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Abstract: E�cient �ltering remains an important challenge in computer graphics, particularly
when �lters are spatially-varying, have large extent, and/or exhibit complex anisotropic pro�les.
We present an e�cient �ltering approach for these di�cult cases based on an isotropic �lter decom-
position (IFD). By decomposing complex �lters into linear combinations of b simpler, displaced
isotropic kernels, and precomputing a compact pre�ltered dataset, we are able to interactively apply
any number of�potentially transformed��lters to a signal. Our performance scales linearly with
the size of the decomposition s � n (i.e.O(s) time), not the size n nor the dimensionality of the
�lter, and our pre�ltered data requires O(bn) storage, comparing favorably to the state-of-the-art.
We apply IFD to interesting problems in image processing and realistic rendering.
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Filtrage E�cace par Decomposition Isotrope

Résumé : Les opérations de �ltrage en synthèse/analyse d'images sont coûteuses à e�ectuer
lorsque les �ltres varient spatialement, sont très étendus et/ou très anisotropes. Nous présentons
dans ce cas précis une méthode pour rendre le �ltrage e�cace, basée sur une décomposition du
�ltre en une combinaison linéaire de �ltres isotropes, en translation. Le coût de notre méthode
est linéaire par rapport au nombre de �ltres utilisés dans la décomposition, et ne dépend pas de
la taille des données �ltrées. Nous en présentons di�érentes applications, en analyses d'images
et en rendu.

Mots-clés : Filtrage, Compressive Sensing, Rendu



Isotropic Filter Decomposition 3

Figure 1: Illustrating the IFD for 2D images (Section 4.1). We decompose an input �lter into
a sum of displaced kernels Gl that are invariant under transforms S (here, 2D rotations). This
allows us interactive �lter the input signal with any transformed (by Sx ∈ S) copy of the �lter,
all with only a small number of lookups into pre�ltered data. We similarly apply our theory to
spherical �ltering (Section 4.2)

1 Introduction

Filtering is a fundamental operation in many computer graphics domains including image pro-
cessing, realistic rendering, and geometry reconstruction. Many �ltering approaches assume a
spatially-constant �lter, simplifying �ltering to a convolution, or target only a subset of �lters
such as those with small extent or limited pro�les (e.g. Gaussians). We consider �lters with
spatially-varying behavior, arbitrary size, and potentially anisotropic shape.

We improve upon traditional trade-o�s between �ltering performance, storage cost, and ac-
curacy by developing a new theory of isotropic �lter decomposition (IFD) that permits the appli-
cation of complex �lters with linear time complexity in the size of our decomposition, and linear
storage complexity in the number of frequency bandwidth levels used in the decomposition. We
provide two concrete realizations of our theory to 2D image and spherical image �lters, and we
apply IFD to problems in image-processing and interactive realistic rendering.

Our approach proceeds in three steps, detailed for the general case of d-dimensional �ltering
with arbitrary spatially-varying �lters, in Section 3: �rst, we devise a set of b� n isotropic
�mother� kernels of various frequency bandwidths (with exactly one kernel per bandwidth level);
next, we pre�lter our signal once with these kernels (in O(bn log n) time in 2D and O(bn)
on the sphere)and store the resulting pre�ltered signals (with O(bn) storage) for use during
�ltering; �nally, after decomposing an arbitrarily complex �lter into an s-term (b ≤ s � n)
expansion of displaced copies of the b mother kernels, we can apply any transformed version (i.e.
translated/rotated/scaled) of the �lter to the signal using only s (constant-time) lookups into
the pre�ltered dataset.

We build atop our theory in Section 3 to detail the process and practical considerations of
implementing IFDs in Section 4. We discuss the properties and speci�c choices of isotropic kernels
for di�erent domains and show that, in real-world scenarios, decomposing �lters as weighted
sums of these (displaced) kernels can be accomplished with techniques ranging in complexity
from simple linear mappings (i.e. matrix multiplications) to compressive sensing (in order to
optimize e.g. for sparsity). We detail applications of IFD to image processing and interactive
realistic rendering in Section 5. See Figure 1 for an overview in the image domain.

We present the following contributions:
� We develop a general theory of �ltering (in any d-dimensional space) based on isotropic �lter
decomposition, a compact, transform-invariant representation with controllable error.
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4 Soler & Bagher & others

� We provide two practical IFD realizations for 2D and spherical image domains, detailing
several design principles and numerical tools to guide IFD development in other domains.

� We apply IFDs to applications in interactive image editing and environment map shading
with realistic BRDFs.

� Filtering with IFDs reduces to only a few lookups into compact pre�ltered data, allowing us
to accurately apply complex �lters with high performance and modest storage requirements.

2 Previous Work

The development of e�cient and accurate �ltering approaches is a long-standing problem, in
many �elds, with several decades of prior work. We focus on techniques that most closely
motivate our approach, including recent high-performance �ltering systems.

The naïve application of a �lter to a signal of size n, where we assume n to be �unfolded�
across the dimensionality of the signal/�lter (i.e. an

√
n×
√
n image in 2D), has time complexity

O(n2). The fast Fourier transform (FFT) permits an optimization to O(n log n) time for periodic
domains. We consider the application of transformed (i.e. translated/rotated/scaled) spatially-
varying �lters with arbitrary size and shape, developing an O(s) time algorithm where s, the
size of the IFD, is considerably smaller than n.

Gaussian-based �lters are an important special case that includes standard Gaussian �ltering,
bilateral �ltering [26], non-local means [3]. Burt [5] presented an e�cient approximate algorithm
for image processing with time complexity O(n), albeit for Gaussians of restricted extent. More
recently, Chen et al. [8] introduced a low-memory, GPU accelerated approximate bilateral �ltering
system. Adams and colleagues [2, 1] consider high-dimensional Gaussian-based �ltering and
proposed novel data-structures to reduce �ltering time complexity to O(dn′ log n′) and O(d2n′),
where d is the dimensionality of the �lter/signal, all with modest memory requirements (here
n′ is the size of a single dimension of the signal, as opposed to the �unfolded� size n). We
also require modest memory usage for our pre�ltered signal representation that, once computed,
allows us to apply any number of (di�erent) �lters to a signal, all with time complexity linear in
our decomposition size s� n.

Hierarchical �ltering based on Laplacian Pyramids [6], wavelet decompositions [15], and bilat-
eral �lter pyramids [10] all decompose input signals according to scale or frequency to accelerate
�ltering. Convolution pyramids [9] design kernels for a multiscale �ltering transform. As a special
case, separable high-dimensional �lters can be factored into outer products of lower-dimensional
�lters. For non-separable �lters, a singular value decomposition can be used to approximate the
outer product factorization [20].

We combine hierarchical representations with factorization into a �lter decomposition theory
based on isotropic kernels, with varying frequency bandwidths, aligned about a set of displace-
ment vectors.

Unlike e.g. the subsampling operations used to accelerate hierarchical techniques [5], our de-
composition remains numerically stable and transform-invariant (e.g. translation-, rotation- and
scale-invariant). Transform-invariance is an important property in many �ltering applications,
for example when �ltering spherical environment maps with complex BRDF kernels; here, with-
out rotational-invariance, disturbing temporal and spatial artifacts can arise in the �nal shaded
image.

Our approach is conceptually similar to Freeman and Adelson's steerable �lters (SFs) [11].
SFs decompose (potentially anisotropic) �lters exactly as a sum of oriented anisotropic �lters,
whereas we decompose using displaced copies of several identical isotropic �lters. This allows us
to �rst pre�lter our signal using only each (canonically oriented) isotropic kernel and secondly

Inria



Isotropic Filter Decomposition 5

apply arbitrary spatially-varying �lters by simply sampling into the pre�ltered data. The bene�ts
of our reduced amount of pre�ltered data grow with the size and dimensionality of the domain.
We can exchange performance and memory for accuracy, all with quanti�able error, by reducing
the number of terms in our decomposition. Lastly, SFs only operate on band-limited �lters
whereas we handle �lters with arbitrary bandwidth, extent and pro�le.

Gastal and Oliveira [12] evaluate �lters at carefully chosen sample positions and interpolate
these values in order to perform approximate high-dimensional �ltering with time complexity
O(dn). We factorize our �lters as a sum of s displaced copies of b isotropic kernels however,
unlike Gastal and Oliveira, any well-distributed set of displacement vectors will yield a suit-
able decomposition. We can optionally optimize these displacements to bias the decomposition
towards higher-performance (sparsity) and higher-accuracy (better discrepancy of the displace-
ments). Our approximation error is also easily quanti�able and, for band-limited �lters, we can
converge with a provably �nite b (proportional to the bandlimit).

We derive a special-case of IFD for spherical signals in Section 4.2, which are used in several
domains of computer graphics including image synthesis and geometry processing. Our spherical
IFD generalizes recent work on zonal harmonic factorization [18], where we choose the zonal
harmonic (ZH) subset of the spherical harmonics (SH) basis as our isotropic kernel set. We
apply our spherical �ltering to the problem of interactive rendering, where a view-rotated cosine-
weighted BRDF at each pixel acts as an anisotropic �lter on the incoming radiance distribution,
resulting in the �nal shaded pixel intensity [21, 22].

3 Theory: Isotropic Filter Decomposition

We present our theory on �ltering multi-dimensional signals using an isotropic decomposition of
complex, arbitrarily sized, potentially anisotropic linear �lters. Unlike many existing techniques,
we allow spatially-varying �lters that vary depending on the locations of the signal they are
applied to. This complicates the problem and invalidates the often utilized, spatially-constant,
de�nition of �ltering where the application of a �lter g(x) to a signal f(x) can be expressed for

all x in the domain using a simple convolution as f̂(x) = (f ⊗ g)(x).

Spatially-varying �ltering is exposed by arbitrary transformations (e.g. translations, rotations,
scales, etc.) applied to the �lter during integration against the signal. We begin with an explicit
formulation of this generalized �ltering operation before de�ning and explaining how to use IFD
for �ltering.

Problem De�nition. We de�ne the operation of �ltering as the double-product integration
of a signal f and a �lter g, potentially transformed by transform Tx instanced from a space of
transforms T (i.e. translations, scales, and/or rotations), shifted across the integration domain
Ω by a transform Sx from a transform group S. The subscripts of Tx and Sx indicate their
(potential) spatial-variance (i.e. dependence on x). The �ltered signal is thus

f̂(Sx,Tx) =

∫
Ω

f(y) g
(
T−1

x S−1
x y

)
dy (1)

The �ltered value is by nature a function of the transform Sx. Most of the time Sx is a rotation
or translation that maps a �xed vector to a varying point x ∈ Ω, and so we permit a slight
abuse in notation and often denoting f̂(Sx) with f̂(x). Traditional spatially-constant and un-
transformed �ltering-as-convolution formulations correspond to having Tx be the identity and
Sx a d-dimensional translation such that Tx(0) = x (for dim(Ω) = d).

RR n° 8349



6 Soler & Bagher & others

Computing Equation 1 is hard since g depends on the transform Tx, which in turn varies
spatially (on x), and there is no (e�cient) way to compute f̂(x) other than e.g. brute-force
numerical integration. This is the problem our work will resolve.

Isotropic Filter Decomposition (IFD). We decompose �lters g(x), across individual fre-
quency bands l, as a weighted sum of s (displaced) isotropic kernels Gml (x). Each displaced
�basis kernel� in frequency band-l is a transformed duplicate of a mother kernel for band-l,
Gl(x): Gml (x) = Gl

(
(Sml )−1 x

)
, where Sml ∈ S is the duplication transform. Mother kernels

must additionally satisfy isotropic-invariance, meaning

∀T ∈ T Gl(x) = Gl(T x) .

The displacement and isotropy properties permit a very e�cient �ltering formulation, which we
detail below in Equation 3, and the full isotropic �lter decomposition of g(x) is written as

g(x) =
b∑
l=1

∑
m

λml Gml (x) . (2)

We will present choices for the isotropic kernels Gml in the 2D image (Section 4.1) and spherical
(Section 4.2) domains, as well as methods for performing the decomposition (i.e. solving for the
λml ).

Filtering with IFD. Substituting the IFD of g into Equation 1 and performing algebraic
simpli�cation yields our IFD �ltering equation:

f̂(x) =
∑
l,m

λml

∫
y∈Ω

f(y) Gl((S
m
l )−1T−1

x S−1
x y)) dy

=
∑
l,m

λml (f ⊗Gl)(SxTxSml )

where f̂l = f ⊗Gl is the convolution (over the group S) of the signal with each (per-band) isotropic
mother kernel. In practice, this convolution can be e�ciently computed with e.g. FFT.

We note from Equation 3 that, once the f̂l functions are computed, evaluating the �ltered
signal f̂ at any location x, and for any transform Tx, simply requires the evaluation (and
weighting) of f̂l at the transformed and displaced evaluation location Tx Sml x. We illustrate
this process for 2D images in Figure 1.

Choosing mother kernels Gl that satisfy the IFD displacement and isotropy conditions can
be challenging, especially in the context of traditional function bases (e.g. wavelets, Fourier,
sinusoids, etc.), albeit manageable (as we show in Section 4). We need only satisfy these, and
no other, mathematical conditions; for example, while orthogonality of the Gml would aid in
computing the weights λml , it is not strictly required (not the case for e.g. SFs [11]). These
weights λml depend only on the �lter g (in its canonical frame).

Section 4 will provide a concrete methodology for choosing the mother kernels Gml , solving

for the decomposition weights λml , and performing �ltering. If we precompute the f̂l for all l (a
total of b terms) using e.g. FFT, our pretabulation time complexity is O(bn log n) (O(bn) on the
sphere) with storage O(bn), and �ltering has time complexity O(s) where s is the total number
of terms in e.g. Equation 2.

Inria



Isotropic Filter Decomposition 7

4 Designing Isotropic Filter Decompositions

We detail two example realizations of our theory of e�cient �ltering using IFD from Section 3,
�rst in the 2D image domain (Section 4.1) and then in the spherical domain. Figure 1 overviews
the entire procedure in the case of 2D images. The high-level advantages of �ltering with IFD
are two-fold: the reduced cost of pre-�ltering signals with the mother kernels Gl at bandwidth
levels l (O(bn log n) time in 2D and O(sn) time on the sphere, and O(bn) storage for both), and
the ability to e�ciently and accurately apply complex spatially-varying �lters using only O(s)
look-ups into the pre-�ltered data.

4.1 Isotropic Filter Decomposition for 2D Signals

We detail the process of IFD �ltering 2D images, including: choosing mother kernels Gl that
satisfy the isotropy and band-limited properties, computing isotropic kernels Gml and their dis-
placement transforms Sx, solving for the IFD weights λml , and using the IFD to apply complex
spatially-varying image �lters. Here our domain Ω = IR2 is 2D plane (we treat color channels
independently) with x ≡ (x, y), and we take S = R2D to be the space of in-plane image rotations
and T = T2D to be the space of in-plane translations. Apart from isotropy and localization in
frequency-space, another desirable property (especially for image processing) is spatial-locality.
In an IFD, this property will cause sparsity in the weights λml because of the compactness of the
isotropic kernels Gml .

2D Mother Kernels. Unlike the spherical domain (see Section 4.2), to our knowledge there
are no non-trivial yet orthogonal 2D bases built atop displaced copies of rotationally symmetric
functions. Rotationally symmetric wavelets [19] are a close candidate, but this basis is only
invariant for a discrete set of rotations. Radial basis functions (RBFs) [4] are another possibility,
however they do not generally exhibit compact spatial support and any �lter decomposition based
on them would yield mostly non-zero coe�cients. Another option is a Mixture of Gaussians
(MoG) that can be constructed to combine the frequency-locality of Gaussians with spatial-
locality. For this reason, we choose MoGs as our 2D image IFD representation, with Gaussian
mother kernels Gl(x) = e(−‖x‖/σl)

2

with bandwidth σl, as summarized below.

Frequency Spatial Rotational Orthogonal

localization localization symmetry basis

Fourier basis 4 8 8 4
2D Wavelets 4 4 8 4

RBFs 8 8 4 8
MoG 4 4 4 8

These mother kernel functions are clearly isotropic and invariant under transforms in T , as
required by IFD. While individually localized in space and frequency, we still require a MoG of
these kernels that covers the entire domain Ω while remaining compact across frequencies and
spatial locations. In other words, we need to carefully select bandwidths σl, and displacement
transforms Sml (i.e. 2D vectors xml ∈ S) for each frequency band l, to reconstruct any �lter g
with as few non-zero IFD weights λml as possible. Ideally, the IFD process for determining these
unknowns should be e�cient and permit trade-o�s between �ltering performance (i.e. sparsity
of the weights) and the �tting error.

Isokernel Placement. We propose an isotropic kernel bandwidth distributions that doubles
in frequency with each level l (similarly to Gaussian pyramids [5]) and, at each bandwidth level

RR n° 8349



8 Soler & Bagher & others

l, we choose a distribution of displacement vectors xml with density equal to the Nyquist limit of
the bandwidth l; concretely, each band l will contain 4l displacement vectors arrange on a 2l×2l

uniform grid. The resulting isotropic IFD kernels are

Gml (x) = e−(‖x−xml ‖/σl)
2

with σl = 2−l . (3)

Figure 2 illustrates the displacement grid xml and an arbitrary isotropic kernel Gm
′

l′ (x) for l =
{1, 2, 3}.

Figure 2: Displacements xml for MoG kernels Gml used in our 2D image IFD, for frequency levels
l = {1, 2, 3}.

IFD Weight Fitting. We now seek to decompose an arbitrary �lter g(x) as a linear combi-
nation of our isotropic kernels Gml . Since the G

m
l do not form an orthogonal basis, we choose an

optimization approach for determining the IFD weights λml . The traditional approach would be

to solve for the weight vector Λ = {λ0
0, . . . , λ

4b

b } that minimizes an error-based objective func-
tion, such as e.g. argmin

x
‖
∑
l,m λ

m
l G

m
l (x) − g(x)‖L2

. Since our choice of the isokernels Gml (x)

was (purposefully) dense in space and frequency, this L2 optimization problem is likely to be
under-constrained.

We exploit this to additionally solve for Λ that are also sparse: increased sparsity in Λ
corresponds to the ability of our IFD to accurately represent a �lter with as few coe�cients as
possible, which also yields a faster �ltering implementation of Equation 3.

Recent work in compressive sensing [7, 27] has shown that optimizing the sparsity of a vector
under linear constraints can be achieved by solving for Λ as

argmin
x
‖
∑
l,m

λml G
m
l (x)− g(x)‖L2 + α‖Λ‖L1 , (4)

where the �rst term maintains the �tting accuracy and the second term provably increases
sparsity in Λ [7].

We solve this optimization problem using the SpaRSA algorithm [27]. Figure 3 illustrates
an example of �tting an elongated Gaussian �lter using our IFD, clearly demonstrating the
sparsity in the IFD weights Λ as well as the �tting procedure's ability to continue reducing the
L2 component of the error even once an �optimal� sparsity is attained. Figure 4 illustrates the

Inria



Isotropic Filter Decomposition 9

convergence of the IFD procedure, both with of the �nal �ltered image as well as in the �lter
approximation.
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Figure 3: The log-scale histogram (top left) shows that most weight λml are small (weights in
e.g. column �ve have magnitude between 10−6 and 10−5). Due to the local support of the Gml ,
only local Gaussians end up being selected by SpaRSA (botton left).

4.2 Isotropic Filter Decomposition on the Sphere

We discuss the IFD process for �ltering in the spherical domain, including: choosing mother
kernels Gl and displaced isotropic kernels Gml , performing IFD by solving for the decomposition
weights λml , and using the IFD to apply potentially-complex, spatially-varying spherical �lters
to spherical signals.

Here, the domain Ω = S2 is the set of points on the unit sphere (all unit directions) x ≡ ω =
(θ, φ) = (x, y, z) where x2 + y2 + z2 = 1, and we take S = R to be the space of 3D rotations and
T = Rz to be the space of rotations around the z-axis.

Common approaches for representing spherical signals include spherical wavelets [24], frequency-
space representations (e.g. SH), and spherical RBFs [16]. The �rst two do not ful�l isotropy
requirements and, while the latter do, we are a�orded an alternative capable of exact signal
representation and rotational-invariance, built atop SH, that was not available to us in the 2D
domain.

We build o� SH for two reasons: �rst, because they are meet the frequency-localization
we seek for our isotropic kernels Gml (ω) (and mother kernels Gl(ω)); secondly, motivated by
recent work on zonal harmonic factorization [18], we can isolate the isotropic zonal harmonic
(ZH) subset of SH to serve as our mother kernel functions. We begin with a brief overview
of SH before deriving a non-orthogonal basis that satis�es the IFD displacement and isotropy
requirements.

Spherical Harmonics. Real SH basis functions are de�ned as:

yml (ω) =


√

2Nm
l P

m
l (cos θ)cos(mφ) if m > 0

Nm
l P

0
l (cos θ) if m = 0√

2N−ml P−ml (cos θ)sin(−mφ) if m < 0

,

RR n° 8349



10 Soler & Bagher & others

RMSE: 0.6RMSE: 0.6 RMSE: 0.3RMSE: 0.3 RMSE: 0.09RMSE: 0.09 RMSE: 0.02RMSE: 0.02 RMSE: 0.001RMSE: 0.001 RMSE: 0.0001RMSE: 0.0001

s = 10 s = 20 s = 40 s = 100 s = 200 Ground Truth Filter

Figure 4: We demonstrate the convergence of IFD �ltered images with an increasing number
of terms s. Ground truth is computed numerically with a FFT. Our multi-frequency IFD MoG
approximation (bottom-right) of an anisotropic kernel (top-right) obtained with the SpaRSA
algorithm, and the reconstructed kernel and error using 200 coe�cients.

where the basis functions are indexed by frequency band l and function index m, Nm
l is a

normalization term, and Pml are the Associated Legendre Polynomials. A full order-N SH
expansion of a function includes all bands l<N , and the 2l+1 basis functions (with −l≤ m≤ l)
in each band, for a total of s=N2 terms.

Each band l contains functions of �xed bandwidth in the (spherical) frequency domain, and
the 2l+1 band-l basis functions span the space of l-band-limited spherical functions. Unfor-
tunately, we cannot directly utilize band-l basis functions to satisfy IFD since they are not all
isotropic w.r.t. rotations around z, Rz ∈ T = Rz, however Nowrouzezahrai et al. [18] show
that the same band-l space is spanned by rotated copies of the band-l zonal harmonic y0

l , which
happens to be isotropic w.r.t. T =Rz (circularly symmetric).

We thus choose band-l ZHs as our mother kernels: Gl(ω) = y0
l (ω).

IFD with Rotated Zonal Harmonics. Given our choice of mother kernel functions, the two
remaining steps to complete the spherical IFD are: determining the duplication transforms Sml ≡
Rm
l ∈ S for our isotropic kernels Gml (ω) = y0

l ((Rm
l )−1 ω), and computing the decomposition

weight λml of the IFD. For the latter task, we will see shortly that our choice of ZHs for the
mother kernel will permit an analytic solution for the decomposition weights.

To simplify our exposition, we �rst consider a single band l and later extend our formulation
(trivially) to order-N reconstructions.

Let Z = {z0
l , . . . , z

2l+1
l } be a set of 2l+1 unit vectors in Ω≡S2. We denote the 2D rotation

that aligns direction zil to z-axis as Ri
l ∈ S, which allows us to de�ne our isotropic kernels as

Gml (ω) = y0
l (Rm

l ω) with Rm
l =

[
eT1 , e

T
1 , (z

m
l )T

]
. (5)

Any non-degenerate distribution of directions Z yields an isotropic kernel basis (with elements as
in Equation 5) that spans l-band-limited functions [18], satisfying IFD's frequency-localization,
isotropy, and displacement properties.

Given the isotropic kernels Gml of our IFD (with their corresponding rotations direction zml ),
we need only determine weights λml to decompose our spherical �lter g according to Equation 2.
We �rst express the l-band-limited component gl of g with its expansion in the band-l SH basis
as gl(ω) =

∑l
m=−l c

m
l yml (ω). Here, the band-l projection coe�cients cml =

∫
Ω
g(ω) yml (ω)dω are

computed using standard analytic or numerical integration, depending on the form of g (i.e. we
support both analytic and tabulated �lters; see Section 5.2).

Once (band-l) SH projection coe�cients of the �lter are computed, we devise a linear mapping
between the cml and IFD weights λml by leveraging the SH addition theorem [13] that expresses

Inria



Isotropic Filter Decomposition 11

rotated (band-l) ZHs as a weighted sum of (band-l) SH functions:

y0
l (Rm

l ω) =
√

4π/2l+1

∑
m

yml (zml ) yml (ω) . (6)

Combining Equations 6 and 5 into a matrix equation across all m in band-l, we arrive at the
following linear mapping:

cl = Ml Λl , with (Ml)ij =
√

4π/2l+1 yil(z
j
l ) , (7)

where cl = [c−ll , . . . , c
l
l] is a vector of gl's band-l SH projection coe�cients, and Λl = [λ−ll , . . . , λ

l
l]

is a vector of (unknown) IFD weights [18].
Reviewing spherical l-band-limited IFD, we begin by distributing 2l+1 directions zml (e.g.

using low-discrepancy patterns on the sphere), and computing the elements of the matrix Ml.
The band-l SH projection coe�cient vector cl of the �lter g is computed, and the IFD weights
are solved as Λl = M−1

l cl. The resulting band-l IFD is

gl(ω) =
l∑

m=−l

λml Gml (ω) =
l∑

m=−l

λml y0
l (Rm

l ω) . (8)

Note that, unlike the sampling locations of Gastal and Oliveira [12], we can choose any non-
degenerate distribution of the zml (guaranteeing a non-singular Ml [14]).

Extension to Order-N . The full s=N2-term spherical IFD is

g(ω) =
N−1∑
l=0

l∑
m=−l

λml Gml (ω) =
∑
l

∑
m

λml y0
l (Rm

l ω) , (9)

and can be easily formed as a simple combination across the band-l spherical IFDs (Equation 8)
for every band l < N . We are able to perform this concatenation since each band-l isotropic
kernel set spans an isolated frequency-bandlimited space and linear reconstruction across bands
is L2-optimal from the properties of SH.

We additionally share the displacement directions zml across bands using the �lobe sharing�
scheme presented by Nowrouzezahrai et al. [18], where the e.g. −l ≤m ≤ l directions for the
band-l IFD are an identically indexed subset of the −(l + 1)≤m ≤ (l + 1) directions from the
band-(l+1) IFD. We can similarly rewrite the system of equations in Equation 7 across all bands
l < N , f = M Λ, where the three terms are order-N generalizations of their band-l counterparts.
As such, M (and Λ) have block-diagonal structure with (2l+1)×(2l+1) matrix sub-blocks along
the diagonal.

E�cient Spherical Filtering with IFD. Recall from Equation 3 that the input signal must
be convolved (under group S) against the IFD's mother kernel functions Gl in order to perform
�ltering. We (pre)�lter the input signal f for each band-l in order to �lter using Equation 3.
This means we convolve the signal f with the band's mother kernel Gl = y0

l . Since Gl is isotropic
(by construction), the result of the convolution is a spherical function 1.

Our choice of mother kernel's a�ords an interesting accelerated O(n) time complexity algo-
rithm for computing each of the b (pre)convolutions. Given the SH projection coe�cients of the

1Here, similarly to Section 4.1, we abuse notation and interchange transforms in S with elements of Ω.
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12 Soler & Bagher & others

Figure 5: Our proof-of-concept user-guided image-smoothing tool applies an anisotropic Gaussian
�lters with a size and orientation computed on the �y based on an estimate of the local Hessian.
Both the Hessian computation and the �nal anisotropic edge-respecting image smoothing are
executed as �ltering operations using IFD. The �ltering is able to eliminate the noise in the image
while maintaining the multi-scale details of the underlying image, all while the user interactively
modi�es the editing footprint scale.

signal, fml , we can apply the SH convolution theorem [23] and compute the SH coe�cients of
the pre�ltered function as

f̂ml =
√

4π/2l+1fml (10)

This interesting result means that preconvolving the signal against our RZH mother kernel
corresponds to a simple per-band scaling of its frequency spectrum.

The preconvolved function can be evaluated directly (as necessary for �ltering in Equation 3)
by either pretabulating it (e.g. in a cubemap) or simply computing its SH expansion on the �y
as

f̂l(ω) =
∑
m

f̂ml yml (ω) =
√

4π/2l+1

∑
m

fml yml (ω) . (11)

Drawing parallels to steerable �lters, one of the works more closely related to ours, spherical
SFs would amount to a mapping from SH basis functions onto (potentially rotated) SH basis
functions, requiring N2 (instead of N) preconvolved lookup functions.

We apply spherical IFDs to realistic interactive rendering in Section 5.2, where the envi-
ronment lighting acts as a signal that is �ltered by a spatially- and orientation-varying (in T )
BRDF.

5 Applications and Results

After a O(bn log n) pre�ltering stage (O(bn) in the spherical setting; requiring O(bn) storage),
we are able to apply and reapply any number of complex �lters (represented by their IFD) to
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RMSE: 0.041RMSE: 0.041 RMSE: 0.017RMSE: 0.017 RMSE: 0.0099RMSE: 0.0099 RMSE: 0.0076RMSE: 0.0076

RMSE: 0.015RMSE: 0.015 RMSE: 0.0074RMSE: 0.0074 RMSE: 0.006RMSE: 0.006 RMSE: 0.0059RMSE: 0.0059

s = 4 s = 8 s = 16 s = 24 Ground Truth

Figure 6: Convergence of spherical IFD shading for increasing b = N ; s = N2. Top to bottom:
glossy (narrow) and di�use BRDF �lter.

the original signal. Our decomposition is transform-invariant (i.e. translation-, rotation-, scale-
invariance) and �lters can have arbitrary size/extent, be spatially-varying, arbitrarily oriented,
and have anisotropic pro�les. We demonstrate our approach on interactive image processing
tasks and a common problem in realistic rendering: computing the shading of a scene with
complex BRDFs and an environment light i.e. captured from the real world.

5.1 Image Editing and Anisotropic Texture Filtering

There are several possible applications of to image analysis/editing, such as computing local im-
age descriptors as the response to densely rotated anisotropic �lters, performing data-dependent
image �ltering operations (e.g. edge-aware anisotropic di�usion), or implementing e�cient inter-
active �ltering tools for image editing.

As a proof-of-concept we implement a custom hand-brush image editing tool that performs
anisotropic �ltering of an input image based on the estimate of the Hessian matrix of the image
at the current pixel. The Hessian gives the principal directions of the second derivatives and,
therefore, provides a meaningful estimate of the orientation and size of an spatially-varying,
edge-respecting an anisotropic smoothing �lter (we use a very anisotropic Gaussian kernel).

This tool uses our 2D image IFD �ltering twice. First, a user selects/hovers over a region,
and we use IFD to estimate the Hessian at the input location by applying a second-derivative
�lter at the user de�ned scale (see Figure 5); concretely, we decompose the two �lters (x − x
and x − y second derivatives), and we apply a rotated version of the x − x �lter to obtain
the y − y second derivative. Secondly, once computed, we perform an on-the-�y eigenanalysis
of the (spatially-varying) Hessian in order to approximate the excentricity and orientation of
our anisotropic Gaussian �lter, which we also apply (after scaling and rotation) using IFD. An
example of �ltering session is depicted in Figure 5, and in our submission video. Since �ltering
performance does not depend on the original �lter nor the size of the signals, our �ltering tool
runs interactively for images of any size and �lters of arbitrary scale. This results in a seamless
user experience.
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14 Soler & Bagher & others

5.2 Pre�ltering for Realistic Interactive Rendering

We apply spherical IFDs to a di�cult problem in interactive realistic rendering: shading scenes
with environment lighting and spatially-varying, potentially-anisotropic re�ectance (BRDFs).

Linear-cost Environment Map Shading with Arbitrary BRDFs. The re�ection of dis-
tant spherical incident lighting ω 7→ E(ω) at a surface point x, with BRDF ρ(x, ωo, ω), towards
a viewer ωo is

L(x, ωo)=

∫
S2

E(ω) ρ(x,Rn ω,Rn ωo) max(cos θ, 0) dω , (12)

where the incident and outgoing directions ω and ωo are expressed in global (world) coordinates,
the BRDF ρ is parameterized in the local (surface) coordinate frame at x, and the rotation
Rn ∈ S≡R transforms from global- to local-coordinates at x (where n is the normal at x and θ
is the angle between n and ω).

We treat each spatially-varying view-slice of the cosine-weighted BRDF as a �lter, g(ω) =
ρ(x, ω, ωo) max(cos θ, 0), and the environment map as our signal f(ω) = E(ω). Following the
process outlined in Section 4.2, we choose 2N+1 well-distributed directions zml �remember that
directions are shared accross bands l�and compute IFD weights for an ensemble of �lters (one
for each BRDF slice, and each point x for spatially-varying BRDFs):

ρ(x, ω, ω′) max(cos θ, 0) =
∑
l

∑
m

λml (x, ω′) Gml (ω) . (13)

Substituting Equation 13 into Equation 12, or applying Equation 2, yields the IFD equation
for shading (we drop x for brevity, and we drop the l subscript on IFD displacement directions
zml ≡ zm to make explicit that �lobe sharing� permits us to store a single set of directions across
frequency bands l):

L(ωo) =
b−1∑
l=0

l∑
m=−l

λml (Rn ωo)

∫
S2

E(RT
n ω) Gml (ω) dω

=
∑
l,m

λml (Rn ωo)
(
E ⊗ y0

l

)︸ ︷︷ ︸
f̂l(ω)=Êl(ω)

(RT
n zm)

=
∑
l,m

√
4π/2l+1 λml (Rn ωo)

l∑
k=−l

ekl y
k
l (RT

n zm) , (14)

where the number of frequency bands b=N and eml are SH coe�cients of the lighting E.
The (spatially- and view-varying) �lter weights λml (x, ω′) can be pre-tabulated for data-driven

BRDFs (e.g.the MERL BRDF dataset [17]), or computed analytically from their analytic SH coef-
�cients for phenomenological BRDFs e.g.Lambertian and Phong BRDFs. We illustrate rendering
results for several environment maps with spatially-varying and anisotropic BRDFs (Figures 9
and 8) of varying glossiness/�lter-extent (Figure 7), as well as demonstrating convergence on
large �lters with ground-truth computed using numerical integration (Figure 6).

6 Implementation and Discussion

Our implementations of IFDs for the applications in Section 5 can be almost fully described
by following �naïvely� implementing algorithms according to the steps outlined in Section 4,
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Isotropic Filter Decomposition 15

Figure 7: Spherical IFD with varying �lter widths: we illustrate di�use (wide; top) and glossy
(narrower; glossy) �lters for various scenes and lighting environments. All renderings were cap-
tured in real-time with performance ranging from 30 to 70 Hz.

Figure 8: We vary the BRDF �lter anistropy from isotropic/di�use (left) to anisotropic (right).
IFD performance is independent of the �lter pro�le, and all renderings were captured at 30-70
Hz.

ultimately leading to the implementation of IFD �ltering using Equation 3. This simplicity
permits trivial parallelization of the �ltering algorithm, for example on the GPU (which we do
for one of our applications). We summarize all additional implementation-speci�c details below
before discussing our performance/memory requirements and scalability, and �nally ending with
a discussion on limitations.

Implementation Details. For our environment map shading with BRDF �lters we imple-
ment Equation 14 in a GLSL shader. For data-driven BRDF �lters (from the MERL BRDF
dataset [17]) we pre-tabulate the IFD weights per (cosine-weighted) BRDF view-slice λml (ωo),
for each discrete BRDF, in a cubemap indexed by the view direction ωo (in local surface co-
ordinates). For analytic BRDFs (e.g. Lambertian, Phong) we hardcode analytic IFD weights.
Equation 5 is not a numerically stable method for evaluating high-order SH basis functions. We
designed stable recurrence formulae for these evaluations based on the principles suggested by

RR n° 8349



16 Soler & Bagher & others

Figure 9: IFD supports spatially-varying �lters: a texture modulates the anisotropy (left,middle)
and albedo (right) of a complex BRDF model that combines di�use (wide) and anisotropic BRDF
pro�les. Again, rendering (IFD �ltering) is independent of the �lter complexity and all images
were captured at 30-70 Hz.

Sloan [25].

A subtle, albeit important, shader implementation trade-o� exists: when evaluating the
preconvolved signals f̂l(ω) (Equation 11) in Equation 14, we can either pre-evaluate and store
the functions in cubemaps (Equation 14, middle line) of or explicitly compute the band-l SH
expansion (Equation 14, last line). This amounts to a texture-lookup vs. ALU opcode trade-o�
in the shader design, and we found that the pre-evaluated cubemaps were faster for our use-
cases but that at higher-order the cubemap resolutions had to be increased to avoid numerical
imprecisions.

Performance and Memory. All our results were captured on an Intel Xeon 1.2GHz with
24 GB of RAM and an NVIDIA GTX 670 with 2 GB of VRAM. We provide performance
statistics both in Hz and �ltering operations per second (FOPS), and our video results were
all captured interactively. All of our applications are single-threaded and Table 1 details the
performance and memory statistics of our shading application. In the case of anisotropic image

Interactive Environment Shading with BRDFs (Section 5.2)
s = 42 82 122 162

n = 6× 1282 6× 2562 6× 2562 6× 5122

Speed [Hz] 68 59 46 29

Speed [FOPS] 53.4M 46.4M 36.2M 22.8M

Mem. [MB] 6 42 96 672

Pre�ltering [sec] 5 9 14 27

Table 1: Performance, memory and scalability statistics.

�ltering, which was implemented in CUDA, every �ltering result (in the paper and video) was
computed in less than 1ms. Figures 4 and 5 illustrate various �ltering results using this technique.
For environment light shading with complex BRDFs, we notice a similar (sub)linear connection
between s and performance, and we demonstrate convergence to ground truth �ltering in Figure 6,
and rendering results with spatially-varying and anisotropic BRDFs and varying BRDF glossiness
(corresponding to di�erent BRDF �lter sizes) in Figures 7, 9 and 8.
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Discussion and Limitations. Our choice to not require orthogonal displace isotropic kernels
in the IFD is not without its shortcomings. In this case, most of the Gml do not integrate to 0,
meaning that adding higher frequency terms could change the average value of the reconstructed
�lter.

There are many seemingly arbitrary choices in the design of our 2D image IFDs and, while
our particular choice leads to a suitable representation, we are con�dent that our methodology
can easily yield alternative suitable IFDs. Indeed, we have experimented with other options for
mother kernels e.g. based on radial derivatives of Gaussians, polynomials in polar coordinates,
etc. Each technique yielded an e�cient and accurate IFD, and we opted to expose our �nal MoG
choice due to its simplicity (both mathematically, and implementation-wise) and e�ectiveness.
We make no claims on its optimality, and investigating the design of optimal IFDs for a �xed
domain remains an interesting open direction of future research. In contrast, our choice of mother
kernels in the spherical domain was motivated based on recent developments in spherical signal
processing; however, our spherical IFD inherits the limitations of SH: as the angular extent of
the �lter reduces (increasing it angular frequency content), larger s are required to properly
reconstruct the �lter. Note, however, that this theoretical limitation is balanced in a practical
sense as these smaller �lters can be e�ciently �ltered using even the brute-force solution as
the size of the non-zero regions in the �lter become smaller. We gracefully handle the case of
complex, spatially-varying anisotropic �lters with larger extents, that are traditionally hard to
compute numerically with any other technique.

7 Conclusion and Future Work

We develop a general theory of �ltering based on multi-scale isotropic displaced kernels. Unlike
many other representations, ours has a combination of several important properties for e�cient
�ltering: it is compact, transform-invariant, has a controllable error vs. performance behavior,
has a modest footprint (that does not scale geometrically with the dimensionality of the signal),
and is very e�cient and trivially parallelizable.

With IFD, we can decompose spatially-varying �lters with arbitrary domain, extent, anisotropy
and transform (i.e. position/orientation/scale) with an s-term weighted sum of b displaced
isotropic kernels. After computing b pre�ltered signals, requiring O(bn log n) time (O(bn) for the
special-case of the sphere) and O(bn) storage, we can apply any number of �ltering operations
with any number of di�erent �lters in O(s) time, where b ≤ s� n. Here note that �ltering time
grows linearly only with the size of our representation which is typically orders of magnitude
smaller than the size of the signal. We detail the practical implementation of our theory in the
2D and spherical image domains, applying IFD �ltering to di�cult problems interactive image
processing and realistic rendering.

Several interesting unanswered theoretical questions remain. Whether an IFD-like decompo-
sition with can be devised with orthogonal �ltering kernels remains an open theoretical question,
and �nding �optimal� isotropic kernels for di�erent speci�c �ltering domains is an open question.

In contrast, there are also many potential future applications of IFD. For example, the interac-
tive rendering of anti-aliased mirror re�ections: given a geometrically complex, metallic/mirror-
like object that re�ects its environment, as the viewer zooms-out of the scene each pixel will
project onto a larger and more complex region of the object. The correct �nal pixel intensity
should average all re�ected scene points, corresponding to a warping of the perfect mirror re-
�ection cone based on the warped pixel footprint projected onto the surface. Current solutions
simply mipmap the environment texture and sample from coarser levels, resulting in temporally
disturbing and incorrect re�ection e�ects. With IFD, a canonical pixel footprint �lter can be
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18 Soler & Bagher & others

decomposed and warped on-the-�y (at each pixel) in order to properly sample (from precon-
volved version of) the environment texture. Other applications of IFD to e.g. 3D tomographic
data �ltering, volume rendering and even animation editing are interesting practical directions
of future work.

A Isotropic Filter Decomposition

We derive Equation 3 by reporting Equation 2 in Equation 1:

f̂(Sx,Tx) =
∑
l,m

λm
l

∫
y∈Ω

f(y) Gm
l (T−1

x S−1
x y)) dy

=
∑
l,m

λm
l

∫
y∈Ω

f(y) Gl((S
m
l )−1T−1

x S−1
x y)) dy

=
∑
l,m

λm
l (f ⊗Gl)(SxTxS

m
l )
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