
HAL Id: hal-00855724
https://inria.hal.science/hal-00855724

Submitted on 29 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with constraints in sensor-based robot control
Olivier Kermorgant, François Chaumette

To cite this version:
Olivier Kermorgant, François Chaumette. Dealing with constraints in sensor-based robot control.
IEEE Transactions on Robotics, 2014, 30 (1), pp.244-257. �10.1109/TRO.2013.2281560�. �hal-
00855724�

https://inria.hal.science/hal-00855724
https://hal.archives-ouvertes.fr

Dealing with constraints in
sensor-based robot control

Olivier Kermorgant, François Chaumette

Abstract—A framework is presented in this paper for the
control of a multi-sensor robot under several constraints. In this
approach, the features coming from several sensors are treated as
a single feature vector. The core of our approach is a weighting
matrix that balances the contribution of each feature, allowing to
take constraints into account. The constraints are considered as
additional features that are smoothly injected in the control law.
Multi-sensor modeling is introduced for the design of the control
law, drawing similarities with linear quadratic control. The main
properties are exposed and we propose several strategies to cope
with the main drawbacks. The framework is validated on a
complex experiment, illustrating various aspects of the approach.
The goal is the positioning of a 6 DOF robot arm with 3D
visual servoing. The considered constraints are both eye-in-hand
and eye-to-hand visibility, together with joint limits avoidance.
The system is thus highly overdetermined, yet the task can be
performed while ensuring several combination of constraints.

Index Terms—Sensor-based control, sensor fusion, visual ser-
voing, visibility constraint, joint limits avoidance

I. INTRODUCTION

NAVIGATION or manipulation tasks are often subject to
several constraints. They can be inherent to the con-

trolled system (joint limits, limited velocity), related to the
sensors (visibility constraint) or coming from the environment
(obstacles). In this perspective, the goal is thus to perform the
desired task while ensuring the constraints.

A popular approach in this field is path planning. The
potential field method [25], [13] is a common technique
to generate collision-free trajectories. This method has been
applied to visual servoing in [35], where the trajectory is
planned in the image space and allows ensuring the visibility
and the joint limits constraints. Predictive control has also been
used in visual servoing [1]. In this case, the whole trajectory
is not planned but the objective function takes into account the
prediction over a finite horizon. Path planning in sensor space
has also been designed through LMI optimization [6], [10].
The main drawback of such schemes is that they require a
model of the environment, and may not cope with unexpected
obstacles.

On the other hand, reactive schemes such as sensor-based
control have been used to cope with the constraints. They are
often less complex to design than path planning schemes, and
require less knowledge of the environment. The task function
approach [39] is a popular technique to build sensor-based
control laws. When dealing with several sensors, each sensor

This work was presented in part at ICRA’11 and IROS’11.
The authors are with Inria Rennes-Bretagne Atlantique, Rennes,
France. Olivier Kermorgant is now affiliated to ICube, Univer-
sity of Strasbourg, France. kermorgant@unistra.fr,
francois.chaumette@irisa.fr

signal is given a reference signal and considered as an inde-
pendent component of the global task function. Each sensor
thus corresponds to a particular task. A classical scheme,
often named gradient projection method (GPM), is to draw
a hierarchy between the different tasks and to build a control
scheme that prevents lower subtasks to disturb higher ones
[17]. This is a classical way to combine sensor-based tasks and
constraints such as joint limits avoidance in redundant systems
[45], [30]. However, a common issue is when upper tasks
constrain all the robot degrees of freedom (DOF), preventing
lower subtasks from being performed. A solution can be to
build a new operator that projects a subtask on to the norm of
the main tasks [34], freeing some DOF that can then be used
by secondary tasks. Task sequencing techniques [29] can also
be used to make the task hierarchy dynamic.

With another formulation, sensor-based control laws can
be designed without imposing a strict hierarchy between the
tasks. Here the data coming from different sensors are treated
as a unique, higher-dimensional signal. This is the approach
chosen in [28] to fuse two cameras, and a force sensor and
a camera, where the designed control law is equivalent to a
weighted sum of the subtask control laws. In the general case,
using several sensors raises the question of balancing their
contributions in the control law during the servoing. Optimal
methods such as Linear Quadratic (LQ) control [37], [36] can
be applied in this approach, however the balance is often tuned
by hand after several trials [44]. As we will see, our approach
shares a similar formulation but avoids the manual tuning of
the weights.

More recently, several schemes have been designed with a
weighting at the level of the features: in [9] it allows address-
ing the problem of outliers in robust visual servoing, while in
[5] it defines a task in terms of a desired region instead of a
desired position. In [15], the visual features are deactivated
in the case of visibility lost. Recently, the framework of
varying-feature-set [31] has unified these approaches, with an
emphasis on the continuity of the control law in the case of
Jacobian rank change while signal components are added or
removed from the control law. Yet, all these schemes were
initially designed for only one sensor and to cope with specific
issues in visual servoing. In this paper this framework is
naturally extended to the multi-sensor case. Recent methods
have been proposed to perform a sensor-based task under
several unilateral constraints, with GPM framework [11], [30]
or cascade of quadratic programs [19]. We will show that our
non-hierarchical control law ensures several constraints while
performing a multi-sensor task. In the presented paper, there
is no concept of priority between the different tasks: only the
global error is taken into account. This allows defining a real

multi-sensor task that is performed in all sensor spaces at the
same time, as presented in [24] in the case of multi-camera
visual servoing.

The main contribution of this paper is to propose a canonical
weighting at the level of the features with an automatic
computation of the weights. It allows avoiding any difficult
and cumbersome manual tuning. Instead of balancing between
the tasks, a multi-sensor task is defined, then the features
themselves are balanced with a weighting function that takes
into account the several sensors and constraints. As we will
see, balancing at the level of the features allows focusing on
the most critical constraints, which is not the case if all the
constraints are considered as a single task and share the same
weight. This approach does not require any hierarchy between
the tasks and show nice properties in the sensors space and in
the robot behavior.

The proposed approach is a generic framework that embeds
our previous works about multi-camera visual servoing [24],
robot positioning while ensuring the visibility constraint [23]
and avoiding the joint limits [22]. In this paper, all these
issues are addressed within an homogeneous framework. As
we will show, this allows regrouping very easily all the tasks
and constraints into a single experiment. The robot can thus
perform eye-in-hand/eye-to-hand cooperation, together with
joint limits avoidance while ensuring the visibility constraint
in both images. As far as we know, this is the first time such
a complete and complex configuration is considered.

The paper is organized as follows. The general modeling
of a multi-sensor robot is presented in Section II. We also
show how the proposed weighting of the signal error can
take unilateral constraints into account. Then, the control law,
its stability analysis and its main properties are described
in Section III. Several additional strategies are presented in
Section IV for specific issues that may occur in practice.
Finally, experimental results are presented in Section V.

II. MULTI-SENSOR MODELING

This section presents the general modeling of a multi-sensor
robot. First, we define the global kinematic model, then we
introduce the weighted signal error that will be used in the
control law. We propose a generic weighting function that
allows both balancing the sensor features and taking into
account unilateral constraints.

A. Kinematic model

We consider a robotic system equipped with k sensors
providing data about the robot pose in its environment. The
robot joint positions are denoted q and we define n = dim(q).
Each sensor Si delivers a signal si of dimension mi with∑k
i=1mi = m and we assume m≥ n. A signal component

is called a sensor feature. In the case of a motionless envi-
ronment, the signal time derivative is directly related to the
sensor velocity vi expressed in the sensor frame by:

ṡi = Livi (1)
where Li is named the interaction matrix of si [39], [4] and
is of dimension (mi×6). Its analytical form can be derived for
many features coming from exteroceptive sensors. It depends

Object of
interest

object
frame

control
frame

s1

s2

sensor
signal

sensory
data

Fig. 1. Multi-sensor model.

mainly on the type of considered sensory data s and on the
sensor intrinsic parameters. Li may also depend on other data:
for instance the interaction matrix of an image point observed
by a camera depends on the depth of that point, which is not
actually measured in the image [4].

Now, we consider a reference frame Fe in which the robot
velocity can be controlled. This frame can be for instance
the end-effector frame for a robot arm as shown in Fig. 1.
The screw transformation matrix allows expressing the sensor
velocity vi wrt. the robot velocity ve:

vi =
iWeve (2)

iWe is given by [38]:

iWe =

[
iRe

[
ite
]
×
iRe

03×3
iRe

]
(3)

where iRe ∈ SO(3) and ite ∈ R3 are respectively the rotation
matrix and the translation vector between Fe and Fsi.

[
ite
]
×

is the (3×3) skew-symmetric matrix related to ite. Denoting
eJq ∈ Rm×n the robot Jacobian, we have:

ṡi = Li
iWe

eJqq̇ (4)
Denoting s = (s1, . . . , sk) the m-dimensional signal of the
multi-sensor set, (4) allows linking the signal time variation
with the joint velocity:

ṡ = Jsq̇ (5)
with:

Js = LWe
eJq =

 L1 . . . 0
...

. . .
...

0 . . . Lk




1We

...
kWe

 eJq (6)

where L ∈ Rm×6k contains the interaction matrices of the
sensors and We ∈ R6k×6 contains the transformation matrices.
In the sequel we assume Js is of full rank n. We will mention
in Section III-B1 that this assumption could be relaxed, but
this article focuses on the full rank case. We now define the
weighted error that will be used in the control law.

B. Weighted error

The goal of sensor-based control is to design a control law
that makes the robot reach a desired value s∗ of the sensor
features. This desired value may be obtained by teaching-by-
showing, or through a model at the desired pose: for example
in [32], visual servoing is performed with the desired value
being the projection of the object model at the desired camera
pose.

1) Weighted error: We define the weighted multi-sensor
signal error as:

eH = He (7)

where e is the sensor error defined as e = s− s∗ and H is a
diagonal positive semi-definite weighting matrix that depends
on the current value of s. As in all varying-feature-set schemes
[31], each component hi of H may vary in order to ensure
specific constraints, manage priorities or add or remove a
sensor or a feature from the control law. In the case of k
sensors, H yields:

H =

 H1 . . . 0
...

. . .
...

0 . . . Hk

 (8)

where Hi is the weighting matrix for sensor Si.

2) Weighting canonical form: Weighting can be performed
for several purposes. First, the most simple goal is to balance
the disparate sensor contributions during the scheme. As in
Linear Quadratic (LQ) control, this amounts to optimizing the
system behavior by defining a specific weight for each sensor
feature. In this paper, we propose to also use the weight of
a sensor feature to take into account unilateral constraints on
that feature. We thus define a generic weighting by:

∀i ∈ [1,m] : hi = hti + hci (9)
where hti is tuned for the general balance of the feature and
where hci allows taking potential constraints into account.
Classical control laws such as visual servo schemes usually
use the simplest weighting that corresponds to H = Im, that
is:

∀i, hti = 1 and hci = 0 (10)
Each weight (hti)i may also be tuned independently, as in
LQ control. In practice, several trials are often necessary
to determine the best weighting [44]. In varying-feature-set
schemes [15], [9], the weights hti vary between 0 and 1
depending on the confidence in each sensor feature. In this
paper we do not focus on the tuning of this weight term, and
we set hti = 1 if the feature si is always used for the actual
navigation task, and hti = 0 if the feature si only corresponds
to a constraint to be ensured. We now explicit the generic
formulation for the term hci handling the constraints.

A constraint is usually expressed by an inequality on the
value of a sensor feature. This is typically the case for
joint limits or image visibility, and is also valid when range
sensors are measuring the distance to the obstacles. Singularity
avoidance can also be considered by setting a lower bound for
det(J>s Js). In all cases, this corresponds to having to keep
the feature value si in an interval [s−i , s

+
i]. In that case, a safe

interval [ss−
i , ss+

i] can be defined by:{
ss−
i =s−i +ρi(s

+
i −s−i)

ss+
i =s+i −ρi(s+i −s−i)

(11)

where ρi ∈ [0, 0.5] is a tuning parameter. The weighting term
hci handling the constraint is then given by:

hci =


si−ss+

i

s+i −si
if si > ss+

i

ss−
i −si
si−s−i

if si < ss−
i

0 otherwise

(12)

hci is represented in Fig. 2. Similarly to a repulsive field [25],
the weight is null in the safe region and continuously increases
to ∞ as the feature approaches the limit. A constraint is said

s− s+ss− ss+
Featurevalue

0

20

40

60

80

100

Fig. 2. Generic weighting hc for the basic constraints

to be active when its weight hci is non-null. The next section
presents the control law and its main properties. In particular,
the weights in case of one or several active constraints are
studied in Section III-C5.

III. CONTROL LAW

We now present the generic control law associated with
the weighted error defined in (7) and its link with the linear
quadratic (LQ) approach. The main properties for sensor fu-
sion are then presented. In particular, when only one constraint
is considered we show in Section III-C that a sufficient weight
ensures the corresponding feature error is decreasing, and
that a minimal weight can be determined. We then expose
additional strategies that can be used for specific issues.

A. Weighted control scheme

In the task function approach [39], the task error etask ∈ Rn
is defined by:

etask = C(s− s∗) = Ce (13)
where C ∈ Rn×m is named the combination matrix and
allows to take into account the redundancy between the sensor
features. A classical controller is then:

q̇ = −λetask = −λCe (14)
A popular choice that tries to ensure an exponential decrease
of etask is C = Ĵs

+
, that is an estimation of the Moore-Penrose

pseudo-inverse of Js. In our case, J+
s = (J>s Js)

−1J>s since
Js is full rank. This strategy can be seen as a particular case
of LQ control [36]. In this framework, a cost function F has
to be minimized and is defined with:

F = (s− s∗)>Q(s− s∗) + q̇>Rq̇ (15)
where Q and R are weighting matrices that are usually tuned
in order to obtain an optimal behavior of the robot. The
selection of the elements of Q and R may be computed from
a pole placement tuning or considerations on the variance
of observed data [44]. In practice, several trials are often
necessary to obtain the desired behavior. The corresponding
control input yields [26]:

q̇ = −λ(Ĵ>s QĴs +R)−1Ĵ
>
s Q(s− s∗) (16)

This control law is the same as (14) for the particular weight-
ing Q = Im and R = 0.
When considering the weighted error eH instead of e, the
associated Jacobian is JH = HJs. In this case, control law
(14) yields:

q̇ = −λ(HĴs)
+eH = −λ(HĴs)

+He (17)

The combination matrix of e is thus given by:
C = (HĴs)

+H (18)
When compared with LQ control, this combination matrix
corresponds to the particular weighting Q = H2 and R = 0.
Indeed, in this case the LQ scheme (16) yields:

q̇ = −λ(Ĵ>s H2Ĵs)
−1Ĵ

>
s H

2(s− s∗) (19)

= −λ
(
(HĴs)

>(HĴs)
)−1

(HĴs)
>H(s− s∗) (20)

= −λ(HĴs)
+H(s− s∗) = −λC(s− s∗) (21)

The main difference between our scheme and classical LQ
control is about the use of the weighting matrix Q. In LQ
control it is usually tuned in order to obtain an optimal
behavior of the robot. In the proposed scheme, we focus on
the balance between the different features and sensors and
potential constraints. Actually, the two strategies may be used
in a complementary way: if both H and Q are defined from
their respective frameworks, a global scheme can be designed
by using the weighting matrix H>QH. Also, a control cost
matrix R 6= 0 could be used if needed.
As for the estimation of Js, the most popular choices are
summarized in [24], showing the induced behaviors. From
(6), computing Js amounts to choosing how to estimate the
interaction matrices Li and the transformation matrices iWe.

a) Interaction matrices: Several possibilities exist for the
interaction matrices [4]. Two classical choices are to use the
current interaction matrix, or its value at the desired pose
L∗. In this case the interaction matrix is constant. Another
popular strategy is the mean interaction matrix 1/2(L+ L∗),
which was recently shown as an approximation of second-
order minimization [41].

b) Transformation matrices: If the sensors are rigidly
attached to the effector, then all transformation matrices are
constant and can usually be estimated in an offline calibration
step. In the other case, for instance in eye-to-hand configura-
tion, We is not constant and the desired value W∗

e depends
on the final 3D pose of the sensors wrt. the effector. This
pose is generally unknown in sensor-based control. The most
plausible choice is thus to estimate the current transformation
matrices from the robot geometrical model and calibration.
In the sequel we assume that an estimation of the current
matrices L and We is available, allowing to estimate Js in real-
time. We now study the properties of the proposed scheme.

B. Control scheme properties

This section explores the basic properties of the control law.
First we expose the condition for control law continuity and
study the case of null weights. We then show local asymptotic
stability.

1) Continuity and influence of null weights: The continuity
of varying-feature-set control laws has been studied in [31]. In
the general case, continuity is ensured under three conditions:
H and Js are continuous and the pseudo-inverse operator is
continuous for HJs. The latter is ensured under the assumption
that HJs is full-rank, which implies in particular that there are
always at least n non-null weights. The case of rank change is
solved in [31] with a generalized pseudo-inverse, however in

this paper we use the classical pseudo-inverse and assume HJs
is full-rank. Usual sensor features have a continuous Jacobian
Js. The formulation of the weighting matrix in Section II-B2
is also continuous, hence the control law is continuous.
Control law (17) is designed to ensure that Hė = −λHe,
which is different from classical design ė = −λe. This
difference clearly appears for configurations with null weights.
Assuming s = (s1, s0) where features s0 have null weights
(H0 = 0), the control law (17) can be written:

q̇=−λ
[
H1Ĵ1

H0Ĵ0

]+[
H1e1
H0e0

]
=−λ

[
H1Ĵ1

0

]+[
H1e1
0

]
=−λ

[
(H1Ĵ1)

+ 0
][

H1e1
0

]
=−λ(H1Ĵ1)

+H1e1 (22)

The scheme is thus equivalent to the control law for active
features only. In particular, it is different from not taking
into account the weighting matrix in the pseudo-inverse.
More precisely, in [16] the combination matrix is defined as
C = Ĵs

+
H, inducing the following:

q̇ =−λĴs
+
He (23)

=−λ
[
Ĵ1

Ĵ0

]+[
H1e1
0

]
(24)

The zeroed error components are thus still taken into account
and the system behaves exactly as if the desired values for e0
had been reached, which induces an undesired conservative
behavior to ensure the useless constraints e0 = 0. This is not
the case with our approach.

2) Local asymptotic stability: Varying-feature-set schemes
usually neglect the time variation of H by assuming the
weighting matrix is varying slowly, or that it is null at
the convergence as in region-reaching visual servoing [5].
Actually, when H is integrated into the combination matrix
and assumed to be varying wrt. s, the stability analysis is the
same as with a varying Js [4]. As for classical IBVS schemes,
a direct consequence is that global asymptotic stability cannot
be proven as soon as redundant features are involved (m > n).
From (6) and (18), the task error variation yields:

ėtask = Cė+ Ċe = (CJs +O)q̇

= −λ(CJs +O)etask (25)
where O ∈ Rn×n = 0 when etask = 0 [4]. With the
combination matrix from (18), this scheme is known to be
locally asymptotically stable (LAS) in a neighborhood of
e = 0 if [18]:

CJs = (HĴs)
+HJs > 0 (26)

The system is thus LAS when HJs and HĴs are full rank
and when the Jacobian Js is sufficiently well estimated, which
is the case in general. In this case, potential local minima
correspond to configurations where H2(s − s∗) ∈ Ker Ĵs

>
.

We will see in Section IV-A how to deal with this issue. Let
us also note that determining theoretically the convergence
domain seems to be out of reach. However, as we will see in
Section V, it reveals to be surprisingly large in practice.

C. Particular case of one constraint

In this section we focus on the case where only one active
constraint is involved. In that case, we show that a sufficiently
high weight induces the decreasing of the corresponding
feature error. In particular, we determine the minimal weight
ensuring the corresponding constraint is respected. Dealing
with several active constraints simultaneously is finally dis-
cussed at the end of this section.

1) Sufficient weight: We assume the reference value s∗i
of the feature si is in the confidence interval. A sufficient
condition for the associated constraint to be ensured is that
the error ei = si − s∗i decreases. We now show that this can
be ensured at each iteration if the associated weight is high
enough. A classical Lyapunov function associated with the
weighted error is V (eH) = 1

2e
>
HeH. Assuming we are in the

domain of local stability, the time derivative of V yields:

V̇ =
∂V

∂eH
ėH =

m∑
i=1

h2i eiėi < 0 (27)

The error ei decreases iif eiėi < 0, which is equivalent to:

h2i > −
1

eiėi

∑
j 6=i

h2jej ėj (28)

Hence, in any configuration there exists a sufficiently high
weight hi that ensures the corresponding feature error norm is
decreasing. Note that if ėi = 0 or ei = 0, the corresponding
constraint is de facto ensured.

This property on sufficient weights has been recently high-
lighted in [21], where the parallel is drawn with the GPM
approach and constrained optimization.
Isolating the particular feature si , the control law (17) can be
written as the minimum-norm solution to:

min
q̇
‖HiJiq̇−Hiė

∗
i ‖2 + hi ‖Jiq̇− ė∗i ‖2 (29)

where ė∗ is such that Hė∗ = −λHe and Xi denotes a value
related to all features except si. It has been shown in [42] that
the solution to (29) when hi tends to infinity is exactly the
solution to the constrained minimization:{

minq̇ ‖HiJiq̇−Hiė
∗
i ‖2

s.t. Jiq̇ = ė∗i
(30)

Note that (30) corresponds to the GPM approach with feature
si used as the priority task and the other features as the
secondary task. At a given iteration and if the Jacobian Ji is
sufficiently well estimated, the condition ėiei < 0 is ensured
with the system (30) since in this case, ėiei ≈ ė∗i ei = −λe2i <
0. Hence, coming back to (29), there exists a value hmin

i such
that:

∀hi > hmin
i , ėiei < 0 (31)

The decrease of the error, hence the corresponding constraint,
can be thus ensured with a finite weight at any given iteration.
We now explicit the computation of this minimal weight.

2) Minimal weight: We denote si the feature corresponding
to the considered constraint. The goal here is to disturb the
task ei as little as possible by determining the weight hi that
is as small as possible, yet sufficiently high to ensure the
corresponding constraint.

The time variation of the constrained feature is given by:
ṡi = Jiq̇ = −λJi(HJs)

+H(s− s∗) (32)

= −λJi(J>s H>HJs)
−1(J>i H

2
i ei + h2iJ

>
i ei) (33)

We now show that ensuring ṡi = 0 leads to a linear condition
on h2i .
We have:

(J>s H>HJs)
−1=

adj(J>s H2Js)

det (J>s H2Js)
=

1

D(h)
A(h) (34)

where D(h) is a strictly positive polynomial of (h2i), being the
determinant of a symmetric invertible matrix, and A(h) is the
adjugate matrix of J>s H2Js, that is the matrix of the cofactors.
A is a (n×n) full rank symmetric matrix. The constrained
feature time variation thus yields, up to the scale factor λ

D :

ṡi ∝ −JiA(J>i H
2
i ei + h2iJ

>
i ei) (35)

We now show that JiA does not depend on hi. To do so, it
is sufficient to show that J1A does not depend on h1, as any
permutation of the rows of s, J and H would lead to the same
control law. Let Q and R be the QR decomposition of J>.
We have:

JA = R>Q>adj(QRH2R>Q>) (36)

= R>Q>adj(Q>)adj(RH2R>)adj(Q) (37)

= R>adj(RH2R>)adj(Q) (38)

as Q>adj(Q>)=det(Q>)In= In. R being upper triangular,
h1 only appears in the first element of RH2R>. From the
adjugate matrix properties, the first row of adj(RH2R>) does
not depend on h1. Thus, as R> is lower triangular, the first
row of JA does not depend on h1, which concludes the
demonstration that can be extended to all indexes.
We denote the two hi-independent scalars:{

ci = −JiAJ>i H
2
i ei

ai = JiAJ>i ei
(39)

From (35), ṡi is thus linear wrt. h2i and can be written:
ṡi ∝ ci − h2i ai (40)

This leads to two configurations C1 and C2 that are repre-
sented in Fig. 4:

– Approaching the constraint (C1): if ci and ai have the same
sign, the robot is going towards the constraint. In that case
there exists a positive h2i such that ṡi is null.

– Avoiding the constraint (C2): if ci and ai do not have the
same sign, the robot is moving away from the constraint: self-
avoidance occurs and the avoidance scheme can be ignored.

From this observation, we define the values sa− and sa+ where
the feature has to stop:{

sa−
i = s−i + ρa(s+i − s−i)
sa+
i = s+i − ρa(s+i − s−i)

(41)

where ρa < ρ is a tuning parameter. The minimal value can
thus be computed analytically from (40):

hmin
i =

{ √
ci
ai

if ci
ai
> 0 (C1)

0 else (C2)
(42)

where hmin
i = 0 corresponds to the configurations where self-

avoidance occurs.
Such minimal weight ensures that the constraint is ensured
at least when si = sai since in this case we have ṡi = 0.

s− s+sa− ss+ss− sa+
Featurevalue

0.0
0.2
0.4
0.6
0.8
1.0

Fig. 3. Activation function for lower and upper bounds.

Fig. 4. Configurations C1 (left) and C2 (right). The feature approaches the
nearest limit in C1, while it goes away in C2.

−2 −1 0 1 2

0

1

2

3

4

5

w
al

l x0

x1 x2

(a) Trajectory to x1

0 50 100 150 200 250
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6 h1

(b) Weight to x1

Fig. 5. Minimal weight in simulation. Robot trajectory (a) and corresponding
weight (b). The dotted line shows the trajectory with the generic weight (12).
The minimal weight value is 0.5 at the beginning, then increases as the robot
approaches the wall. The minimal weight is null once the robot has passed
the wall.

However, as we do not need to ensure the constraint before
si = sai , the minimal weight is smoothly taken into account
with an injection function.

3) Injection function: We address the injection of hmin with
the following form of the weights:

∀i, hci = µi(si)h
min
i (43)

where µi(si) ∈ [0, 1] is a continuous function.
To ensure continuity of HJs and He, weights must be

null at feature activation and deactivation, and increasing as
the constrained feature values vary from the safe limit to the
physical limit. In our case, the injection function is null when
si = ssi and equal to 1 when si = sai . Such a function can be
defined with a sigmoid:

µi=


1
2

(
1+tanh(1

sa+
i −si

− 1
si−ss+

i

)
)

if ss+
i <si<s

a+
i

1
2

(
1−tanh(1

sa−
i −si

− 1
si−ss−

i

)
)

if sa−
i <si<s

s−
i

1 else
(44)

µi is C∞ and smoothly increases the weight as the feature
reaches the limit, with µi(sa−

i) = µi(s
a+
i) = 1 and µi(ss−

i) =
µi(s

s+
i) = 0. The proposed injection function is represented

on Fig. 3. This allows activating the feature as progressively
as possible, hence with the smallest disturbance on the main
task.

4) Example in simulation: The proposed minimal weight
is illustrated in simulation. The simulation setup is voluntarily
simple and consists in a 2D Cartesian robot that has to reach
a point. The task Jacobian is thus I2. The constraint is to

0

1

2

3

4

C2 C1

Fig. 6. Weights for configuration C1 (upper bound) and C2 (lower bound).
In C1 (red), the feature is going towards its limit and a non-null weight has
to be used (here hmin = 0.5). In C2 (green), the other features induce the
avoidance, hence the weight can be null in the activation area. If the feature
still approaches the limits, the generic weighting hc is used in both cases.

keep a minimum distance to the wall that is present. The
simulation is represented in Fig. 5. The robot starts in x0(0, 4).
The measured distance to the wall is d = 2 while the desired
distance has been set to d∗ = 4. The activation values are
defined as da = 1 and ds = 3. Denoting ex the task error and
ed the error related to the constraint, the variables from (39)
yield:

Jx = I2 Jd = [1 0] A = I2 ed = −2 (45)
From (39), we thus have a = −2 and c = [−1 0]ex.

• If the desired position is x1(−2, 0) we have c = −2.
From (42), the minimum weight is thus hmin = 1. As d =
2, the actual weight will be h = µ(d)hmin = .5× hmin =
0.5. As long as d > da the robot will thus approach the
wall if the task requires so. The weight is represented
in Fig. 5b. We can see the initial value is indeed 0.5,
then increases as the robot comes nearer to the wall. This
means the weight is not high enough to have ḋ = 0 at
this position, which is the desired behavior as we want
the robot to stop approaching the wall only at da = 1.

• If the desired position is x2(2, 0) we have c = 2: self-
avoidance occurs, as it can be guessed in Fig. 5a. This
also occurs at the end of the task to x1 once the wall
is passed, inducing a null weight and a straight line
trajectory.

5) Ensuring several constraints: In the case of several con-
straints having to be ensured simultaneously, coupling terms
appear since a system of equations (40) is highly non-linear. A
solution still exists to stop all the endangered constraints (for
instance q̇ = 0 is always a solution) but it would be difficult to
compute analytically the corresponding set of optimal weights.
The minimal weighting (42) can thus be used together with
the generic weighting (12). With this strategy, the weighting is
minimal in [sa−, sa+] but is still robust to multiple avoidance.
Such a weighting is represented in Fig. 6. We have assumed
that C1 holds for the upper bound with an optimal weight of
hmin = 0.5 and that C2 holds for the lower bound, hence the
optimal weight is null. If the feature goes out of [sa−, sa+]
the generic weighting is used for both bounds. In this case,
an endangered constraint will have its weight increased until
it reaches a sufficient value, which explains why the generic
weighting (12) is not bounded. As the sufficient and minimal
weights for one constraint depend on the other constraints
(see (28) and (42)), this can lead to a general increasing of
the weights corresponding to all the endangered constraints
until avoidance. In the general case the induced behavior is

Data: α = 1, α+ > 1, α− < 1
while convergence has not been reached do

compute optimal weights H = Diag(Hc,Ht);
compute ve using (17);
if ‖ve‖ < vε and ‖H(s− s∗)‖ > eε then

α← α+α;
else

α← 1 + α−(α− 1);
end
apply control law using weights Diag(αHc,Ht);

end
Algorithm 1: Escape from local minima

0 50 100 150 200 250
iterations

-

+

qa−

qa+

qs−

qs+

1 4

2 5

3 6

(a) Joint positions q

0 50 100 150 200 250
iterations

0

5

10

15

20
1

2

3

4

5

6

(b) Joint weights Hq

Fig. 7. Joint position and weights while escaping from a local minimum.
Oscillations appear in h3 (red), inducing small oscillations in the robot motion.

satisfactory even if it remains possible to define a task under
constraints that would be impossible to perform. In such a
case, weights cannot be proven to be finite anymore since the
system is no more stable and (27) does not hold. Finally, the
sole generic weighting may also be used, leading to a less
optimal behavior as seen with the dotted trajectory in Fig. 5a.
We now highlight practical issues for the presented system.

IV. POTENTIAL ISSUES

Three undesired behaviors may be encountered in the pre-
sented system. First, as in all sensor-based approaches, local
minima may appear as soon as the system is overdetermined,
that is m > n. Reaching a desired position where the con-
straints are active is a second issue. Finally, having potentially
high weights may cause oscillations in some cases. In this
section, we propose several strategies for each of these issues.

A. Escaping from local minima

The main drawback of the proposed scheme, as for all
redundant reactive sensor-based schemes, is the potential ex-
istence of local minima. Indeed, as soon as m > n only local
stability can be proven. As no planning is considered with a
higher-level controller, the approach that has been investigated
is to detect that a local minimum has been reached, and try
to escape from it. A local minimum is easily detected as it
is necessarily a configuration where the end-effector velocity
is almost null, while some of the weighted error components
H(s − s∗) are not null. The detection condition can thus be
defined by two parameters vε and eε such as a local minimum
corresponds to a configuration where:

‖ve‖ < vε and ‖H(s− s∗)‖ > eε (46)

Once a local minimum has been detected, we allow the system
to perform non-optimal motion in terms of the sensor-based
task, by increasing the weights corresponding to the active
constraints. This can be seen as a random walk [2] where we
use the structure to compute the escaping motion. We denote
ec the set of features that regroups the active constraints, and
et the other features. The corresponding strategy to modify
the weighting matrix is described in Algorithm 1: the weights
Hc are artificially increased by a multiplicative factor α, until
reaching a configuration where:

[
Hc 0
0 Ht

]2
(s− s∗) ∈ Ker Ĵs

+

[
αHc 0
0 Ht

]2
(s− s∗) /∈ Ker Ĵs

+
(47)

In this case, the obtained motion is null if α = 1 while
it is not with the obtained α > 1. This may not be true
for any given α but in this case Algorithm 1 will carry on
increasing α and eventually lead to a configuration that is
out of the null space. Meanwhile, if α makes the weights
reach very high values, the system is slowed down by the
adaptive gain detailed in Section IV-C. α is always equal to 1
as long as no local minimum has been reached. During normal
convergence, α is slowly set back to 1. The proposed algorithm
makes the active constraints more repulsive, which can be seen
as a temporary hierarchy between the active constraints and
the other features. Still, such a hierarchy seems natural as
constraints have of course to be ensured. On the opposite,
going out of a local minimum often prevents from performing
optimally the positioning task, as the escaping motion is
usually opposed to the motion that is induced by the task. That
is why we temporarily increase the weights of the constraints.
The tuning of α+ and α− may be difficult. In practice, α has
to reach a sufficiently high value in order to ensure that the
robot will not go back to the same local minimum. A condition
to allow the escape from a local minimum is that α+α− > 1.
This corresponds to α increasing faster than it decreases back
to 1. The value we used are α+ = 1.05 and α− = 0.99.
This strategy is inspired by simulated annealing [3], where
the parameter α acts as the annealing temperature. We now
show two simulation examples of the proposed algorithm.

a) Joint limits: The induced behavior is represented in
Fig. 7, for a simulation of joint limits avoidance in visual
servoing. A local minimum occurs around iteration 10. We
can see in Fig. 7a that the joint positions are barely evolving
from iteration 20 to 70, and that joint limit avoidance is active
for joint 3. The joint weights are artificially increased as seen
in Fig. 7b. As the most critical joint is q3, the corresponding
weight is far more important than the others. This allows
escaping from the local minimum and induced oscillations
are very small in practice. Finally, it is interesting to notice
that local minima rarely occur wrt. the number of features
compared to the available DOFs. In particular, in [23] we
have performed exhaustive simulations fusing 2D and 3D
visual servoing. No local minima have been found in this
configuration.

b) 2D Cartesian robot: We use the robot setup presented
in Section III-C4. Walls are set up such that a local minimum

−2 −1 0 1 2 3

0

1

2

3

4

x0

x1

loc
al

min
im

um

(a) Trajectory

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5
h1

h2

(b) Weights

Fig. 8. 2D Cartesian robot escaping from a local minimum (a). Without
the proposed strategy the robot is stuck in the indicated position. The
corresponding weights (one per wall) (b) are quickly increasing at the
beginning, before slowly decreasing.

exists, as shown in Fig. 8a. Without the proposed algorithm the
robot ends up in the indicated position. The proposed strategy
allows the robot escaping the local minimum, and uses the
structure of the task to find an exit. In Fig. 8b we can see
that the corresponding weights are quickly increased, before
slowly decreasing. This illustrates the balance between α+

and α−. Of course, as it is only a reactive scheme some
local minima still exist, particularly when the situation is
symmetrical. Indeed, in this case increasing the weight would
only lead to going backwards. Complex traps such as U-shapes
may not be escaped either: in such cases a planning strategy
should be used.

B. Reaching an unsafe position

If the desired position is outside the safe area, that is
s∗ ∈]s−, ss−]∪]ss+, s+], the main task cannot be perfectly
performed as it does not correspond to the global minimum
of the complete weighted task. Indeed, denoting s = (st, sc)
where st corresponds to the main task and sc to the constraints,
the desired position is defined by:

q∗ = argmin
q

(
e>t H

2
tet
)
6= argmin

q

(
e>H2e

)
(48)

where e>H2e = e>t H
2
tet + e>c H

2
cec. A sufficient condition

to overcome the inequality (48) is to ensure that Hc = 0 in a
neighborhood of the desired position.

To do so, we introduce a progress parameter ξ(‖et‖)
smoothly making the constraint weights null when the main
task gets close to completion.

ξ(‖et‖)=


0 if ‖et‖≤e0
1 if ‖et‖≥e1
1
2

(
1+tanh(1

e1−‖et‖−
1

‖et‖−e0)
)

else
(49)

where e0 and e1 are defined so that the constraints are totally
ignored when the main task is close to completion, that
is ‖et‖ < e0. The corresponding weighting matrix yields
H = Diag(Ht, ξ(‖et‖)Hc) and is equal to H∗ = Diag(Ht, 0)
at the vicinity of the desired position. The desired position
can thus be reached. Finally, depending on the situation, one
may or may not use this progress parameter: indeed in some
configurations it is preferable to converge to a compromise
between the desired position and the constraints, typically
if the desired position lies outside of the boundaries of the

0 1 2 3 4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x0
x1

Adapt
No adapt

Fig. 9. Oscillations in a corridor. Without the adaptive gain, the robot
oscillates between the two walls (green line). The adaptive gain allows
drawing a smooth trajectory (dotted blue line).

constraints.

C. Avoiding oscillations

The generic weights (12) increase when approaching the
constraints. When several constraints are being reached, this
may lead to oscillations or even to violating the constraints
due to discretization. In our case, an efficient way to cope with
this issue is an adaptive gain depending on ‖H‖ that slows the
system in the vicinity of the constraints. The LAS analysis in
Section III-B2 is of course still valid with a varying gain, since
it can be considered as part of the varying combination matrix.
The control gain λ involved in (17) is given by:

λ(‖H‖) = (λ0 − λ∞)e−
λ′0

λ0−λ∞
‖H‖ + λ∞ (50)

where:
• λ0 = λ(0) is the gain in 0, that is for very small weights
• λ∞ = lim‖H‖→∞ λ(‖H‖) is the gain to infinity, that is

for very high weights
• λ′0 is the slope of λ at ‖H‖ = 0.

In practice we have used the values λ0 = 1, λ∞ = 0.1 and
λ′0 = 0.5. The proposed strategy is illustrated in simulation in
Fig. 9, with the 2D Cartesian robot setup. This time the walls
draw a corridor. If the gain is too high, oscillations appear
(green line). This is not the case if the adaptive gain is used
(dotted blue line).

Finally, in the case of opposed constraints, hence several
increasing weights, such an adaptive gain would eventually
make the robot stop if no solution exist. This seems an
acceptable behavior in such a bad situation.

We now present the experimental results illustrating various
aspects of the proposed scheme.

V. EXPERIMENTAL RESULTS

In order to illustrate the proposed approach, experiments
are carried on a 6-DOFs Gantry robot. The control laws
are implemented using ViSP software [33]. We first detail
the experimental setup and its calibration. The sensors and
constraints are then introduced one after the other in the
control law.

The eye-in-hand camera observes a fixed object, the CAD
model of which is known. Its edges are tracked to allow for

Fig. 10. Experimental setup: (a) Eye-in-hand camera with a 3D landmark,
(b) Observed object, (c) Eye-to-hand camera

Fig. 11. Integration of various subsystems: hybrid eye-in-hand features for
the visibility constraint, eye-to-hand cooperation and joint positions to avoid
joint limits.

the pose estimation at camera rate (30Hz) [8]. The eye-in-
hand camera carries a landmark that allows its 3D tracking in
the eye-to-hand view [32]. The carried landmark is composed
by 30 dots. Both cameras are calibrated. The pose between
the eye-in-hand camera and the landmark cMo2 is roughly
calibrated. The eye-to-hand camera pose wrt. the robot
reference frame fMc2 is also roughly calibrated (see Fig. 11).
Fig. 12 represents the two initial images. The robot translation
joints 2 and 3 are represented in Fig. 12b. Joint 2 thus
corresponds to an horizontal motion, while joint 3 corresponds
to a vertical motion in the eye-to-hand view. The initial and
desired poses make it necessary for the robot to move away
from the observed object in order to keep it entirely in the
FoV. As we will see, this backward motion makes the end-
effector approach not only the upper limit of the eye-to-hand
image, but also some joint limits.
As the desired position is out of the safe joint interval, the
joint weights are progressively set to 0 (49) according to the
strategy exposed in Section IV. The adaptive gain (50) is also
computed from the activation matrix norm. We now present
the system behavior while the constraints are added one after
the other.

A. Pure position-based visual servo (case 0)

As previously said, the pose between the eye-in-hand cam-
era and the object is estimated at each iteration of the control

(a) Eye-in-hand initial image (b) Eye-to-hand initial image

Fig. 12. Initial images. The object is large in the eye-in-hand image (a). The
3D landmark approaches the top of the eye-to-hand image (b).

(a) Case 0: eye-in-hand image. (b) Case 1: eye-to-hand image

Fig. 13. Without the visibility constraint, the observed object leaves the FoV
in case 0 (a). The moving landmark leaves the FoV in case 1 (b).

scheme. It is thus possible to perform PBVS [43].
The corresponding 3D features are s3d = (c∗tc,

c∗θuc). They
describe the transformation between the current and the
desired camera pose. The associated desired features is a
null vector, and the interaction matrix L3d is known to be
bloc-diagonal, inducing decoupled translational and rotational
motions [4]. In perfect conditions, the corresponding camera
trajectory is a 3D straight line. The associated weighting is
classically constant, that corresponds to H3d = I6. Further-
more, this ensures the matrix HJs is full rank, which is a
condition for the control law continuity.
The main drawback of PBVS is the lack of control in the
image: control is done only in the 3D space and does not
ensure the observed object stays in the FoV. In our case, this
lack of control clearly appears in Fig. 13a. After few iterations,
the object leaves the FoV and the task cannot be performed
anymore. We thus add the visibility constraint into the scheme.

B. Adding the visibility constraint (case 1)

The visibility constraint in visual servoing has been previ-
ously addressed through switching control law [14], or visual
planning [12], [40], [7], [20]. Here, we define a set of 3D
points (ox1, . . . ,

oxp) that are attached to the observed object,
typically the nodes of the CAD model. As the camera pose
cMo is estimated in real time, the 2D coordinates of the
projection of the 3D points can easily be computed together
with their depth. The visibility constraint is taken into account
by adding the feature vector s2d as the Cartesian coordinates of
these 2D points. The well-known analytical expression of the
interaction matrix of an image point depends both on its image
coordinates (x, y) and on its depth Z [4]. The interaction
matrix of s2d can thus be computed in real time. Similarly, the

0 200 400 600 800 1000
iterations

0

5

10

15

20

25

(a) Eye-in-hand weights H2d

0 200 400 600 800 1000
iterations

0

1

2

3

4

5

(b) Eye-to-hand weights Hext

0 200 400 600 800 1000
iterations

-

+

1

2

3

4

5

6

(c) Joint positions q

Fig. 15. Case 2. Visibility constraints in eye-in-hand (a) and eye-to-hand (b) are competing at iteration 240. At this time, joint 2 passes its upper limit (c).

0 200 400 600 800 1000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

(a) Visibility weights H2d

0 200 400 600 800 1000
iterations

-

+

1

2

3

4

5

6

(b) Joint positions q

Fig. 14. Case 1. The weighting is quite small for the visibility constraint
(a). The joint positions are inside their limits but joint 2 (green) approaches
the upper bound (b).

corresponding desired features s∗2d = (x∗, y∗) are computed
from the desired camera pose c∗Mo . Let (x−, x+, y−, y+) be
the image borders: a safe region can be defined as in (11). In
this experiment we use ρ = 5%. Finally, the feature vector is
defined by:

s =

[
s3d
s2d

]
· · · PBVS (dim. 6)
· · · Visibility (dim. 2×12) (51)

where the dimension of the feature vectors are detailed: 6 com-
ponents for the PBVS, and 2×12 for the visibility constraint (12
nodes in the object CAD model). The corresponding weighting
matrix is H = Diag(I6,H2d) where H2d is derived from (9)
using ht = 0 and hc given by (12). We can notice that the
global minimum corresponds to the desired pose: indeed, if
s3d = s∗3d then cMo = c∗Mo , and s2d = s∗2d. Hence, the
progress parameter (49) is not used for this constraint, as the
robot will converge to the desired pose even if some constraints
are active. The resulting images are shown in Fig. 16. The
active nodes are plotted in orange for the visibility constraint.
This time the object stays in the FoV during the whole scheme.
The visibility weights H2d are represented in Fig. 14a. Their
value remains small (h < 3) and yet allows ensuring the
constraint. Several features are active around iteration 240. The
maximum value is obtained around iteration 600 for only one
2D feature. This corresponds to one of the nodes approaching
the left border during the rotation around the optical axis (see
the video accompanying this paper). Joint positions (Fig. 14b)
stay inside their limits, yet no avoidance is specified in this
experiment. Finally, Fig. 13b shows the 3D landmark goes out
of the eye-to-hand view around iteration 240, that is when the
camera moves away from the object to keep it in the FoV.

(a) Eye-in-hand view (iter. 240) (b) Eye-to-hand view (iter. 240)

Fig. 16. Case 2. This time the camera goes to the right of the eye-to-hand
image while ensuring the eye-in-hand visibility constraint.

C. Adding the eye-to-hand visibility constraint (case 2)

We now take into account the visibility constraint in the
eye-to-hand view. The modeling is the same as previously
exposed. The considered points are the 30 points from the
3D landmark. We denote sext the corresponding 2D features.
The global feature vector is thus s = (s3d, s2d, sext) and the
weighting matrix is H = Diag(H3d,H2d,Hext) where Hext is
defined exactly as H2d.

The resulting images are shown in Fig. 16. This time, the
3D landmark stays in the eye-to-hand FoV. The eye-in-hand
visibility constraint can still be ensured as the camera moves
to the right instead of moving up. As seen in Fig. 15c, this
makes joint 2 (green) pass its upper limit (which is not the real
limit so that it has been possible to realize this experiment).

The corresponding weights are represented in Fig. 15.
Adding a new constraint makes the visibility weights H2d

increase when compared to the previous section. Indeed, eye-
in-hand and eye-to-hand visibility constraints are competing
around iteration 240 which makes the eye-in-hand weights
pass 10, while one of the eye-to-hand weights reaches 5. As
previously, the maximum weight is reached around iteration
600 for the visibility constraint.

D. Adding the joint limits avoidance (case 3)

We now take into account the joint positions in the task.
The global feature vector yields:

s =


s3d
s2d
sext
q


· · · PBVS (dim. 6)
· · · Eye-in-hand visibility (dim. 2×12)
· · · Eye-to-hand visibility (dim. 2×30)
· · · Joint positions (dim. 6)

(52)

(a) Eye-in-hand view (iter. 240) (b) Eye-to-hand view (iter. 240)

Fig. 17. Case 3. The camera cannot move to the right anymore when the
observed object is large in the eye-in-hand image (a). This time the 3D
landmark comes towards the eye-to-hand camera while rotating around the
optical axis (b).

The corresponding weighting matrix is thus H =
Diag(H3d,H2d,Hext,Hq) where Hq regroups the joint
weights. We use the strategy exposed in Section III-C2: Hq

corresponds to the optimal weighting (43). The activation and
safe areas are defined with ρ = 10% and ρa = 5%. For this
constraint, the progress parameter (49) is used as the desired
position is likely to lie in the joint unsafe area.

Fig. 17 shows the eye-in-hand and eye-to-hand images that
correspond to iterations 240, when the main difficulty occurs:
some 2D points are very near to the image border in both
views. We can see in Fig. 19c that at the same time one of
the joint limits is being avoided very closely. This corresponds
to a configuration where the camera has to move away from
the object in order to keep it in the FoV, but has its motion
limited by both the eye-to-hand visibility constraint and the
joint limit. The values of the weights are represented in Fig. 18
and clearly reflect this phenomenon. Indeed, all three curves
indicate that the constraints are endangered at the same time.
Several weights reach their maximum around iteration 240.
The corresponding values are higher than in the previous
cases: the eye-in-hand visibility constraint has some weights
reaching 20, while the eye-to-hand and the joint weights reach
5. As previously announced these values are still acceptable
and do not endanger the conditionning of H and the whole
system is stable. Reducing artificially the joint limit would
typically lead to a configuration where the task could actually
not be performed without violating the constraints and the
robot would have stopped at this position.

As previously, a second peak value is reached for one visi-
bility weight around iteration 600. This time the corresponding
value is less than 10, compared to 25 in case 2. This constraint
is thus less endangered by the trajectory from case 3 than the
one from case 2. As for the general behavior of the robot,
Fig. 19a reveals that some oscillations appear in the velocity
setpoint. This is due to the high number of constraints that
are near to violation at the same time. We can notice in
Fig. 18c that the adaptive gain is reduced by 10 at this time.
This is clearly visible in Fig. 19a that the system slows down
around iteration 240. The measurement of the joint positions
in Fig. 19c shows that the general motion remains smooth
all along the task and especially even when joint 2 is near
its limit. Finally, Fig. 19b represents the PBVS error. Even if
the corresponding weighting matrix is the identity, the other

0.0

0.1

0.2

0.3

0.4

0.5

1
2
3
0

Fig. 20. 3D trajectories for the presented cases, observed from the eye-
to-hand camera. Pure PBVS (cyan) begins by a straight line, before getting
inconsistent when the tracker loses the object. Case 1 (blue) corresponds to
the trajectory that reaches the highest point, as the eye-to-hand visibility is not
taken into account. Case 2 (green) makes the camera go to the right instead
of going up. Finally, case 3 (red) forces the camera to draw another trajectory
in order to ensure all the constraints.

weights prevents the PBVS from decreasing exponentially.
The convergence is still satisfactory and oscillations are quite
small.

E. Comparison between the several cases

Fig. 20 compares the trajectories corresponding to the
presented experiments. This shows very clearly that the end-
effector has many available trajectories to perform the posi-
tioning task. However, not all of them respect the constraints:
actually only the last configuration (case 3, red) does. When
performing only PBVS (case 0, cyan), the trajectory is a
straight line till the failure due to the tracker losing the object.
When not using the eye-to-hand image, the camera tends to go
up (case 1, blue). On the opposite, the runs that use the eye-to-
hand camera share a lower trajectory. In particular, the camera
going right instead of going up is clearly visible for case 2
(green). We highlight that no local minimum is reached for
any combination of features. The implicit concurrency allows
adding new constraints without having to model the potential
coupling.

F. Other experiments

The presented experiment illustrates the general properties
of our approach. In complementary works, we have also high-
lighted specific aspects through other types of experiments.
In particular, exhaustive simulations have been carried for
the visibility constraint (case 1). We have simulated 9900
servoings, that is a large set of combinations for 100 initial
and final poses, showing that 98% converge while ensuring the
visibility constraint with the maximum weight being less than
20. The other cases converge with higher weights, or with
a smaller control gain. In [23], our approach has also been
compared with other control laws that address the visibility

0 200 400 600 800 1000
iterations

0

5

10

15

20

(a) Eye-in-hand weights H2d

0 200 400 600 800 1000
iterations

0

1

2

3

4

5

6

(b) Eye-to-hand weights Hext

0 200 400 600 800 1000 1200
iterations

0

1

2

3

4

5

1

2

3

4

5

6
0.0

0.2

0.4

0.6

0.8

1.0
λ

(c) Joint weights and adaptive gain

Fig. 18. Weights of the different subsystems: eye-in-hand 2D points (left), eye-to-hand 2D points (middle) and joint positions (right). All constraints occur
around iteration 300, making the weights have significative values. The adaptive gain (black curve) shows the system slows down at this moment.

0 200 400 600 800 1000
iterations

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04 vx

vy

vz

ωx

ωy

ωz

(a) Camera velocity setpoint

0 200 400 600 800 1000
iterations

−1.5

−1.0

−0.5

0.0

tx

ty

tz

θux

θuy

θuz

(b) PBVS error

0 200 400 600 800 1000
iterations

-

+

1

2

3

4

5

6

(c) Joint positions

Fig. 19. General behavior of the robot. Camera velocity (left) shows some oscillations when passing the vicinity of all constraints. PBVS error (middle)
indicates that the visual servoing is performed during the task. Joint positions (right) highlight the limit being avoided.

constraint. The joint limits avoidance has been validated in
[22] on a 6-DOF robot arm Adept Viper850 for several
positioning tasks in visual servoing. Finally, the proposed
framework has also been used in ultrasound images in [27],
to maintain the visibility of an anatomic element of interest
during tele-echography.

VI. CONCLUSION

This paper has proposed a generic approach for multi-sensor
and multi-constraints fusion in sensor-based control. The liter-
ature classically addresses this issue by a hierarchical approach
or by performing a weighted mean of the velocities that are
computed for each task. We proposed to perform the data
fusion at the level of the features, by introducing a dynamic
weighting matrix. While some tuning aspects are similar to LQ
control, activation and deactivation of the features is part of the
varying-feature-set approach, that has been recently formalized
for one sensor [31]. The general idea is that a robotic system
can handle a high-dimensional task and several constraints
without having to explicit the hierarchy or performing a
manual tuning of the feature weights. The main properties of
the proposed control law have been exposed, concurring to the
classical conditions on the system rank with local asymptotic
stability and potential local minima in the case of redundancy.
The scheme is generic even for sensors that are not rigidly
attached to the end-effector frame. The main drawbacks of
the proposed scheme are related to its nature being only
reactive. The additional strategies that are proposed for the
particular cases of local minima and unsafe desired position
both consist in modifying the activation matrix independently

from its initial design in terms of subsystems integration. This
can be viewed as the beginning of a higher-level controller
that takes into account the global configuration and balances
the weighting matrix so that the induced trajectory avoids or
escapes local minima. The versatility of the approach has been
illustrated by considering a multi-sensor, multi-constraint task.
Several experiments have shown that the proposed approach
can handle various combinations of sensors and constraints
for a positioning task. Future work will consist in extending
this framework to other types of sensors such as laser range
or haptic devices. Other strategies, such as relaxing some
constraints, could also increase the convergence domain of
the proposed scheme. This could be suited for instance for the
visibility constraint, where some parts of the object could be
allowed to leave the field of view.

ACKNOWLEDGMENT

The authors would like to acknowledge Pierre-Brice Wieber
for his valuable feedback on this work.

REFERENCES

[1] G. Allibert, E. Courtial, and F. Chaumette, “Predictive control for
constrained image-based visual servoing,” IEEE Trans. on Robotics,
vol. 26, no. 5, pp. 933–939, 2010.

[2] J. Barraquand and J. Latombe, “Robot motion planning: A distributed
representation approach,” Int. Journal of Robotics Research, vol. 10,
no. 6, pp. 628–649, 1991.

[3] S. Brooks and B. Morgan, “Optimization using simulated annealing,”
The Statistician, vol. 44, no. 2, pp. 241–257, 1995.

[4] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic ap-
proaches,” IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 82–90, 2006.

[5] C. Cheah, D. Wang, and Y. Sun, “Region-reaching control of robots,”
IEEE Trans. on Robotics, vol. 23, no. 6, pp. 1260–1264, 2007.

[6] G. Chesi, “Visual servoing path planning via homogeneous forms and
LMI optimizations,” IEEE Trans. on Robotics, vol. 25, no. 2, pp. 281–
291, 2009.

[7] G. Chesi and Y. Hung, “Global path-planning for constrained and
optimal visual servoing,” IEEE Trans. on Robotics, vol. 23, no. 5, pp.
1050–1060, 2007.

[8] A. Comport, E. Marchand, and F. Chaumette, “Efficient model-based
tracking for robot vision,” Advanced Robotics, vol. 19, no. 10, pp. 1097–
1113, October 2005.

[9] ——, “Statistically robust 2-D visual servoing,” IEEE Trans. on
Robotics, vol. 22, no. 2, pp. 415–420, 2006.

[10] P. Danes and D. Bellot, “Towards an LMI approach to multicriteria
visual servoing in robotics,” European journal of control, vol. 12, no. 1,
p. 86, 2006.

[11] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending
iTaSC to support inequality constraints and non-instantaneous task
specification,” in IEEE Int. Conf. on Robotics and Automation, 2009,
pp. 964–971.

[12] L. Deng, F. Janabi-Sharifi, and W. Wilson, “Hybrid motion control
and planning strategies for visual servoing,” IEEE Trans. on Industrial
Electronics, vol. 52, no. 4, pp. 1024–1040, 2005.

[13] F. Fahimi, C. Nataraj, and H. Ashrafiuon, “Real-time obstacle avoidance
for multiple mobile robots,” Robotica, vol. 27, no. 2, pp. 189–198, Mar.
2009.

[14] N. Gans and S. Hutchinson, “Stable visual servoing through hybrid
switched-system control,” IEEE Trans. on Robotics, vol. 23, no. 3, pp.
530–540, 2007.

[15] N. Garcı́a-Aracil, E. Malis, R. Aracil-Santonja, and C. Pérez-Vidal,
“Continuous visual servoing despite the changes of visibility in image
features,” IEEE Trans. on Robotics, vol. 21, no. 6, pp. 1214–1220, 2005.

[16] A. Hafez and C. Jawahar, “Visual servoing by optimization of a
2D/3D hybrid objective function,” in IEEE Int. Conf. on Robotics and
Automation, Roma, Italy, 2007, pp. 1691–1696.

[17] K. Hosoda, K. Igarashi, and M. Asada, “Adaptive hybrid control for
visual and force servoing in an unknown environment,” IEEE Robot.
Autom. Mag., vol. 5, no. 4, pp. 39–43, 1998.

[18] A. Isidori, Nonlinear control systems. Springer Verlag, 1995.
[19] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic Control of

Redundant Manipulators: Generalizing the Task-Priority Framework to
Inequality Task.” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[20] M. Kazemi, M. Mehrandezh, and K. Gupta, “Kinodynamic planning for
visual servoing,” in IEEE Int. Conf. on Robotics and Automation, 2011,
pp. 2478–2484.

[21] F. Keith, P. Wieber, N. Mansard, and A. Kheddar, “Analysis of the
Discontinuities in Prioritized Tasks-Space Control Under Discreet Task
Scheduling Operations,” September 2011.

[22] O. Kermorgant and F. Chaumette, “Avoiding joint limits with a low-
level fusion scheme,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, San Francisco, USA, September 2011, pp. 768–773.

[23] ——, “Combining IBVS and PBVS to ensure the visibility constraint,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Francisco,
USA, September 2011, pp. 2849–2854.

[24] ——, “Multi-sensor data fusion in sensor-based control: application
to multi-camera visual servoing,” in IEEE Int. Conf. on Robotics and
Automation, Shanghai, China, May 2011, pp. 4518–4523.

[25] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[26] F. Lewis and V. Syrmos, Optimal control. Wiley-Interscience, 1995.
[27] T. Li, O. Kermorgant, and A. Krupa, “Maintaining visibility constraints

during tele-echography with ultrasound visual servoing,” in IEEE Int.
Conf. on Robotics and Automation, Saint Paul, USA, May 2012.

[28] E. Malis, G. Morel, and F. Chaumette, “Robot Control Using Disparate
Multiple Sensors,” Int. Journal of Robotics Research, vol. 20, no. 5, pp.
364–377, May 2001.

[29] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Trans. on Robotics, vol. 23, no. 1, pp. 60–72, Feb. 2007.

[30] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate
unilateral constraints in the stack of tasks,” IEEE Trans. on Robotics,
vol. 25, no. 3, pp. 670–685, 2009.

[31] N. Mansard, A. Remazeilles, and F. Chaumette, “Continuity of varying-
feature-set control laws,” IEEE Trans. Autom. Control, vol. 54, no. 11,
pp. 2493–2505, November 2009.

[32] E. Marchand, F. Chaumette, F. Spindler, and M. Perrier, “Controlling
an uninstrumented manipulator by visual servoing,” The International
Journal of Robotics Research, vol. 21, no. 7, p. 635, 2002.

[33] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robot. Autom. Mag., vol. 12, no. 4, December 2005.

[34] M. Marey and F. Chaumette, “A new large projection operator for the
redundancy framework,” in IEEE Int. Conf. on Robotics and Automation,
Anchorage, Alaska, May 2010.

[35] Y. Mezouar and F. Chaumette, “Design and tracking of desirable
trajectories in the image space by integrating mechanical and visibility
constraints,” in IEEE Int. Conf. on Robotics and Automation, vol. 1,
2001, pp. 731–736.

[36] B. Nelson and P. Khosla, “Strategies for increasing the tracking region
of an eye-in-hand system by singularity and joint limit avoidance,” The
Int. J. of Robotics Research, vol. 14, no. 3, p. 255, 1995.

[37] N. Papanikolopoulos, P. Khosla, and T. Kanade, “Visual tracking of a
moving target by a camera mounted on a robot: A combination of control
and vision,” IEEE Trans. Robot. Autom., vol. 9, no. 1, pp. 14–35, 1993.

[38] R. Paul, Robot manipulators: mathematics, programming, and control:
the computer control of robot manipulators. The MIT Press, 1981.

[39] C. Samson, M. Le Borgne, and B. Espiau, Robot Control : The task
function approach. Clarendon Press, 1991.

[40] F. Schramm and G. Morel, “Ensuring visibility in calibration-free path
planning for image-based visual servoing,” IEEE Trans. on Robotics,
vol. 22, no. 4, pp. 848–854, 2006.

[41] O. Tahri and Y. Mezouar, “On visual servoing based on efficient second
order minimization,” Robotics and Autonomous Systems, 2009.

[42] C. Van Loan, “On the method of weighting for equality-constrained
least-squares problems,” SIAM Journal on Numerical Analysis, pp. 851–
864, 1985.

[43] W. Wilson, W. Hulls, and G. Bell, “Relative end-effector control using
cartesian position based visual servoing,” IEEE Trans. on Robotics and
Automation, vol. 12, no. 5, pp. 684–696, 2002.

[44] B. Wittenmark, R. Evans, and Y. Soh, “Constrained pole-placement
using transformation and LQ-design* 1,” Automatica, vol. 23, no. 6,
pp. 767–769, 1987.

[45] T. Yoshikawa, “Basic optimization methods of redundant manipulators,”
Laboratory Robotics and Automation, vol. 8, no. 1, pp. 49–60, 1996.

Olivier Kermorgant graduated from École Centrale
Paris, France in 2004. For two years he has been a
Research Engineer in the Measurement and Control
department at Arcelor Research, Metz, France. From
2008 to 2011 he was with the Lagadic group at Inria
Rennes where he received the Ph.D. degree in signal
processing from University of Rennes, France in
2011. He then joined the Ocean Systems Laboratory
at Heriot-Watt University, Edinburgh, Scotland as a
Research Assistant.
Since 2012 he has been Assistant Professor at Uni-

versity of Strasbourg, France. His research interests include sensor-based robot
control, disturbance rejection and optimization.

François Chaumette graduated from École Na-
tionale Supérieure de Mécanique, Nantes, France,
in 1987. He received the Ph.D. degree in com-
puter science from the University of Rennes,
France, in 1990. Since 1990, he has been with
Inria in Rennes where he is now senior re-
search scientist and head of the Lagadic group
(http://www.irisa.fr/lagadic). His re-
search interests include robotics and computer vi-
sion, especially visual servoing and active percep-
tion.

Dr. Chaumette is IEEE Fellow. He received the AFCET/CNRS Prize for
the best French thesis in automatic control in 1991. He also received the 2002
King-Sun Fu Memorial Best IEEE Transactions on Robotics and Automation
Paper Award. He has been Associate Editor of the IEEE Transactions on
Robotics from 2001 to 2005 and is now in the Editorial Board of the Int.
Journal of Robotics Research.

