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Abstract

Equivariance and invariance are often desired proper-
ties of a computer vision system. However, currently avail-
able strategies generally rely on virtual sampling, leaving
open the question of how many samples are necessary, on
the use of invariant feature representations, which can mis-
takenly discard information relevant to the vision task, or
on the use of latent variable models, which result in non-
convex training and expensive inference at test time. We
propose here a generalization of structured output SVM re-
gressors that can incorporate equivariance and invariance
into a convex training procedure, enabling the incorpora-
tion of large families of transformations, while maintaining
optimality and tractability. Importantly, test time inference
does not require the estimation of latent variables, resulting
in highly efficient objective functions. This results in a nat-
ural formulation for treating equivariance and invariance
that is easily implemented as an adaptation of off-the-shelf
optimization software, obviating the need for ad hoc sam-
pling strategies. Theoretical results relating to vicinal risk,
and experiments on challenging aerial car and pedestrian
detection tasks show the effectiveness of the proposed solu-
tion.

1. Introduction

In applications such as object detection and object clas-
sification, the output changes in a predictable way to cer-
tain transformations of the input images. For instance, if
the image is rotated then the location output of an object
detector should also move accordingly, i.e. the object loca-
tion is equivariant with the image rotation. On the other
hand, whether an image contains a certain object does not
depend on the image rotation, i.e. the label output of an ob-
ject classifier is rotation invariant. In both cases rotation is a
nuisance factor that, by affecting the appearance of the ob-
ject, complicates extracting the information of interest, the
location or presence of the object.

A common way of handling nuisance transformations

is to explicitly model and estimate them as latent fac-
tors [6, 32]. In our example, this amounts to estimating the
rotation of each object both at training (design) and testing
(application) time. Doing so has two significant drawbacks:
(i) computations are wasted in estimating irrelevant infor-
mation (the object rotation) and (ii) the learning problem
becomes non-convex due to the latent factors [32].

In this paper we develop instead invariant/equivariant al-
gorithms that (i) estimate only the information of interest
(e.g. not rotation) and (ii) are learned by solving a convex
optimization problem. By avoiding the introduction of la-
tent factors, these methods can improve the efficiency of
learning and, more importantly, testing.

In classification problems, the goal is usually to train in-
variant classifiers. There is a large body of literature dealing
with this problem [14]. Invariance has been enforced or en-
couraged at the level of (a) the training data by generating
virtual samples [21] (for example for pose invariant key-
point recognition [15] or for tolerance to lighting and small
pose changes in the case of object detection [13]); (b) the
data representation (tangent distance [26], jittered, tangent,
and invariant kernels [25, 22, 30, 7]); and (c) the learning
objective (vicinal risk minimization [3], invariance in learn-
ing distance functions [12]).

Problems such as object detection, image segmentation,
and image parsing cannot be encoded naturally as classifi-
cation problems. In these cases one may use structured out-
put learning [27, 29], which allows the learning of functions
with complex outputs, such as object poses, segmentations,
and parse trees. In this paper we propose a method to in-
corporate invariance or equivariance [24] into structured
learning problems. For training we utilize a cutting plane
strategy, which efficiently and optimally generates samples
that incorporate desired invariance and equivariance. Our
method can be seen as an extension of [28] to the case of
equivariant learning.

Our approach unites the approaches (a–c) above in a sin-
gle formulation by generalizing structured output regression
learning. For example, in the case (a) of generating virtual
samples, it is not clear a priori how many samples need to
be generated and how dense they should be. The structured
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Figure 1: Illustrative example. We use the structured and invariant SVM to learn a polynomial SVM for the problem of
separating three classes of 2-D dots (red, blue, and green) by sampling a single point (denoted with respectively a circle,
an ‘x’ sign, and a cross) from each class (see the text for the formulation details). We impose invariance to rotations of up
to respectively 0, π/8, π/4, π/2 and π radians. The estimated classes are indicated by the colored areas, the black lines
represent the margin, and the black dots the set of transformed samples added by the cutting plane iterations. Note that the
selection of such “virtual samples” is sparse.

learning formulation deals with this in a principled man-
ner by only generating those samples necessary to optimize
the objective function. Importantly, this benefit is achieved
without necessitating or precluding the use of invariant fea-
ture representations, which may inadvertently discard infor-
mation relevant to the task.

1.1. Regularized risk minimization

Let X denote the input space (e.g. natural images) and Y
the output space (e.g. object locations). In standard struc-
tured output learning, given training data (xi, yi) ∈ X ×Y,
i = 1, . . . , N and a parametric form f(x;w) of the func-
tion X → Y to be estimated (e.g. the object detector), one
minimizes a regularized empirical risk estimate of the form

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

∆(yi, f(xi;w)). (1)

The loss ∆(yi, ŷ) measures how well the prediction ŷ =
f(xi;w) approximates the desired output yi (e.g. the over-
lap error between the estimated and predicted object bound-
ing box [1]). The regularization term ‖w‖2 penalizes overly
complex models and it is traded off with the empirical aver-
age loss (risk) by the parameter C > 0.

In this work, we modify the problem (1) in order to pe-
nalize deviations of f(x;w) from specified invariance or
equivariance requirements. The idea is illustrated in Fig. 1
for the problem of invariant multi-class classification with
hinge loss. Here we learn to discriminate between three dif-
ferent classes Y = {red, green, blue}, which are subsets of
X = R2. The classes have circular symmetry, but only one
training point is given for each (the red circle, green cross,
and blue x). In the first panel, no invariance is enforced,
and the estimated classes are incorrect. In the second panel,
invariance to rotations t in the range T = [−π/8,+π/8] is
enforced. This is done by maximizing the loss in (1) with

respect to the transformation by considering

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

sup
t∈T

∆(yi, f(txi;w)). (2)

The blue class in the second panel is now roughly circu-
lar. By further increasing the range of invariant rotations
to ±π/4, ±π/2, and ±π radians, circular symmetry is en-
forced more and more accurately (and with a principled
choice of the transformed samples).

The first technical contribution of the paper is to show
that costs such as (2) can be formulated as convex optimiza-
tion problems (Sect. 2.1). In particular, our method extends
previous approaches such as [17, 28] to handle equivariant
transformations affecting the input and the output simulta-
neously. This is a very flexible framework that can be used
to solve a variety of different problems, ranging from op-
timal ranking to object detection (Sect. 3), by the use of
established large-scale optimization techniques (Sect. 2.2).

Representing large transformations of the inputs often
requires the use of non-linear kernels, which are known to
be slow, especially in the context of structured output learn-
ing. Thus in Sect. 3.1 we adopt a class of non-linear joint-
kernels similar to [33], dubbed slot kernels, that are non-
linear and local similar to a Gaussian kernel but are much
more computationally efficient. Finally, in App. A we show
that, by an appropriate choice of the loss function, the pro-
posed formulation has a probabilistic interpretation in term
of vicinal risk minimization [3].

2. Equivariant structured learning
In the following Sect. 2.1 first introduces the equivari-

ant structured learning problem, extending (2) to the case of
equivariant and invariant structured outputs. Then, Sect. 2.2
derives a corresponding equivariant structured SVM formu-
lation, yielding a convex optimization problem, and shows



how standard cutting-plane solvers [11] can be used to effi-
ciently obtain a solution.

2.1. General formulation

Our goal is to learn an equivariant or invariant function
f(x;w). We start by giving a formal definiton of equiv-
ariance. Consider pairs of corresponding transformations
t = (tX , tY) ∈ T of the input tX : X → X (e.g. image
rotations) and of the output tY : Y → Y (e.g. bounding
box rotations). The learned function f(x;w) is equivariant
with T if f(tXx) = tYf(x) for all t ∈ T . For instance, the
object location f(tXx;w) predicted on the rotated image
tXx should be equal to the rotated location tYf(x;w) pre-
dicted from the original image x. As a special case, fixing
tY = 1 to be the identity transformation encodes invari-
ance: f(tXx;w) = f(x;w). In order to simplify notation
the shorthand tx and ty will denote the action of the trans-
formation t ∈ T on the input x and the output y respec-
tively.

As in Sect. 1.1, a way of encouraging equivariance is to
penalize the maximum loss ∆(tyi, f(txi;w)) with respect
to all transformations t ∈ T . To allow weighting the trans-
formations, we generalize this and allow the loss to depend
directly on t and consider instead

sup
t∈T

∆(t, yi, f(txi;w)) (3)

where the dependency on tyi is implicit. In App. A this flex-
ibility is used to give a probabilistic interpretation of (3) in
term of vicinal risk [3]. By substituting the loss (3) into (2)
one obtains the equivariant structured learning problem

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

sup
t∈T

∆(t, yi, f(txi;w)). (4)

The loss can be any function such that ∆ ≥ 0 and
∆(1, y, y) = 0 [11]. Hence (4) is typically non-convex and
very hard to solve. Sect. 2.2 gives its relaxation to a convex
formulation.

2.2. Convex formulation

The first step in deriving a convex variant of (4) is to
choose an appropriate parameterization for f(x;w). As
in a structured output SVM, we define f(x;w) through
a joint feature map Ψ(x, y) to map the input-output pair
(x, y) into a linear feature space (the feature map can be
defined implicitly by a kernel function K(x, y, x′, y′) =
〈Ψ(x, y),Ψ(x′, y′)〉). Then ŷ = f(x;w) is defined as
the output ŷ which maximizes the input-output compatibil-
ity score 〈w,Ψ(x, y)〉, linearly parameterized in the weight
vector w, i.e.

f(x;w) = arg max
ŷ∈Y
〈w,Ψ(xi, ŷ)〉. (5)

For this parameterization, it is easy to derive a convex
upper bound to (3). For any fixed t ∈ T one has

∆(t, yi, f(txi;w)) ≤ ∆(t, yi, f(txi;w))×
[1 + 〈w,Ψ(txi, f(txi;w))〉 − 〈w,Ψ(txi, tyi)〉]

because, due to the maximization in (5),
〈w,Ψ(txi, f(txi;w))〉 ≥ 〈w,Ψ(txi, tyi)〉 and the quantity
in brackets is greater than or equal to 1. By substituting
f(txi;w) with ŷ and by further maximizing the right hand
side with respect to ŷ we obtain the desired upper bound

∆(t, yi, f(txi;w)) ≤ sup
ŷ∈Y

∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)〉 − 〈w,Ψ(txi, tyi)〉].

Plugging this bound back into (4) yields

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

sup
(t,ŷ)∈T ×Y

∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)−Ψ(txi, tyi)〉]. (6)

We call this the equivariant structured SVM problem. No-
tice that the standard structured SVM formulation [11] is
recovered by setting T = {1}, where 1 is the identity trans-
formation. Note also that, in contrast to [6, 32], (6) does not
introduce latent factors and remains convex.

Efficient optimization. The convex program (6) can be
converted to the so called one-slack formulation [11], where
the sup operator is translated into a large set (possibly infi-
nite) of linear constraints:

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀ t ∈ T N , ŷ ∈ YN

ξ ≥ 1

N

N∑
i=1

∆(ti, yi, ŷi)[1+〈w,Ψ(tixi, ŷi)−Ψ(tixi, tiyi)〉].

(7)

The problem (7) can be optimized using standard off-the-
shelf solvers. These solvers handle the large number of
constraints in (7) by exploiting the fact that, usually, only
a fraction of them is needed to characterize the objective
function around the optimum. For our model, finding these
constraints amounts to identifying a small set of useful vir-
tual samples. The algorithm can be summarized as follows:

1. Solve the problem (7) by considering only a subset S of
constraints (initially this subset is empty). Obtain an esti-
mate w of the model.

2. Given the current estimate w of the model, obtain the
next constraint by solving for each i = 1, . . . , N the prob-
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Figure 2: Aerial car detector. Left: example detections (correct in green, incorrect in red). Middle: precision-recall curves
in the style of the PASCAL VOC challenge [5] for the linear and slot kernel structured SVM detectors and their equivariant
versions. Right: FPPI vs recall curves for the different methods, including the method from [8] denoted as “context”.

lems

(ti, ŷi)
∗ = argmax

t∈T ,ŷ∈Y
∆(t, yi, ŷ)×

[1 + 〈w,Ψ(txi, ŷ)−Ψ(txi, tyi)〉] (8)

Generating this constraint can be interpreted as selecting the
next N most difficult virtual samples.

3. Add the new one-slack constraint to S and repeat from 1
until convergence.

[11] gives strong guarantees on the efficiency (in terms of
number of iterations) and accuracy of this method. As any
structured output learning method, the overall efficiency de-
pends on the cost of computing the maximum (8), which de-
pends on the nature of the data and the structure of the trans-
formations. Many methods exist for performing efficient in-
ference for a number of special cases of structured predic-
tion [1, 6, 8, 10, 27, 29]. The maximization in (8) is no more
expensive than a structured SVM or latent SVM at training
time, but the resulting test time inference is much more effi-
cient as there is no inference of a latent factor. Furthermore,
this method supports continuous classes of transformations,
e.g. through gradient ascent methods, which can be handled
only approximately by generating virtual samples.

3. Experiments
3.1. Rotation invariant object detection

We use the equivariant (rather than invariant) structured
SVM formulation to incorporate invariance to arbitrary im-
age rotations to an object detector in the style of [1]. The
input to the structured SVM ŷ = f(x;w) is an image x ∈ X
and the output ŷ is either the 2D location of the object of in-
terest, or a flag indicating that the object is not contained
in the image. Additionally, we require that the prediction
ŷ = f(x;w) is consistent with arbitrary rotations of the im-
age. This is encoded as a equivariance requirement: if the
object is found at location y in image x, then the same ob-
ject must be found at the rotated location ty in the rotated
image tx.

Note that the rotation of the object is not of interest here,
and in fact the detector will avoid estimating it; neverthe-
less, the location should be correctly determined regardless
of the orientation of the object, which still affects its appear-
ance.

Aerial car detection. As an example application, we con-
sider the task of aerial car detection proposed in [8] (Fig. 2).
The data consists of 30 aerial images with cars annotated
(for a total of more than 1,000 cars with varying rotations).
The performance of the detectors is measured according to
the PASCAL criterion [5] (average precision-recall) and the
criterion used in [8] (number of false positives per image)
for a direct comparison. As low-level image features we
use the HOG [4] implementation of [6] with cells of 5 × 5
pixels. A car is described by a block of 7× 7 HOG cells.

We consider as transformations t ∈ T the set of rota-
tions in the range [0, 2π). t acts on the image x and on
the object location y by rotating them by the same amount,
so that they stay “aligned”. The SVM kernel is the restric-
tion kernel proposed by [1]. In term of joint feature maps,
this kernel is given by a function φ(x, y) that returns the
HOG descriptor of a block of 7 × 7 HOG cells extracted
at location y. With this choice of the feature map, evalu-
ating the structured SVM f(x;w) = argmaxy〈w, φ(x, y)〉
is similar to running a sliding window detector based on
a linear SVM and HOG features [4]. The loss function
∆(t, yi, ŷ) ∈ {0, 1} is also similar to [1] and is equal to
zero if the predicted location ŷ is close enough to the trans-
formed ground truth location tyi, or if yi and ŷ agree that
no object is contained in the image.

Slot kernels. A linear HOG model is not sufficient to
capture arbitrary object rotations. These could be handled
by switching to a non-linear kernel such as a Gaussian,
but non-linear kernels slow down structured SVMs signif-
icantly. Even approximated feature maps for the Gaussian
kernel such [31, 16, 23] are slow for object detection as they
require projecting each candidate image patch on a large set
of basis of vectors.

This motivates us to utilize slot kernels, which are local



as the Gaussian kernels but are much more efficient. Let
q(φ(x, y)) ∈ {1, . . . , Q} be a function that assigns one out
of Q discrete labels to the local HOG descriptor φ(x, y).
For efficiency we implement q with a KD-tree and we de-
sign the Q partitions using k-means. Then the slot kernel
is given by the feature map Ψ(x, y) = eq(φ(x,y)) ⊗ φ(x, y),
where eq is the q-th element of the canonical basis of RQ.
The feature map Ψ(x, y) is a collection of Q linear models,
only one of them being active at a time as indicated by the
function q (this makes the kernel local). This idea is similar
to a mixture of experts and, in the context of kernel learning,
to [33, 20]. In our experiments we set Q = 18.

Results. Fig. 2 compares the various methods. The stan-
dard linear structured SVM detector performs relatively
poorly. Adding equivariance to rotations improves perfor-
mance significantly (+14% Average Precision), and using
the non-linear slot kernel in place of the linear one is even
better (+20% AP). However, the largest benefit by far is
obtained by combining the non-linear kernel with rotation
equivariance (+35% AP), illustrating the importance of be-
ing able to correctly handle image transformations and the
need for using a non-linear representation to do so. We
also note that this detector performs significantly better than
the detector proposed originally by [8], despite the fact
that their approach makes use of a sophisticated contextual
model to aid discrimination.

3.2. Learning to rank with invariance

Learning to rank is a popular application of structured
output SVMs [10, 2]. In these experiments we evaluate a
structured SVM that simultaneously optimizes ranking and
is invariant to a class of transformations of the input. We
begin by first deriving an invariant binary SVM formulation
that does not incorporate ranking.

Invariant binary SVM. The input to the binary SVM ŷ =
f(x;w) is an object x ∈ X and the output ŷ ∈ {−1,+1} is
its label. The quality of the prediction is measured in term
of the standard 01-loss ∆(t, yi, ŷ) = (1− yiŷ)/2. The goal
is to perform consistently well up to a class of transforma-
tions T of the input (the transformations do not affect the
output here). Let φ(x) be a feature of the input x and define
the joint feature map Ψ(x, y) = y/2

[
φ(x)>, B

]>
, where

B > 0 is a constant used as bias [11]. From (5), evaluating
this structured SVM is the same as evaluating a standard bi-
nary SVM: f(x;w) = sign (〈wX , φ(x)〉+ wbiasB) , where
w =

[
w>X , wbias

]>
. The learning problem (7) is thus spe-

cialized to

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀ : t ∈ T N , ŷ ∈ YN

ξ ≥ 1

N

∑
i

1− yiŷi
2

(1− yi(〈wX , φ(tixi)〉+ wbiasB)).

Invariant rank SVM. The input to the rank optimizing
SVM is a sequence (x1, . . . , xN ) ∈ XN of N data points
and the output is a permutation that ranks positive points
first [9]. Permutations are encoded as binary matrices ŷ ∈
YN ⊂ {−1,+1}N×N where ŷij = +1 means that xi is
ranked before xj . The loss function ∆(t, y, ŷ) is defined
to be one minus the area under the ROC curve. [10] shows
that optimizing this loss is the same as minimizing the num-
ber of incorrectly swapped pairs in the ranking. By adding
transformation invariance, one gets the problem

min
w,ξ

1

2
‖w‖2 + Cξ, s.t. ∀t ∈ T N , ŷ ∈ YN

ξ ≥ 1

N2

∑
ij:yij>0

1− ŷij
2

(1− 〈w, φ(tixi)− φ(tjxj)〉).

Note that the bias term is not needed since it is irrelevant for
ranking. [10] shows that computing a maximally violated
constraint for this problem can be done efficiently by sorting
the samples by the score 〈w, φ(tx)〉.
Pedestrian detection. We evaluate the invariant binary and
rank SVMs on the DaimlerChrysler pedestrian classifica-
tion benchmark [19]. The data consists of three training
subsets with 800 positive 18 × 36 images (pedestrian) and
5000 negative ones (clutter) each and two analogous sub-
sets for testing. While the DaimlerChrysler data includes
virtual samples as well, these are discarded. Performance is
measured in term of equal error rates (see [19] for details on
the evaluation protocol).

As feature φ(x) we use the HOG-like descriptor of [18]
that is suitable for small images. As transformations T we
consider horizontal flipping and translation by one pixel in
the eight directions, for a total of 18 transformations.

Motion as natural transformations. The DaimlerChrysler
pedestrian instances are obtained from video tracks. While
this technique yields cheaply a large quantity of training in-
stances, it also results in a number of highly correlated data
clusters, one for each tracked object. This breaks the funda-
mental i.i.d. assumptions on which most machine learning
techniques rely. A way to solve this problem is to regard
such a cluster as a single data point, and interpret its many
members as natural transformations of the same object. As
pedestrian movement is cyclic, this has an interesting in-
terpretation as a local estimate of the manifold structure of
pedestrian appearance. Our equivariant learning framework
can then be used to incorporate invariance to this manifold.
This has two advantages: (i) it reestablishes statistical inde-
pendence of the samples and (ii) it significantly reduces the
size of the training data, leaving the cutting plane algorithm
to select a small number of representative points.

In order to explore this idea for the DaimlerChrysler
dataset, we use agglomerative clustering to recover the se-
quences of tracked pedestrians (normally this information
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Figure 3: Pedestrian dataset. (1–4) examples of pedestrian groups (motion cycles) of increasing size. Groups define natural
transformations. (a) ROC curves for the DaimlerChrysler benchmark data without transformation invariance, with invariance
to flipping, and with invariance to flipping and translation (invariant binary SVM). (b) Classification accuracies versus number
of data samples used by the cutting plane optimization for a standard SVM, the ROC-optimizing (rank) structured SVM, and
the variants incorporating invariance. The horizontal axis is the degree of grouping of the training data (see Sect. 3.2). Larger
groups cause only a fraction of the original data samples to be selected for training. However, only the structured rank SVM
can deal properly with the resulting unbalanced training problem and maintain good performance.

would be provided as part of the dataset and this step would
be unnecessary). We use four grouping thresholds, num-
bered from 1 to 4, resulting in larger and larger clusters.1

Grouping 1 is the finest possible and corresponds to training
with the unaltered data (Fig. 3.1–4). Each cluster is treated
as a single data point modified by a set of transformations.
Hence t ∈ T selects first an element in a group and then
applies one of the 18 transformations as before.

Results. Fig. 3a-c shows the relative performance of the
various SVMs on the DaimlerChrysler dataset. In Fig. 3a
the equal error rate (EER) of the baseline binary SVM is
14% without any jitter, and improves to 13% when invari-
ance to flipping is added, and to 11% when all eighteen
transformations are considered (Fig. 3a). While here we
are mostly interested in the relative improvement, we note
that the performance reaches the state of the art (within sta-
tistical limits) for this setting [19].

Fig. 3b-c show the effect of natural transformations. The
baseline invariant and the rank invariant SVMs use only one
representative pedestrian per group. As the groupings get

1These clusters effectively recover sequential frames corresponding to
individual pedestrians (Figure 3) and will be made available at the time of
publication.

larger, the number of positive samples available for training
decreases quickly by a factor of ten. The performance also
drops (+6% EER), although not too dramatically, illustrat-
ing the redundancy of the instances within groups. Then,
information is added back, this time in terms of invariance
to natural transformations. This is shown in Figure 3 by the
“binary natural” and “ranking natural” results. The number
of samples used increases slightly, but is still far less than
the overall number of samples, while performance increases
significantly. In particular, the performance of the invari-
ant rank SVM with natural transformations is virtually the
same as using the entire dataset for training but only uses a
fraction of the training samples. The advantage of the rank
SVM is due in part to the fact that the data becomes more
unbalanced with increasing group size (due to the reduced
number of positive samples).

4. Conclusions
In this work we have introduced a novel formulation for

the incorporation of equivariance and invariance in struc-
tured output SVM regressors. This is achieved by optimiz-
ing a convex upper bound to a regularized risk functional
for structured outputs. The resulting optimization has the
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Figure 4: Construction (11) of ∆(t). In this example, the vicinal risk loss ∆vr(t) ∈ [0, 1] has two triangular peaks at -1 and
3/2 (blue curve). The distribution dP (t) is a Gaussian of variance 1/2 (shaded area). The monotonic family U of bounding
functions consists of the step functions of the type µq,δ(t) = χR−(−q,q)(t) for all q ≥ 0 and arbitrary 0 ≤ δ ≤ 1 (red curves).
From left to right, the functions µ0,0, µ−1,1/2, and µ3/2,1 upper bound ∆vr(0) = 0, ∆vr(−1) = 1/2 and ∆vr(3/2) = 1 at
t = 0,−1, 2/3 respectively. Among such curves, the one with largest expected value (11) is µ−1,1/2 (middle one), and this
expected value upper bounds the expected value of ∆vr(t).

structured output SVM as a special case by setting the set
of equivariant transformations to the identity. By appropri-
ately incorporating invariance into compatible definitions of
joint feature functions and loss functions, we are able to ef-
ficiently optimize equivariant functions with available opti-
mization software.

We have shown significant improvement over the base-
line method on a challenging pedestrian dataset, and our
proposed method is statistically tied with the state-of-the-
art, which uses a different image representation [19]. Ad-
ditionally, we have improved upon the state of the art for
aerial car detection by incorporating rotation invariance into
a discriminatively trained structured output detector. This
indicates the framework’s flexibility in learning invariance
even with non-invariant kernels. Interestingly, use of the
natural transformation manifold enabled a large reduction
in the number of samples used without a corresponding de-
crease in performance.

In general, we propose that our algorithm be used in
place of ad hoc sampling strategies or latent variable mod-
els to incorporate invariance and equivariance in computer
vision. This has both practical and theoretical implications.
From a computational perspective, the application of a cut-
ting plane optimization strategy results in a large reduction
in the number of generated samples to achieve the same per-
formance. From the perspective of regularized risk, we have
shown that the algorithm optimizes a convex upper bound
of a natural extension of the regularized risk functional em-
ployed in classic structured output regression. This gives
a principled foundation and an expectation of good gener-
alization performance, as we have observed in our experi-
ments.
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A. Probabilistic interpretation as vicinal risk
Vicinal risk minimization of Chapelle et al. [3] endows

the transformation space T with a probability measure
dP (t) and minimizes the regularized vicinal risk:

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

∫
∆vr(tyi, f(txi;w)) dP (t). (9)

Compared to our equivariant learning formulation (4), vici-
nal risk (9) considers the average rather than maximum er-
ror w.r.t transformations. We show next that it is possible to
choose ∆ in (4) so that the equivariant learning objective is
an upper bound to (9).

For brevity of notation, define

∆vr(t) = ∆vr(tyi, f(txi;w)), ∆(t) = ∆(t, yi, f(txi;w)).

A sufficient condition for the equivariant risk (4) to upper
bound the vicinal risk (9) is that∫

∆vr(t) dP (t) ≤ sup
t

∆(t). (10)

An obvious choice that satisfies (10) is ∆(t) = ∆vr(t), as
the average of a function cannot be larger than its supre-
mum. However, such a bound is typically quite loose, as it
does not account for any locality imposed by dP (t). Much
tighter bounds, particularly useful when dP (t) is concen-
trated, can be obtained by considering an auxiliary family
of bounding functions:

Lemma 1. Let U be a family of functions µ : T → R that
(i) is monotonic (i.e. for any µ, µ′ ∈ U it is either µ ≤ µ′ or
µ′ ≤ µ), and (ii) for any transformation t ∈ T and scalar
ρ ∈ R it has a member µt,ρ such that ρ ≤ µt,ρ(t). Then the
loss

∆(t) =

∫
µt,∆vr(t)(q) dP (q) (11)

satisfies the relation (10).



Proof. For simplicity, we give the proof in the case in which
T is a finite set of transformations, so that dP (t) is a dis-
crete measure (see also Fig. 4). Let P (t) denote the proba-
bility of t. By contradiction, suppose that (10) is false, i.e.
that there exists a t∗∑

q

∆vr(q)P (q) > ∆(t∗) =
∑
q

µt∗,∆vr(t∗)(q)P (q).

Since the expected value of ∆′i(t) is larger than the one
of µt∗,∆′i(t∗), there must be a point t0 such that P (t0) >
0 and ∆′i(t0) > µt∗,∆′i(t∗)(t0). But then for property
(ii) of U there is a function µt0,∆′i(t0)(t0) ≥ ∆′i(t0) >
µt∗,∆′i(t∗)(t0). Since µt0,∆′i(t0) is strictly larger than
µt∗,∆′i(t∗) at t0, for the monotonicity property (i) it must
be µt0,∆′i(t0) ≥ µt∗,∆′i(t∗) everywhere. But then the ex-
pected value of µt0,∆′i(t0) is at least as large as the one of
µt∗,∆′i(t∗), and in fact strictly larger since µt0,∆′i(t0)(t0) >
µt∗,∆′i(t∗)(t0) and P (t0) > 0. But this contradicts the fact
that the expected value of µt∗,∆′i(t∗) is the largest for all
t.
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