Dirichlet series associated to cubic fields with given quadratic resolvent

Abstract : Let k be a quadratic field. We give an explicit formula for the Dirichlet series enumerating cubic fields whose quadratic resolvent field is isomorphic to k. Our work is a sequel to previous work of Cohen and Morra, where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q. In a companion paper we do the same for quartic fields having a given cubic resolvent. As an application (not present in the initial version), we compute tables of the number of S_3-sextic fields E with |Disc(E)| < X, for X ranging up to 10^23. An accompanying PARI/GP implementation is available from the second author's website.
Type de document :
Article dans une revue
Michigan Mathematical Journal, University of Michigan, 2014, 63, pp.253-273
Liste complète des métadonnées

https://hal.inria.fr/hal-00854662
Contributeur : Andreas Enge <>
Soumis le : mardi 27 août 2013 - 17:45:38
Dernière modification le : jeudi 11 janvier 2018 - 06:22:36

Lien texte intégral

Identifiants

  • HAL Id : hal-00854662, version 1
  • ARXIV : 1301.3563

Collections

Citation

Henri Cohen, Frank Thorne. Dirichlet series associated to cubic fields with given quadratic resolvent. Michigan Mathematical Journal, University of Michigan, 2014, 63, pp.253-273. 〈hal-00854662〉

Partager

Métriques

Consultations de la notice

321