M. B. Blaschko and C. H. Lampert, Learning to Localize Objects with Structured Output Regression, Proc. ECCV, 2004.
DOI : 10.1007/978-3-540-88682-2_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.8985

M. B. Blaschko, A. Vedaldi, and A. Zisserman, Simultaneous object detection and ranking with weak supervision, NIPS, 2010.

O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, Vicinal risk minimization, Proc. NIPS, 2001.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2010.
DOI : 10.1007/s11263-009-0275-4

P. F. Felzenszwalb, R. B. Grishick, D. Mcallester, and D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, 2009.
DOI : 10.1109/TPAMI.2009.167

B. Haasdonk and H. Burkhardt, Invariant kernel functions for pattern analysis and??machine learning, Machine Learning, vol.29, issue.1, pp.35-61, 2007.
DOI : 10.1007/s10994-007-5009-7

G. Heitz and D. Koller, Learning Spatial Context: Using Stuff to Find Things, Proc. ECCV, p.5, 2008.
DOI : 10.1007/978-3-540-88682-2_4

R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression, Advances in Large Margin Classifiers, pp.115-132, 2000.

T. Joachims, A support vector method for multivariate peformance measures, Proc. ICML, p.5, 2005.

T. Joachims, T. Finley, and C. J. Yu, Cutting-plane training of structural SVMs, Machine Learning, 2005.
DOI : 10.1007/s10994-009-5108-8

M. P. Kumar, P. H. Torr, and A. Zisserman, An Invariant Large Margin Nearest Neighbour Classifier, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4409041

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.9005

I. Laptev, Improvements of Object Detection Using Boosted Histograms, Procedings of the British Machine Vision Conference 2006, 2006.
DOI : 10.5244/C.20.97

F. Lauer and G. Bloch, Incorporating prior knowledge in support vector machines for classification: A review, Neurocomputing, vol.71, issue.7-9, p.71, 2008.
DOI : 10.1016/j.neucom.2007.04.010

URL : https://hal.archives-ouvertes.fr/hal-00021555

V. Lepetit and P. Fua, Keypoint recognition using randomized trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, 2006.
DOI : 10.1109/TPAMI.2006.188

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.8088

F. Li, C. Ionescu, and C. Sminchisescu, Random Fourier Approximations for Skewed Multiplicative Histogram Kernels, Proc. DAGM, 2010.
DOI : 10.1007/978-3-642-15986-2_27

G. Loosli, S. Canu, S. V. Vishwanathan, and A. J. Smola, Invariance in calssification: an efficient SVM implementation, Proc. ASMDA, 2005.

S. Maji, A. C. Berg, and J. Malik, Classification using intersection kernel support vector machines is efficient, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587630

S. Munder and D. M. Gavrila, An Experimental Study on Pedestrian Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.11, p.7, 2006.
DOI : 10.1109/TPAMI.2006.217

F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, Proc. ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

T. Poggio and T. Vetter, Recognition and structure from one 2d model view: observations on prototypes, object classes and symmetries, 1992.

A. Pozdnoukhov and S. Bengio, Invariances in kernel methods: From samples to objects, Pattern Recognition Letters, vol.27, issue.10, 2006.
DOI : 10.1016/j.patrec.2005.12.011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.4426

A. Rahimi and B. Recht, Random features for large-scale kernel machines, Proc. NIPS, 2007.

M. Reisert and H. Burkhardt, Learning equivariant functions with matrix valued kernels, Journal of Machine Learning Research, vol.8, issue.1, 2007.

B. Schölkopf and A. J. Smola, Learning with Kernels, 2002.

P. Y. Simard, Y. A. Lecun, J. S. Denker, and B. Victorri, Transformation invariance in pattern recognition -tangent distance and tangent propagation, International Journal of Imaging Systems and Technology, issue.1, 2001.
URL : https://hal.archives-ouvertes.fr/halshs-00009505

B. Taskar, C. Guestrin, and D. Koller, Max-margin markov networks, Proc. NIPS, 2003.

C. Teo, A. Globerson, S. Roweis, and A. J. Smola, Convex learning with invariances, Proc. NIPS, 2007.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support vector machine learning for interdependent and structured output spaces, Twenty-first international conference on Machine learning , ICML '04, 2004.
DOI : 10.1145/1015330.1015341

C. Walder and O. Chapelle, Learning with transformation invariant kernels, NIPS, 2008.

C. K. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, Proc. NIPS, 2001.

C. J. Yu and T. Joachims, Learning structural SVMs with latent variables, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553523

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1203

X. Zhou, K. Yu, T. Zhang, and T. S. Huang, Image Classification Using Super-Vector Coding of Local Image Descriptors, ECCV, pp.141-154, 2010.
DOI : 10.1007/978-3-642-15555-0_11