Mining Architectural Patterns Using Association Rules

Abstract : Software systems usually follow many programming rules prescribed in an architectural model. However, developers frequently violate these rules, introducing architectural drifts in the source code. In this paper, we present a data mining approach for architecture conformance based on a combination of static and historical software analysis. For this purpose, the proposed approach relies on data mining techniques to extract structural and historical architectural patterns. In addition, we propose a methodology that uses the extracted patterns to detect both absences and divergences in source-code based architectures. We applied the proposed approach in an industrial strength system. As a result we detected 137 architectural violations, with an overall precision of 41.02%.
Type de document :
Communication dans un congrès
International Conference on Software Engineering and Knowledge Engineering (SEKE'13), Jun 2013, Boston, United States. 2013
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00854851
Contributeur : Lse Lse <>
Soumis le : mercredi 28 août 2013 - 11:35:41
Dernière modification le : jeudi 11 janvier 2018 - 06:22:25
Document(s) archivé(s) le : lundi 2 décembre 2013 - 08:49:37

Fichier

2013_seke_archlint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00854851, version 1

Citation

Cristiano Maffort, Marco Tulio Valente, Mariza Bigonha, Andre Hora, Nicolas Anquetil, et al.. Mining Architectural Patterns Using Association Rules. International Conference on Software Engineering and Knowledge Engineering (SEKE'13), Jun 2013, Boston, United States. 2013. 〈hal-00854851〉

Partager

Métriques

Consultations de la notice

476

Téléchargements de fichiers

220