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Abstract—Modern cognitive experiments in functional Mag-  hemodynamic estimation were observed depending on the
netic Resonance Imaging (fMRI) often aim at understanding  prior parcellation [4]. Moreover, a potential bias can be
the temporal dynamics of the brain response in regions acti- introduced using the classical GLM that does not enable
vated by a given stimulus. The study of the variability of the . .
hemodynamic response function (HRF) and its characteristics |mportant .uctuat|ons of the HRF shape throughqut the
can provide some answers. In this Context' we aim at improving bl’aln PI’eVIOUS WOTkS haVe eXtended the JDE fOI’ma|Ism tO a
the accuracy of the HRF estimation. To do so, we relied on joint parcellation-detection-estimation (JPDE) approach [5]
a Joint-Detection-Estimation (JDE) framework that enables  which targets to optimally infer the parcellation from the
robust detection of brain activity as well as HRF estimation, in JDE results iteratively by imposing some spatial constraints

a Bayesian setting [2]. So far, the hemodynamic results provided - . o .
by the JDE formalism have depended on a prior parcellation ~ ©N the de nition of hemodynamic territoires. However, this

of the data performed before JDE inference. In this study, we formalism is really computationally demanding and not fully
propose a new approach to relax this prior knowledge: using validated on real data yet. Therefore, we propose here

consensus clustering techniques based on random parcellations another approach to circumvent this problem by resorting
of the data, we combine hemodynamics results provided by 5 random parcellation techniques of decimated fMRI data.
different parcellations, so as to robustify the HRF estimation. . . .

The rest of the paper is organized as follows. Section Il
~ KeywordsfMRI; Consensus Clustering; Random parcella-  summarizes the standard JDE framework. The consensus
tion; Hemodynamic estimation; Bayesian inference clustering technique is presented in Section Il and then
applied to arti cial and real data sets in Section IV and V.
Finally, conclusions are drawn in Section VI.

In fMRI studies, two main concerns arise at the subject-
level analysis: i.) a precise localization of evoked brain ] ) )
activity elicited by sensorimotor or cognitive tasks, and ii.) a  T1he JDE model relies on a prior parcellation of fMRI data
robust estimation of the underlying hemodynamic responsé0 (P ) =1: parcels. In voxelj 2 P, the fMRI time
associated with these activations. Since these two steeriesy; is measured at timeffn)n=1: n Wheret, = nTR,
are inherently linked, the Joint Detection-Estimation (JDE)N P€ing the number of scans and TR the time of repetition.
approach has been proposed to address both issues inlfa[1], the BOLD signal is modelled in a given parcel
coordinated formalism [1]. This formalism performs a @s follows:
multivariate inference for both detection and estimation
through a regional bilinear generative model of the BOLD 8j2P ; yj= a"X™h + P+ Db (1)
response, which embeds spatio-temporal regularization m=1
within the Bayesian framework. The efciency and The unknown HRF shapk is constant within each par-
usefulness of this approach has been validated at the growel P . The Neural response leve", which model the
level in [2]. In particular, the estimation of the HRF is magnitude of activation, may vary in space and across
more adequately performed using the JDE formalism. Asstimulus types or experimental conditions. Here, each Neu-
the HRF is potentially linked to the magnitude, latencyral response level is assumed to be in one of the two
and duration of neural activity, it is of primary interest groups specied by activation class assignment variables
to accurately estimate its shape to make inference abo@ = fgm;m=1: Mg whereq™ = qg";j2P , q"
neural processes. representing theactivation classat voxel ] for condition

However, so far the JDE formalism has relied on a priorm (g™ = 2 for activated voxels andf™ = 1 for non-
parcellation of fMRI data into functionally homogeneous activated voxels)X ™ denotes theN (D + 1) binary
parcels. The functional mask of each subject's brairais matrix X, = fx? 9 t'n = 1:::N;d = 0:::Dg that
priori divided inK functionally homogeneousarcelsusing  provides information on the stimulus occurrences for the
a parcellation technique proposed in [3]. Usually, is  mth experimental condition. t < TR is the sampling
chosen so that the parcel size is equaRt8cm?, as done period of the unknown HRF in the parcel h 2 RP*1.
in [3]. The hemodynamics results thus depend on this prioFinally, matrix P = pi;:::;po comprises the values at
parcellation to a large extent, and several differences itimest, of an orthonormal basis consisting of functions that

I. INTRODUCTION

II. THE JOINT-DETECTION ESTIMATION FRAMEWORK



take a potential drift and any other nuisance effect into acAlgorithm 1 JDE-based on Consensus Clustering procedure

count. Vector'; = (loj)%6050 CONtains the corresponding

unknown regression coef cients i . Vectorb; = (b )"

1: Require: Input: datasetsY 2 R" P, list of number of clusters
to testfK = Kmin ;5K = Kmax g, humber of resamplings,
undersampling fraction 2 [0; 1]. J voxels are contained in the mask.

de nes the noise term in vox¢land is supposed to be white,

scheme. 6:
[1l. JDE RESULTS BASED ONCONSENSUS CLUSTERING &
A. The different steps involved in the procedure 8:

The consensus clustering techniques consist in running®:

multiple times a clustering algorithm on different pertur-
bations of the original data and combining the resulting

clusters so as to assess their stability [6], [7]. Moreover,10:

to avoid any arbitrary choice of the number of clusters,
the procedure can be repeated for different values of this

number. In our study, the perturbations were generated by2:

randomly undersampling the data along the temporal axis.

This undersampling is done without replacement to avoid ai3:

too signi cant change of the data structure. Following [7],
75% of the temporal points were kept in each voxel.

Since the fMRI data are usually very noisy, we have 1s.

performed the clustering after extracting temporal features

2: for K = Kpin to Kmax do
normally-distributed with variance, and independent of 3
the HRFs. The parameters are estimated in a Bayesiarf"
framework as described in [1], using a stochastic inference 5.

fors=1 toS do
Down-sample the data along temporal axis<s
yKs 2 R P,
Extract the HRF in each voxel with RFIR modtaIiK;S

Cluster the features: clustafs " into K clusters.

Compute connectivity matrikd s : M KS (i;j) =1 if voxels

i andj belong to the same clustdd,otherwise.
end for
Perform consensus clustering: compute corsensus migtrix
fromM = fMK LM KS g MK ()= (MKS (i;)),
indicating the number of times i and j are assigned to the same
cluster.
Cluster consensus matiit X to obtain parcellatioP X, .
For each parcellatioR,,s and in each clusteg (GF 2P K.
k 2 [Kmin ; Kmax ]), compute the average index between all pairs
of voxels:cc = fccX (k =0);:;eck (k = K)g [6].
Fit the JDE model on the parcellati®f,, : one HRF estimate is
computed in each clusteg . For all the parcellatiorP§ s, the

Y where

RFIR

hemodynamics results afér_, ;:: hK_ | 0.

Compute posterior probability associated with each HRF estimate:
K

PPy -

Compute weight £ = cc
hK in clusterCf .
Recompute weights and HRFs in each voxel:
8 2Cg ;1 [ = 1% andh® = ht.

ppK associated with each HRF

of interest. Moreover, as the objective is to recover thel6: end for

hemodynamic territories at best, the clustering algorithm was
based on voxel-wise HRFs inferred by the Regularized Finite

Py
17: Compute nal result8j 2 [1;J];h; = KZKme :pk 1K

K =K min J ]

18: return fhjg} iy

Impulse Response approach (RFIR). Akin to the JDE model,
the latter does not assume any functional form for the HRF

and amounts to estimating a large number of parametentfie CC-JDE approach instead of running the JDE model
to identify its prototypical properties. The different steps ofon GLM-based parcellations. A 4D-BOLD arti cial signal

our procedure are summarized in the Algorithm 1. In shortof N = 135 time points was simulated according to the
the hemodynamic results from different parcellations areobservation model in Eq. (1). 8 hemodynamic territories
weighted by their posterior probability and by information were simulated, with a different HRF shape simulated for

from consensus clustering. each oneP was a polynomial basis of order 4 axd™*
B. The Regularized FIR modeling encodes a fast event-related paradigm comprising ten con-
For the sake of completeness, let us briey summarizeditions (ISI=3.5 s.). Neural response levels were drawn
] H mi;~m — N-tlal H
how the voxelwise RFIR approach proceeds. The generativ%cCorOIIng tofa"jq" =2) N _(2_'5’ 0:3) (ac_tlvated voxels)
N (0;0:3) (unactivated voxels).

. and (a"°jq" = 1)
: j
BOLD signal model reads as follows: Drift coef cients were drawn as; N (0;3:2l4). Noise

e . realizations followb; N (0;1:1ly), so as to simulate
XThi"+ Py + b (2)  more realistic data with a low SNR. Finally, activation states
m=1 were set by a hand-drawn map, as shown in Fig. 1(a)-(c).
Vectorhjm = h,":j . ;:o D represents the unknown HRF ~ The JDE model was applied to the synthetic data either

time course in voxej which is associated with thent" using the consensus clustering procedure or relying on
experimental condition and sampled every. The other parcellations obtained by clustering of GLM results (in this
terms are the same as in Eq. (1), except the Neural Responggcond case, one JDE model is bgmg run .for each number
Levels, here are embodied in the HRF. The HRF estimatiof? clusters chosen for the parcellatidq: 2 [5;11)

is regularizedwith a penalization that prevents from sharp The GLM-based parcellations shown Fig. 1(c)-(e) were
uctuations:h N (O;vpR) with R =(DLDy) *. compared to the ground truth hemodynamic territories

shown in Fig. 1(a). We used the Normalized Information
IV. RESULTS ON SIMULATION Criterion (NMI ) to measure the agreement of two
We validate the proposed methodology on arti cial datainparcellations, ignoring permutationsl 11 = 1 if identical
order to assess the gain in robustness we achieved usimpgrcellations). We also clustered the hemodynamic results

8 2 [1J];



%EV 0:5). For each model, the given percentages of
explained variance were averaged over all voxels.

V. RESULTS ON REAL DATA

Ground truths

Real fMRI data were recorded on an adult. The ex-
periment was designed to map auditive and visual brain
functions and consisted of a session df = 128 scans
lasting TR = 2:4s, each yielding a 3-D volume composed
of 64 64 32voxels. The paradigm was fast event-related
comprising eighty auditive and visual stimuli. A region of
interest (ROI) in the left temporal lobe was de ned along
the Superior Temporal Sulcus (STS). For the clustering steps
based upon RFIR results, only HRF corresponding to the
auditory conditions were used.

As done on the synthetic data, the JDE model was
tted either using GLM-based parcellations or the CC-
JDE methodology. The GLM-based activation maps were
. L _ .. clusterized using a total number of clustefs varying
Figure 1. Top row: Ground truth with simulated hemodynamic territories .

(a), simulated activation labels (b) and superimposition of activation pat-between 20 and 40. Thus, 21 GLM-based parcellatlons were

terns with hemodynamic territoriediddle row: Parcellations obtained Obtained, before being used as the prior parcellation in JDE
by clustering the results obtained from the GLM t of the data, for analysis.

K =6 (@,K =8 (b), K =10 (c). Bottom row: Clustering of the

hemodynamic results obtained by JDE modeling. The CC-JDE clustering

technique described in Algo. 1 was applied to the synthetic data.

Clust. on CC-JDE GLM-based parc.

obtained using the CC-JDE procedure, and compare this
clustering, denoted CC-JDE, with the ground truth.

@ (b)

1.0 >
B

NMI

0.8 0.05]

Figure 3. Percentages of variance explained by the JDE model, using the
06 0.04 GLM-based parcellations (blue points) or after the CC-JDE procedure (red
dashed lineYoEV are averaged over all voxels.

04 0.03]

We rst compare the accuracy of the estimation using the
¢ INMI=I(K) GLA - Ev-C percentages of explained variance. As shown in Fig. 3, the

S A N L L R (T mean percentage of explained variance obtained after using
Figure 2. (a): Comparisons of the GLM-based parcellations, depending onGLM'based parce”atlon (m blue) IS always lower than that
the total number of clustet$ , with the Ground TruthigMI = f (K ) in  Obtained after the CC-JDE proceduEV = 4:5%, in
blue points) and evaluati?n of the Clustfr!ngdofb C(tir;gDJEDrEeil]Jgje(lred ?nasft]ﬁﬁed), irrespective oK . This result shows that the CC-JDE
GLNi-based parcelations (slue points) or afer 1ne CC-IDE procedure efocedure. outperforms the previous way of clustering the
dashed line). The ground truth (GT) is shown in . brain before running JDE analysis.

To evaluate the potential neuroscienti ¢ impact, we ob-

As shown in Fig. 2(a), theNMI criterion of GLM-  served the values of time-to-peak (TTP) of HRF estimates
based parcellations varies around 0.5 depending on thie the region de ned along the STS. Fig. 4 shows the values
total number of clusters we chose. Thus, the GLM-baseaf TTP obtained in this region, either using the GLM-based
parcellations seem to fail to detect the intrinsic structureparcellation comprising 30 voxels (see Fig. 4(a)) or using
of the response dynamics. In contrast, tNéM| value the CC-JDE procedure (see Fig. 4(b)). On Fig. 4(b), we
associated with our CC-JDE clustering is very highi.e., closeetrieved a gradient of activations along the superior tem-
to 0.8. This corresponds to the visual observation of Fig. lporal regions which was previously described in adults [3]
(middle and top rows): the hemodynamic territories are farand children [1]. The fastest responses are observed near
better recovered using the CC-JDE clustering. MoreoverHeschl's gyrus and the middle STS (time-to-peak of the
the estimation relying on the GLM-based parcellations isresponse around 6s.) and slow down along the caudal-rostral
less accurate than that performed by the CC-JDE proceaxes. In the posterior and anterior part of the ROI, the TTP
dure. Indeed, as can be seen on Fig. 2(b), the percentagee much slower since within the range from 8 to 11s.
of variance explained by the moddEY ) is larger using Importantly, the TTPs obtained using the CC-JDE procedure
this procedure Y%EV 0:4 closer to the ground truth vary more smoothly along the STS as compared to those

0.2 0.02 EV=((K) JDE on GLM based parcellations
‘o YNMI=f(K) GLM based parcellations‘ - EV - CC-JDE




retrieved by GLM-based parcellations. Also, the latter didcurrently performed. Thus, we plan to bene t from the ad-
not enable to clearly identify the TTP gradient along thevantages of the JDE framework in cognitive studies focusing
STS. Hence, we observed that the prior parcellation of th@n cerebral specialization such as linguistic processing in
data impacts the hemodynamic results. infants. In the latter context, the CC-JDE model allows an
(a) (b) extensive and more robust analysis of the hemodynamic
variability along the STS.

Finally, the JDE framework is computationally demanding
when infered using a stochastic inference scheme: this makes
the computational cost of the CC-JDE procedure very high.
This can be partially compensated by alternative variational
inference schemes [9] and also by the fact that the CC-JDE

Figure 4.  Time-To-Peak values (in s.) estimated along the STS fromgpproach is especially devoted to study speci ¢ areas of the
real data by JDE analysis performed either on a GLM based parcellatlorE)rain and not the whole brain in an exploratory manner: this

comprising K = 30 clusters (a) or on the output of the CC-JDE "% . ; :
procedure (b). limits the required time to carry out the algorithm.

ACKNOWLEDGMENT

It has to be noted that the temporal undersampling per- h h Id lik hank the "Fondati |
formed on the data may result in non-smooth HRF estimates, he alrj]t ors,(\;\_/oul o~ edtoht ar’lo\ the lc\)ln _at|o? pour all
Indeed, the following situation might occur: if all time points Recherche medicale” and the "Agence Nationale pour la
removed from the time series correspond exactly to th echerg:he for their fundm.gs, and Thomas \ﬁncent for his
5th second after the presentation of the trials of a give elpful investment concerning the parallel computing.
condition, the corresponding HRF will be impacted by the REFERENCES
presence of a discontinuity around this time point. How-[1] T. Vincent, L. Risser, and P. Ciuciu, “Spatially adaptive mixture
ever, three ingredients may compensate for this potential modeling for analysis of within-subject fMRI time series,”
problem. First, in the current experiment, 128 scans are |EEE Trans. Med. Imagvol. 29, no. 4, Apr. 2010.

recorded during a fast event-related paradigm, each Stimu';ﬁ] S. Badillo, T. Vincent, and P. Ciuciu, “Impact of the joint

type being randomly repeated 10 times. This situation is * getection-estimation approach on random effects group studies
thus unlikely. Second, as many parcellations based upon in fMRI,” in 8th Proc. IEEE ISBI Chicago, IL, Apr. 2011.
different undersamplings are performed, the poor estima- - ) ]
tion performed for one particular undersampling could bel3l B Thyreau, B. Thirion, G. Flandin, and J.-B. Poline,

. ; . ‘Anatomo-functional description of the brain: a probabilistic
compensat_ed by the other estimates. Fma!ly, the clustering approach,” inProc. 31th Proc. IEEE ICASSPToulouse,
procedure is usually based upon HRF estimates computed France, May 2006.

over several conditions, which limits the impact of the above o . o )
mentioned situation [4] T. Vincent, P. Ciuciu, and B. Thirion, “Sensitivity analysis of

parcellation in the joint detection-estimation of brain activity

VI. CONCLUSION in fMRI,” in 5th Proc. IEEE ISB| Paris, France, May 2008.

In this paper, a consensus clustering-based procedufg] L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu, “Adaptive

was introduced to robustify the hemodynamic estimation h?mo?Y”?m'g"”for_med parce_llatlcf)n of f'V'Ff(' d?ltséﬁnpa vari-
. . ational ]Olnt etection estimation framework,” t roc.
performed in the c_ontext of th.e JDE formalism. .Instead MICCAI. Nice, France, Oct. 2012.
of relying on a prior parcellation of the data, different
clusterings are performed after perturbating the data anff] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus
extracting the corresponding hemodynamic features. Results  clustering: a resampling-based method for class discovery and
from arti cial and real data showed that the new procedure  Visualization of gene expression microarray datafachine
. . learning 2003.
is better adapted to recover the hemodynamics feature of the
BOLD signal. To improve the hemodynamics estimation,[7] G. Varoquaux, A. Gramfort, and B. Thirion, “Small-sample
we plan to further extend our procedure using Weighted brain mapping : sparse recovery on spatially correlated designs
Ensemble Clustering techniques [8]. These methods jointly ~With randomization and clustering” iProc. 29th ICML,
. . . Edinburgh, Scotland, June 2012.

use different representations for temporal data clustering
algorithms. The resulting clusters are weighted and comf8] C. Domeniconi and MunaG. Al-Razgan, “Weighted cluster
bined to form a nal clustering. Moreover, we also plan ensembles,’ACM Transactions on Knowledge Discovery from
to compare our approach with the other alternative to the Data vol. 2, no. 4, 2009.
prior parcellation, the Joint parcellation-detection-estimationg) . chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu, “Fast
framework [5]. joint detection-estimation of evoked brain activity in event-

Besides, to further justify the practical value of the pro-  related fMRI using a variational approachZEE Trans. Med.
posed method, further validation on real fMRI dataset are mag, vol. 32, no. 5, May 2013.



