US sensor. The probe
probe (2D or 3D) we develop different ways to compute thigame F , is represented on Fig. 1, its origin is attached to
3D gradient, either with derivative Iters or with an on-linethe image centefuo; Vo), yp is aligned with the propagation
estimation algorithm. The 2D and 3D approaches are codiirection of the US and, is orthogonal to the image plane.
pared and analyzed in simulation environment for positioningith this convention, the geometric model that relates the 3D
and tracking applications and the rst robotic results of thigoordinates of a physical poiftX = ( PX;PY;PZ) belonging
method on animal soft tissues are presented in this paper.to the probe planePZ = 0) with the pixel coordinategu;v)

The structure of our paper is as follows. We rstly introducef the corresponding image point is such as:
the principle of the US visual servoing and insist on the = KPX + u
characteristics of the US sensor. We then detail the intensity- u : K P 0 .
based approach with the modeling of the interaction matrix. V.= kT
In Section IV, we focus on the computation of the 3D imagehere the scale factorgky;k,) allow the conversion from
gradient involved in the control law. Solutions to computenetric coordinates to pixel coordinates. We can therefore
this gradient are proposed depending on the geometry of thene the respective scale factofs, = 1=k,;s, = 1=k,) that

)



In-plane
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2 probe

Despite the physical characteristics of the US sensor, which
is based on the propagation and re ection of acoustic waves,
[ 8 we treat it as a vision sensor since it provides gray-scale

Out-of-plane images in its common B-mode representation.

motions

IIl. I NTENSITY-BASED APPROACH

The speci city of the US sensor in terms of geometry and
image formation implies new challenges for the visual control,
compared to camera-based approach. While light changes and
depth estimation are no more an issue with the US modality,

Fig. 1. Contrarily to a projective camera that gives a 2D projection of th“zpe major dif culties consist in the processing of the images

3D world, a 2D US probe provides visual information only within its imageand in the control of the out-of-plane motions of the sensor.
plane, making dif cult the control of its out-of-plane motions.

Image plane

A. Intensity features

convert the pixel coordinates to metric coordinates and cor-In this current work, we propose to address the rst dif -
respond to the intrinsic parameters of the probe. With thilty linked to the US image low quality and to the real-time
extrinsic parameters of the probe that characterize its posecimstraint by avoiding any segmentation step and considering
a given reference frame, these intrinsic parameters are ussdisual featuresthe intensity values of the pixels of a region
to determine, for each image point, the 3D coordinates of interest (ROI) of the US image:

the corresponding physical point. Both intrinsic and extrinsic

parameters are estimated by a calibration procedure [16]. 5= (I luvi v | ©)

2) US wave physicsThe US wave is a mechanical waveyhereM andN are respectively the width and the height of
that generates pressure variations in the medium in whichtie ROI and wheré,., represents the intensity of the pixel of
travels. At the interface between two mediums of differer®D coordinategu;Vv) in the US image.
impedances, the wave is partly transmitted and partly re ected
towards the probe. The value of the re ected echo depends
on the relative values of the acoustic impedances of b
mediums. Moreover, when the incident ultrasonic wave is not The second challenge is addressed by the computation of the
orthogonal to the interface, both re ected and refracted wavegeraction matrix s that links the variation of these intensity
are produced. The angle of the transmitted US beam depef@igures to both in-plane and out-of-plane motion of the US
on the angle of the incident beam and on the propagatiprobe in order to control the six dof of the probe. The objective
velocity of the US in both mediums. is therefore to determine the analytic form of the time variation

During their propagation in homogeneous materials, the ¥ one pixel intensity in the US image as a function of the
waves are also subject to two additional physics phenomeRggbe velocityve, that isL,, such aslyy = Li,,Vp.
the attenuation and the diffraction. The former depends onlLet the probe control framé y(Xp;yp;zp) be the frame
the distance to the US source and on an absorption lin@diached to the center of the US image whgg yp) de nes
coef cient of the medium. The latter occurs when the interfadée image plane ang, corresponds to the elevation axis, the
encounters by the US beam is small with respect to tR&® coordinatedxp = ( Pxp; Pyp; Pzp) of the pointP, attached
US wavelength. The wave energy is then re ected in evefy the probe, that corresponds to the pigglof coordinates
direction, which creates a granular pattern in the US imagé:V) in the image are such as:

Modeling of the interaction matrix

called speckle. 0 Py 1 0 S(U W) 1
3) B-mode imageThe US signal can be easily represented @ryA= @ S(V Vo) A (4)
by the amplitude of the echo re ected by interfaces it goes Pz 0

through. This representation mode, namely A-mode, allows
the visualization of a single US line since the echo amplitudéhereze = 0 since the poinP belongs to the image plane.
is given as a function of the distance to the source. The intensityl,,y(t) of the pixel py in the B-mode image
Currently, the more utilized representation of the US sign@fduired by the US probe at the tinecorresponds to the
is the B-mode representation that associates to the US e@fgPlitudelys(xo;t) of the US echo re ected by a physical
amplitude a grey level value (between 0 and 255). ThRoint O of coordinatesxo belonging to the observed object:
rgpresentation allows the conservation of the spatial Qispo— luu(t) = Tus(Xo:t): (5)
sition of the US beams and the reconstructed B-mode image
shows all US lines emitted by the probe. Compared to Ainder the hypothesigH1) that the probe is moving in a
mode images, several processing are applied to the US signadtionless environmenat timet + dt the point P, rigidly
namely the attenuation compensation with an adaptive gaattached to the probe frame, coincides with a different physical
the data interpolation to Il the full 2D image and a logarithmigpoint O° (see Fig. 2). The 3D coordinates 6F are xp + dx,
compression of the signal. wheredx is the displacement o due to the probe motion



during the timedt. The intensity of the pixepy at timet + dt
is then equal to the US echo re ected B

lyy(t+ dt) = lus(Xo+ dx;t+ dt):

(6)

Fig. 2. Under the hypothesis of a moving probe in a motionless environment,

the image poinP, of constant coordinatess;v) in the US image, coincides
with a 3D pointO at timet and with a different 3D poin©° at timet + dt.

The computation of the interaction matrix is based on the

In the frame of the US probke , the velocity of the poinP
attached to the probe, with respect to the environment, is linked
to the instantaneous velocity of the US prole= ( Pn;Pw),
according to the Varignon's formula of velocity composition
in a solid [18]:

Pxp=(Pn [Pxp] Pw); (11)
that can be rewritten as:
Pxp= I3 [Pxp] vp: 12)

From (10), (12) anc’z= 0, the interaction matrix,, of
size 1 6 associated to the visual featuig, is written as:

Liw= NI Niy NI yNI,  xNI NIy yNI;  (13)

and the complete interaction matiix is built by stacking the
M N matricesL,,,:

1
Ligy
Ls= : (14)

LlM;N

hypothesis(H2) of the constancy of the US wave re ection

by a given physical structurd&Jnder this assumption, the US

echo re ected by a physical point is independent of the tim

lus(Xo;t) = lys(xo;t+ dt) = lys(Xo):

IV. COMPUTATION OF THE IMAGE GRADIENT

€. To control the six dof of the US probe, the variation of
the visual features is related to both in-plane and out-of-
plane motions of the probe. In the interaction matrix, this

This is a strong hypothesis since the intensity of the W#riation is dependent on the 3D image gradient that has to
echo re ected by an organ interface is dependent on the known. Solutions to compute this information are proposed
relative orientation of the US probe to this interface, but thisere, depending on the geometry of the considered US probe.

conservation equation ig posteriorivalidated by the results

obtained with an abdominal phantom and animal soft tissu

(see Section VI). With(H2), we can combine the equation

(5) and (6) as follows:
lyy(t+ dt)  Tuy(t) = lus(xo+ dx) (7)

By approximatinglys by its rst order Taylor polynomial
aroundxg, it comes:

lus(Xo):

|
k) lus(xo)  + TUSKO ) o
flus(xo) flus(xo) .
oy (y yo)t “qz (z 20):
We setx = xo+ dx with dx = (dx dy;d2) to obtain:
lao(t+ ) lun() DSy Musgy, Mlusy, (g

ix fy 1z

We divide (9) bydt to express the time variation &f., as a
function of the motiorPxp of the image poinP with respect
to the environment and expressedFin:

NI(u;v) Pxp; (10)

Iu;v
with Ni., =[Ny NIy NI.] the 3D image gradient associated t
the pixel(u; V). It is constituted of three componeris$, = o
Tl Tl

Niy = and NI, =
of the pixel(u;Vv) along the three axes of the image frame.

o that describe the intensity variation

S . )
. With a classical 2D probe

1) 3D lter: In image processing, the image gradient is
commonly estimated using directional image lIters like the
Sobel ones in the case of 2D gradient, that separately compute
the horizontal and vertical derivatives of the image. These
Iters are based on two separable operators, a smoothing
operator perpendicular to the derivative direction and a central
difference in the derivative direction [18]. In the extended
case of 3D image gradient, three Iters can be designed on
the same model to estimate the image gradient components
(Nix; Nly;NI,). Using two additional parallel images around
the current one, a 33 3 lter can be applied along each
direction to compute these three components (see Fig. 3).

With a conventional 2D US probe, a small back and forth
translational motion along the elevation direction is required to
capture the additional images needed to compute the gradient
components with the 3D Iters. Because of this limitation,
the gradient computation described above is dedicated more
speci cally to tracking tasks where the initial image is con-
sidered as the desired one and the visual task consists in the
@utomatic stabilization of this image by compensating rigid
motions of the target. During such a tracking task, the US
probe remains close to its desired pose and the interaction
matrix can be estimated once at the desired pose of the probe,
with the back and forth motion, and no more updated during
the servoing.



Xp
=2 ol POP\OPA = Py:P il (PO P
0 2/ 045 L lus(PEPYAP) = lus(PxiPy0)  + Nix( X)
oIlox | =2 0 2[4 0 2 2 o] 1 +N|y(py0 Py) + N|szq
ol 2o 2 _ o _ _ (19)
I yr I, b With the relationship (16), this equation can be rewritten as
Tl 2|21 follows:
o1/ay | 0 (1) 0|0 (2) 0 2 1 luy(t+ dt) = Ty + NI (P Px)+ NIy (Py? Py)+ NI, P2
2 2 |4 ; (20)
L L b 9 In this equation, the out-of-plane component of the gradient
2 ol 0l %1 -2 5 NI is related to a set of known values. The pixel intensities
4l 210 0ff2 4 3 at timet andt+ dt and the in-plane gradient components,
olioz | 21— ol 0l 9 1]-2 computed at time + dt, are measured in the US image.
I I L, The equation (20) involves image measurements and is

therefore sensitive to image noise. To ensure a better robust-
Fig. 3. TEe threde Iters are ap?qlti%d %r: eslcf)] pixel th the dccljl_r_remIim@s}el)I | ness of the gradient estimation, we implement a least squares
compute the gradient compone x; Nly; Nlz using the additional paralle N
imagesl, andy acquired on both sides. 0§, method to compyté«llz from a set of seyeral data. _
The parametric model of the considered system (20) is
rewritten in discrete time as:

2) On-line gradient estimationWe also propose an ap-

Yike11= Fq Opg * b 11 (21)
proach to estimate on-line the image gradient without addi- e T e ]
tional motions of the probe to acquire parallel images. Fl%‘h'thi
this purpose we distinguish the in-plane components of the y - I I Kilvir d T
gradientRil,; NIy from the out-of-plane componeil,. The I[:k+ v g Vet Tuvig X Ny K
former are directly computed in the current US image witha ~ M~ NT[k]
2D Sobel derivative Iter while the latter is estimated from 9K = 2 (22)

the current image and the previous ones acquired during. .
the motion of the probe. This estimation is based on t Is the parameter of the system to estimafeand F are

approximation given by the Taylor expansion of the intensit{)ﬂeasured at_each iteration and since we have no a priori on
of a 3D point of coordinates = ( X.y; 2): e model noise we choobeas a white noise term to represent

the image noises and robot measure errors.
lus(x+ dx)  lys(x)+ Niydx+ ledy+ NI, dz (15) With the parametric representation, the output of the system
can bea priori predicted*P[k+ 1) from the parameter estimate
Let O(x;y; 2) be the physical point coinciding with the imag% :
: ! . . K
point P of pixel coordinategu; V) at timet. If the probe moves, *Z[ -F Q[ )
at timet + dt the image poinP(u; V) coincides with a different ket 1] i K-
physical point §x%y® 2. We have then the equality betweerThe a priori error between this prediction and the real value
the intensity of the US echlys re ected by O (resp.0% and of the system outpuEy. g is then de ned as:
the intensity of the pixeP of the US image acquired at time

t (resp.t+ dt): Eieg = Yy By (23)
us(y2) = lu(t) = Vheu Frofu
uUs\A Yy, - uv . . .
. : 16
lusO®YE D) = luy(t+ di) (16) The aim of the least squares approach is to estimate the

parameteq that minimizes a criterion de ned as the quadratic
We can express the coordinates of the physical points in tem of the prediction errorSy. ;) obtained at each iteration:
frame of the probe at timereferred to ag- p:

- k . 2
O ot s ot )= a b Yy Fpf (24)
@ryA=@s(v vp) A (17) 1=0
Pz 0 The scalarb (0< b < 1) is a weighting factor, also called
forgetting factor, used to lower the importance of past data.
and 0 PyO 1 0 U W) 1 Several approaches have been proposed to solve this min-
@ Py A = PR@ Z(V vg) A+ Py (18) imization, among which we can distinguish non recursive
p0 strategies from recursive ones.

Indeed, the limitations of the recursive algorithms are under-
The rotation matrixPR and the translation vectdito de- lined in [19]. The stability of these algorithms is not guaran-
scribing the pose of the probe at tihe dt expressed in the teed without the introduction of a dead zone or a stabilization
frame of the probe at timeare given by the robot odometry.term when considering noises and disturbances. In the same
Considering a small motion of the prob@°is close toO and time, the improvement brought by these modi cations in terms
we can apply the equation (15): of robustness is done at the expense of the algorithm ef ciency.



Finally, when dealing with noised signals, direct identi catiorJsing the complete volume provided by the 3D probe, the
methods are shown to offer better robustness and results [12jtrrent interaction matrix can be computed on-line by Itering
We propose therefore to consider a Sliding Least Squatéss volume with the 3D derivative lters previously described
algorithm, where the estimate of the parameggris computed (see Fig. 3).
using a set of measur&sandF acquired on a window of size  2) 2D approach: The current limitation of the matrix array
NLs. This estimate is de ned in [19] for the multi-dimensionabrobes is their small eld of view (FOV) and the low quality
case and can be written as follows for a mono-dimensionsfl the obtained volume. On the contrary, motorized 3D probes
problem: offer a good quality of images but a trade-off is required
Quq:R[k] if Ryg> e 25) between the size of the out-of-plane FOV and the probe frame
e 1 if Ry e rate. For mstan(_:e, with a motor step of4ldeg, a \_/olume
[k 1] ] of 28 deg FOV is reconstructed from a set of 20 images at

(i[k] =

with: K a frame rate of 3 vol/sec. To increase this frame rate and
R = é p (K DFE]FU] perform real-time contr.ol of t_he probg, we propose to consider

j=k Ng+1 (26) a 2D approach. The visual information is extracted from one

k image plane and the 3D information is only used for the image

Qi o a b J)F[J']Y[J'] gradient computation. In this case, we do not need to capture

J=k Nist1 a complete 3D US volume but only 2 or 4 additional images
A threshold valuegy is de ned to x a boundary on the acquired with the motorized sweeping of the 2D transducer

smallest value oRy that can be taken into accoumb guar- (see Fig. 4) at a frame rate of 12 vol/sec.

antees that enough out-of-plane motion has been performegince a motorized 3D probe does not acquire parallel images

between two successive iterations of the algorithm to updaige to the rotation angla (see Fig. 4), new 3D derivative

the out-of-plane gradient informatioey is such asey = df Iters are proposed in this section to take into account the
wheredp is the estimated minimal distance from which thelevation distance between the image pixels.

intensity variation of one pixel is relevant with respect to the
image noise speci ¢ to the US sensor. Typically we chdge
about the size of one pixel.

B. The bene ts of the 3D probes

For the intensity-based visual servoing, the advantage of the
3D probes is to directly provide out-of-plane information that
can be used in the visual features vector or to compute the
interaction matrix. Depending on the technology of the 3D o
probe, two different approaches are considered. J

1) 3D approach: A matrix array 3D probe provides a 3D - %
US volume in real-time. In this case, the ROI considered in the ~- Mt T
visual servoing strategy is a set of voxels, whose intensities b
are used as visual information: (@) (b)

C(u,v)

@?UFVD)
V

$= (o 5 fuvws 5 It )5 Fig. 4. (a) The additional US images provided by the 3D probe are no more
where M, N and L are respectively the width, height and depfing e imagacaxs. (b) The dervatve  kers are weighted (© take ino
of the volume. With the modeling of the interaction matrixccount the variable distance
described in section IIl.B, we can write the new interaction
matrix associated to the intensity of one voX#l;v,w) as: Given C(ug;Vve) the point corresponding to the US beams
L — il | Pxy] @7) intersection.. The 3D Iter applied to the pixdP(u;v) of
uvw (uvw) 13 Vi the current imagey corresponds to a set of three 2D lters
with Nl(u;\,,w) the 3D image gradient of the voxa&l and respectively applied t&(Ua;Vva), P(u;v) andPy(up; viy) where
Pxy = (X;Y;2) the coordinates o¥ in the probe frame. Given P, and R, are the image points df andl, that orthogonally
(uo; Vo;wo) the voxel coordinates of the probe frame origifproject ontoP in lg. Their coordinates are computed from the

ands, the vox%l deplth siz%, we have: L coordinates oP and the angle:
8
X s(u o) < U =u =u
@yA= @ s(v v A: (28) _ (vt w) (30)
z S(W  Wo) ©Va =W = coga) ¢

In particularzis no more equal to zero and the ® interaction

matrix associated to the visual featutgu is then: With the respective orientations of the acquired US images,

the elevation distance betwed?h and P, or P and R, is
Ligyw=[ NIx NIy NI, yNI, 2Ny, xNi+ 2Nl xNI, yNI;  dependent on the pixel ordinate in the image. Weights
(29) inversely proportional to this elevation distance are de ned



as follows: The results of several positioning tasks are gathered in
1 Fig. 6. The same control law (1) is applied to the probe with
W)= o= ! (31) againl = 1, empirically adjusted to ensure the best behavior
div) (v+v)tan(a) ) .
of the control law, and different methods for the computation
These weights are multiplied to the coef cients applied to thgf the 3D gradient are compared.
imagesl, andl, with the non-weighted derivative lters (see
Fig. 3).

V. SIMULATION VALIDATION

To validate the US intensity-based approach, we use §
software simulator that we have developed to reconstru@&®==: : e
and display a dense volume from a set of parallel images. (a) (b) (c) (d)
Positioning and tracking tasks are then performed in this Visual error (grey level)
simulation environment to assess the advantages and the Iimif;;& - 1 =
of our approach, respectively using 2D and 3D probes. ©

30 \

20
A. Simulation environment 10
The simulator is built from the Visualization ToolKit (VTK) %o 2 4 ﬂm:(s) 8 12(e) 0
library [20] and the Visual Servoing Platform (ViSP) [21], both
being open source C++ libraries. The US simulator provides,, YU erer(areyleve) Probe pose erar (mm, deg)
an external view of the loaded US volume by means of two.,
central orthogonal slices as shown in Fig. 5. Moreover, insx \
addition to this display functionality, the simulator allows the \

control of a virtual US probe and generates the internal vieww 15
of this probe by a cubic interpolation process. R e T e P
For the simulation validation, we use the US volume of a time (s) (9) time (s) (h)
kidney acquired on a realistic abdominal phantom (see Fig. 5). Visual error (grey level) Probe pose error (mm, deg)
This volume is created from a set of 335 parallel images of - wl Ey*
size 250 250 and pixel size of  0:6mn?, which were .| \ SN i
automatically acquired using elevation intervals a3 éhm. 0 ~ N o e
-10 R
10
: N p
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) (|) time (s) (J)

v Fig. 6. The visual convergence from the initial US view (a) to the nal
one (c) is shown by the corresponding difference image with the desired

view (respectively (b) and (d)). Under the same simulation conditions, we
_’}TP compare the different solutions proposed to compute the image gradient with
r’ the non-recursive estimation algorithm (e,f) and with the weighted (g,h) and
non weighted (i,j) derivative Iters. These latter curves correspond to the
results obtained with a 3D probe (IV.D.2).

(b)
;igbgAN (at)) T%? USIadeTWin(?Idphaqt]om _AB-I4%9OQ-030 Kyotcz Péagaliu - The view of the virtual probe is shown at its initial (a)
. e volume loaded In e simulator IS represente Wi T

orthogonal(sl)ices and the virtual probe plane, de ned witr? the fr&me i)s/ 8‘,nd nal (C) pos_|t|ons. The, cyan recta_ngle de nes the RO of

displayed in red. size 100 150 pixels. To display the visual error between the
currentl and desired images during the positioning task, a
difference imagdgiss is computed as:

B. Positioning tasks

We rst simulate a positioning task, using the simulation
environment to obtain a ground truth of the evolution of the
pose error of the US probe. We position the virtual probe
in the simulator and we consider the corresponding image Hse difference images corresponding to the initial view of
the desired oné . Then the probe is moved away to a nevwhe probe and to the nal one are given in Fig. 6(b) and
pose where the observed organ section is considered as (tfje The uniform gray color of this difference image after the
initial image and the visual servoing is launched. In the posenvergence of the algorithm demonstrates the success of the
expression, theu representation is considered to describe th@sitioning task since the nal image perfectly coincides with
orientation, wherei = (uy uy u;)” is a unit vector representingthe desired one. Moreover, we de ne a visual error function
the rotation axis andg is the rotation angle. C to visualize the evolution of the error between the current

(I 1)+ 255

lgiff = 5



Convergence domain (derivative filters) Convergence domain (estimation algo.)

and desired features vectors during the visual servoing: 2

=
S : 1
> 5 18]
c= (s s) (s s): g,

Noix
C is expressed in grey levels and normalized by the numise)
of pixels Npix in the considered ROL. 4
1) On-line gradient estimatiorJ:In this~positioning task, - Ex——
the in-plane gradient componerity and NIy are computed a) (b)
in the current image with 2D derivative Iters and the out-

of-plane component is estimated with the on-line algorithrftid: 7- The convergence domain of the intensity-based approach depends
on the method of 3D gradient computation. With the derivative lters (a) the

During the ve rst iterations of the algorithm, an open IOOpconvergence time increases proportionally with the distance to the desired
translation is applied to the probe to initialize the estimatiomobe pose and the divergence (in brown) is observed for an initial translation
algorithms. Then the value of the paramefd& is updated superior to 1&hmand an initial rotation superior to tiég With the estimation

. . . . algorithm, local minimums (in orange) are often reached as soon as the initial
each time enough out-of-plane motion is applied to the prolgse is not very close to the desired one.
The results of the positioning task, presented in Fig. 6,

show the visual convergence (e) and the pose convergence

time(s)
30

&
T
g
&
c
2
8
<]
«

4 6
Translation error (mm)

(f) of the control law. From an initial errobr(mmrdeg = reached in this case when the initial pose error of the probe
(16, 8;10; 10; 10;6), the nal pose error of the probe isis superior to 5m for each translation anddgg for each
less than @ mm in translation and:@ deg in rotation. rotation.

2) Derivative gradient Iters: The curves (g) and (h) corre- 4) 3D visual information for a larger convergence domain:
spond to the use of a virtual motorized 3D probe. In this cade, the previous simulations only 2D information, which is
the visual information is extracted from one image plane amdore generally available with US probes, was considered in
the 3D geometry allows the acquisition of additional images tbe visual vector. However the development of matrix-array 3D
compute on-line the 3D image gradient with derivative Itersprobes makes now possible the use of 3D visual information
The virtual 3D probe provides at each iteration one curreint the control law according to the strategy presented in sec-
image along its plane and four additional images tilted with dion IV-B1. A new positioning task is presented in Fig. 8 where
angle a= 14degand 2a= 28 deg. The 3D image 20 parallel images are acquired in the simulation environment
gradient is directly computed from this set of images withn both sides of the displayed view.
three weighted 5 5 5 lters, which avoids the initial out-
of-plane motion of the probe required with the 2D approac
The performance of the weighted derivative lters we hav
designed for a set of ve non parallel images is shown b
comparison with the results obtained with the non-weighte
Iters (curves (i) and (j)). Even if the desired pose is reache
in both cases, with the same gain of the control law, t
convergence is faster and more direct with the weighted lters. €) (b) (c)

3) Robustness to calibration errors and images noises;
After the validation of the control law under ideal conditions
we introduce systemic and random errors likely to occur in t
real robotic system. We take into account a calibration err
between the robotic end-effector and the image framedefy5
on each rotation andmdm on each translation. We also add .
normal Gaussian noises on the pixel intensities and on the pose T
measures with a variance of respectively 3 grey levels for the (d) ©) ®
intensity and &m and Ijeg for the position and orientation Fig- 8- Positioning task with a 3D probe, using _visu_al features ext_ra_c_ted

. . . . - m a 3D volume. The central view of the volume is displayed at the initial
measures. Under these simulation settings and Cons'de“ng(tﬁ%nd nal (d) probe poses with the corresponding difference images (b,e).
same desired pose of the probe, several positioning tasks Bf€visual (c) and pose (f) convergence is displayed during the task.
launched from different initial poses of the US probe in order
to assess the convergence domain of the positioning task. Thé volume of 80 60 41 voxels is then considered in the
two methods of gradient computation (with derivative Itersontrol law and ltered with the 3D derivative lters (see
and with the estimation algorithm) are compared in Fig. Fig. 3) to compute the interaction matrix. To reach the same
where the time of convergence is expressed as a functiondeired pose of the probe as previously, a different initial pose
the initial error of the probe. is chosen here, farther than in the 2D simulations and from

As expected, with the gradient computation by image Itersyhich the one-plane algorithm falls in a local minimum:
the visual servoing apprqach is very robust to sma_ll ca!lbratlon Dri(mmded = ( 10,12 14:10,20, 14):
errors. Logically, the on-line estimation of the gradient is more
sensitive to calibration errors and local minimums are regulalyith the 3D approach, the local minimum is avoided and the

Visual error (grey level)

time (s)




positioning task is well performed. We can therefore note thigistance), the current and desired visual features are very
the 3D information provided by the virtual 3D probe ensuredose and the velocity computed by the visual servoing control

a larger domain of convergence of the visual servoing. law, that depends to the visual error, is low. Therefore the
displacement is not suf cient to update the image gradient
C. Tracking tasks because of the threshold of eq. (25). On the contrary, when

§qme delay appears (around 5s and 10s), the probe velocity

The second robotic task we target is the active stabilizatiI ; with the im rror and the aradient im n b
of a US image. In this case, the initial image is also thgsiiﬁgstgz € Image error a € gradie age can be
f .

desired one, and the probe is moved to compensate for exteffi
motions applied to the observed object. In the following

simulations, a sinusoidal motion of period &nd amplitude On-line estimation oI, (grey level / mm)

Ay= 7mmalong the vertical translation askz= 15mmalong 10
the out-of-plane translation is applied to the US volume of 8
the kidney that has been loaded in the simulator. In parallel, 6 [ e M
the velocityv. computed from the intensity-based control law _\ f H
(1) with I = 1:5 is applied to the US probe and the results 4 \r"'_ll L’_l
obtained respectively with the current and desired interaction 2
matrices are presented in Fig. 9. 0

1) with on-line estimation of the image gradiengfter o 2 4 6 8 10 12
the open-loop motion of the probe required to initialize the time (s)

estimation algorithm, the current interaction matrix is com- . . .

. . . . ig. 10. Evolution of the out-of-plane value of the image gradient for one
puted with the image gradient components estimated by §e| of the ROI during the tracking task.
non recursive estimation algorithm. In order to compute the
variation of the parameté\l, due to the probe motion and not

. : . 2) with the desired interaction matrixThe current pose
to the disturbance motion, we set the least squares windg . . . . .
. ’ . of the probe being always close to its desired pose in this
size to a small valueN, s = 3 and the forgetting factor to

b= 0:9< 1. This temporal window size corresponds to tracking task, the interaction matrix is well approximated by

duration of 12@nsthat is extremely short with respect to the 5 € d_eswed interaction matrix [15]. This m_at_n_x, referred_ to as
. ; . , is computed once and for all at the initial pose without
of the disturbance period. By setting these parameters, the B

volume can therefore be considered static during thenk2d ng updatgd during the servoing task. For this c_omputatlon,
vda parallel images are acquired around the desired pose of

the data acquisition. The stabilization is accurately perform?he US probe and the 3D derivative lters presented in Fig. 3

since the maximum \/_ls.ual error is 4 grey levels (c) and thaere applied to this set of images. The results obtained with
maximum pose error is:Pmm (d).

Ls are compared to the ones obtained with in terms of
visual error (c). The pose error is very similar to the previous
simulation, which validates the use bf in this particular

¢ ... case.

Object motion (mm, deg)

D. Conclusion

bSdANbonaro oo
2
£
5

Based on simulation validations, the 2D intensity-based

2 4 6 8 10 12

o

time (s) approach shows good results for local positioning tasks but

(b) is generally sensitive to local minimums when considering

Visual error (grey level) Probe pose wrt the target (mm, deg) further |n|t|a| poseS Of the pI‘Obe. In th|S Case, the 3D pI‘Obes

® T oeyNS rackirg s w«— offer a better robustness to calibration errors in the computa-
50 racking with Lg 2 b

Tracking with Ls

tion of the interaction matrix and give more accurate results

a

r LN\ 0 P i for positioning tasks from a remote initial pose, thanks to an
\”/ \f \\!/ 1 increased convergence domain.
22 R e N j i On the contrary, the 2D probes are more tted for tracking
e (S)S 0 12 R (; 0 12 tasks thgn the 3D ones thanks to their higher frame rate. If
the tracking is accurate enough and the probe remains always
©) (d close to the desired US view, the current interaction matrix

Fig. 9. Tracking task with a 2D probe. Stabilization of the desired US imagg well approximated by the desired one , that can be

(a) while the kidney volume undergoes a translational periodic motion (b), s
(c) The visual error is highly reduced with both methods, which corresponéQmPUted at the initial pose of the prObe before the appearance

to a low pose error (here displayed for the use.gf (d). of the disturbance. In the perspective of the breathing motion
compensationl_.s could be estimated while the patient holds
We can note from Fig. 10 that the gradient is not updatéuls breath since this step requires no more than few seconds.
continuously during the tracking. When the probe is perfectijowever if the dynamics of the system is not suf cient to track
synchronized with physiological motions (arouhe 4s for accurately the disturbance motion, then the on-line estimation



of the current interaction matrilxg is necessary to compensate We express then the resulting force tensor in the probe frame

for the tracking delays (see Section VI-C). F p and we compute the instantaneous velocity of the probe
Vi generated by the following proportional force control law:
VI. ROBOTIC EXPERIMENTS _ K PEoc(PHpe  PHpe ) 34)
Experiments have been performed on a realistic US abdom- f k ’

in_al phantom, using an anthropomorphic robotic arm equipp%ere PCHpe =[0IN 0O O QT is the desired contact force,
with a US transducer and a force sensor (see Fig. 11(a)). k is an estimate of the contact stiffness aftds the control
gain.
2) Vision/force fusion:We use a 6 6 selection matrix
M= diag(0;1;0;0;0;0) to apply the force control only along
the y-axis of the probe. The complementary matfix Ms)
is then introduced to apply the vision control on the ve
remaining dof of the probe. To combine the force and the
vision control, we send the following angular velocityto
the end effector of the robotic arm:

0= ele e= ede 1eWp(Msz+(|6 Ms) Vp); (35)

where Je ! is the inverse of the robot Jacobian and where
®W, is the transformation matrix that transforms a velocity

@) (b) skew from the probe frame to the effector frame:
Fig. 11. (a) The ADEPT Viper robotic system with a motorized 3D US eR [et ] R
probe. (b) The robot end effector (frarfe,) is equipped with a force sensor eWp = P pe p (36)
(frameF s) and a 2D US probe (framg p). 03 3 Rp

As we choose for safety reasons to give priority to the force
control over the vision control, the latter can fail to converge
A. Hybrid vision/force control to the desired image since the translational velocity component

In the following experiments we combine the visual controz?Iong they-axis computed by the visual servoing control law

with a force control since the US probe is in contact with th'(%nOt ?pplled t()k]thgoplqubeifTo dea:jl Wlth this Issue, Wi a%r;y
surface of the phantom. Two sensors are then involved in tElI’I'IS velocity t(.)t € ltself to readapt its position in the
hybrid vision/force control based on an external control Ioo';r)nage (see Fig. 12).
approach [22]. The force control is dedicated to the control of
the translational motion along theaxis of the probe frame
while the ve remaining dof are controlled by visual servoing.
1) Force control: We implement a force control law to
guarantee a constant resulting force df applied on the
contact pointpc of the probe with the object surface along
they-axis of the probe framé°Hpc corresponds to the contact
force tensor expressed in the fraifigc, which is centered on

the contact point and aligned with the probe frafg (see

. ) . a b
Fig. 11(b)). This tensor is expressed as: (@) (b)
Fig. 12. Principle of the combination of the vision and force controls. (a)
pCHpc: P, (SHS SFg gHg) (32) A target US slice with in red the desired ROI. (b) To oppose the vertical

displacement of the probe due to the force control, the vision control is applied
where2Fy, is a transformation matrix used to express in th@ the ROI, which is translated inside the US image.
frameF 5 a force tensor known in the frantey:

®Rp 03 3 (33) B. Positioning task with a 3D probe

Pt] *Rb  ®Rp .

Up to now, the matrix-array 3D probes have a small eld
at, and Ry are the translation vector and the rotation matriaf view and provide a volume of low resolution, particularly
of the frameF ,, with respect to the fram& 5 and[2t,] is dif cult to process. Therefore the positioning task is here
the skew symmetric matrix related #ty,. performed with a 3D motorized probe (4DC7-3/40, Ultrasonix)

SHs is the total force tensor measured by the force senssith a frequency bandwidth of 3 to 7 MHz dedicated for
and °Fg 9Hg is the gravity force applied to the force sensoabdominal imaging, using the 2D approach detailed in Section
due to the massn, of the US probe, both are expressed itv.B.2. With a depth of 12mand a motor step of:4 deg, this
the force sensor frame. TH#Hy tensor is de ned adHy =  probe allows the acquisition of a small volume constituted of
[0098Imy 00 qT in the frameF g centered on the massthree images at a frame rate ofvbP=sec The control loop
center of the probe as indicated in Fig. 11(b). time is de ned by this volume frame rate and at each iteration

aF, =



the 3D image gradient is computed with the 3D derivative
Iters. The gain of the control law is set tb = 0:4 and
the results obtained with the abdominal phantom are given
in Fig. 13.

(a) (b)
t=0s

(c) (d)
t= 155

(e) ®

Fig. 14. Tracking of an abdominal cross-section (a) with a 2D probe. The
tracking delay of the 2D probe is observed through the evolution of the visual
error (b) and through the US image (c) and difference image (d) corresponding
(a) (b) to the maximum visual error (dt= 33s). Nevertheless, at the end of the

disturbance, the probe reaches its desired pose as is shown by the nal US

Fig. 13. Results of a positioning task with a 3D probe. The central sligghage (e) and difference image (f).

acquired by the probe is displayed at the beginning and the end of the task.

The visual error (a) does not reach zero at convergence because of the noise

of the sensor but the task is validated in terms of pose error (b). matrix during the tracking task thanks to the on-line estimation

The internal view of the probe and the difference imag@f the image gradient.
are shown at the initialt(= 0s) and nal (t = 155) poses The interaction matrix, initialized at the desired pose, is
of the 3D probe. Only the central image acquired by tH@en computed with the image gradient extracted directly
probe is displayed, the additional ones being only used @M the current image (for the 2D componeri, and
compute the 3D image gradient. The visual Convergenggy) and estimated from the image measures as described in
of the task can be seen on the uniform difference imag@ction IV-A2 (for its out-of-plane componefil;). Despite
corresponding to the nal pose of the probe and on tH@e important disturbances applied to the phantom, the US
curve (a) that corresponds to the evolution of the visuRfobe follows the phantom motion and converges to the desired
error during the positioning task. The pose convergence ifdage when the motion stops.
also observed (see Fig. 13(b)) and the initial pose error:
Drinc(mmdeg = (9:9; 1.1, 139; 2:4;5:8; 2:1) is mini- D. Tracking task with a 2D probe: rst ex-vivo results
mized to:Driin(mmdeg = (0:1,0:2,0:7; 0:1; 0:7; 0:1). For this validation, a chicken stuffed with pig liver and
kidneys (Fig. 15(a)) and immersed in a water tank to avoid
air gaps inside its body is carried by a 6 dof robot (Robot?2).
A periodic motion is applied to this phantom with Robot2
The robotic arm is now equipped with a 2D convex USvhile the tracking task is performed with a second robotic
probe of 2-5 MHz frequency bandwidth (C60, Sonosite) tarm (Robotl) equipped with a 2D US probe. The probe frame
perform a tracking task. We position the 2D US probe orate is 25 images/s and the control loop time isné0Two
the abdominal phantom and we de ne the ROI in the USptical markers are xed on the probe and on the phantom
image (see Fig. 14(a)). The force/vision control is launchethd provide the relative pose of both elements thanks to an
after a small automatic back and forth out-of-plane translati®@asyTrack system. This relative pose is only used as a ground
used to initialize the estimation of the 3D image gradientruth to validate the tracking task.
Then we manually apply various large and fast translationalRobotl is manually positioned above the phantom and the
and rotational motions to the phantom. The dynamics of thisrce control is applied with a force of 3N to put the probe
disturbance exceeds the one of the control law in order ito contact with the chicken surface. A desired ROI is then
create important delays in the tracking and assess the abitityned in the US image and a small back and forth motion is
of the control to overcome these delays. The tracking resudigtomatically realized to computes with a set of parallel
are shown in Fig. 14. images acquired around the desired image. A 3D periodic
In the current experiment where important probe pose erregr®tion along all translations and one rotation (around the
appear due to the tracking delay, we update the interactiprobe axis) is then applied to the phantom. This disturbance

C. Tracking task of a fast and large motion



contained in a ROI of the current US image. The interaction
matrix associated to these visual features is modeled and the
proposed intensity-based approach is validated in simulation
and with several robotic experiments where the US probe
interacts with an abdominal phantom and animal soft tissues.
2D and 3D probes geometries are successively considered
to perform positioning and tracking tasks. The 2D approach

(@) (b) shows good results for local positioning tasks and especially
tracking tasks thanks to the high frame rate of the 2D probe
while the 3D probes offer a better robustness to calibration
errors and give more accurate results for positioning tasks from
a further initial pose.

So far no in-vivo validation of the intensity-based approach
has been performed and the current work is a rst step
that introduces and validates this new US visual servoing
in experimental conditions, with slow and rigid motions to

(c) (d) compensate. A further step will be to target a speci ¢ medical
Fig. 15. Ex-vivo results: experimental setup (a) and desired US image ngcedure to increase the robustness of the approach and
compensate (b). The tracking, launchedt at Os and stopped at = 125, deal with in-vivo constraints. In this context, several medical
ensures the compensation of the disturbance applied ¥020s as can be applications have been identi ed that could bene t from the
seen on the visual error (c) and the pose error (d).
proposed approach.

With a tele-echography robot, the automatic positioning
has a period of 8and generates amplitudes of motion ofd® of the probe to a pre-recorded US image and its tracking
and 135nmalong horizontal axes and @fnalong the vertical during the tele-operation can ease the diagnosis of the user.
axis with a rotation of the phantom ofiég To increase the The aim is to virtually stabilize an organ of interest with
tracking dynamics, we implement a Kalman lter to predict the robotic task based on the fusion of the vision and tele-
target motion. The Kalman lIter is based on a constant velocityperation controls. More generally, the active stabilization
model and takes as input the measures of the image featwesn anatomic cross-section could improve the diagnosis,
variation and the probe instantaneous velocity to provide &ased on US wave intensity measures, blood ow measures
estimate of the target velocity. This estimated velodigyis (Doppler) or enhanced imaging, that requires the observation
nally reinjected into the control law (1) as a prediction termof a stable anatomic target during several minutes and can

+ N be compromised by any motion of the patient. For the same
Vo= T L (s() s)+ Vo reason, the measure of arteries dilation induced by blood ow,

The results of one tracking task with the 2D probe af§own as "Flow Mediated Dilation” [24] can bene t from the
displayed in Fig. 15 for a gain = 0:4. The disturbance motion Stabilization of the US image. Finally, surgical applications,
is applied att = 20s, then att = 125 the compensation is such as the destruct_lon pf.a kidney stone by high intensity
stopped. The curve (c) shows the minimization of the visuffcuséd US or the irradiation of tumors are also targeted.
error throughout the tracking task and the curve (d), obtaind@€ Visual servoing approach can be used to follow the target
thanks to the EasyTrack system, validates the robotic taskaﬁﬂd then maximize its irradiation while avoiding the healthy
terms of pose since the relative pose of the probe with respBggues.
to the phantom is maintained constant during the tracking
(t< 125%).

In this experiment, the introduction of the Kalman Iter in
the control law improves the accuracy of the tracking task
for sinusoidal motions with smooth changes of directions.

For more complex motions, other predictive controller should Caroline Nadeau Caroline Nadeau received the

M.S. degree in electrical engineering and automation

be considered, such as for instance a repetitive predictive from the National Polytechnic Institute of Toulouse,
controller R-GPC [23] if the period of the disturbance is France, in 2008 and the Ph.D. degree in signal
known processing from the University of Rennes, France, in

2011. Her Ph.D. research work on medical robotics
and visual servoing from ultrasound images was
carried out with the Lagadic group at IRISA - Inria

Rennes-Bretagne Atlantique, France. Since 2012,

; ; she has been a research scientist with CEA List,
In this paper a new approach is proposed to control all the France. where she is currently a member of the

motions of a US probe by visual servoing. The originality ofaporatoire Images, Tomographie et Traitement. Her current research inter-
the approach is due to the direct use of the US B-mode imaggs include image-based robotics control, image processing and computed
as visual information. In particular no image processing &mography.

segmentation step is required to build the visual features vector

that corresponds here to the intensity values of the pixels

VIl. CONCLUSION AND PERSPECTIVES
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