
HAL Id: hal-00856737
https://inria.hal.science/hal-00856737

Submitted on 2 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Publish/Subscribe System for RDF Data
Laurent Pellegrino, Fabrice Huet, Françoise Baude, Amjad Alshabani

To cite this version:
Laurent Pellegrino, Fabrice Huet, Françoise Baude, Amjad Alshabani. A Distributed Pub-
lish/Subscribe System for RDF Data. Data Management in Cloud, Grid and P2P Systems, Abdelkader
Hameurlain, Aug 2013, Prague, Czech Republic. pp.39-50. �hal-00856737�

https://inria.hal.science/hal-00856737
https://hal.archives-ouvertes.fr


A Distributed Publish/Subscribe System for
RDF Data

Laurent Pellegrino, Fabrice Huet, Françoise Baude, and Amjad Alshabani

INRIA-I3S-CNRS, University of Nice-Sophia Antipolis
2004 Route des Lucioles, Sophia Antipolis, France

firstname.lastname@inria.fr

Abstract. The pub/sub communication style is a prevalent messaging
pattern for filtering information from distributed and large-scale network
(e.g., from the real-time web, sensor networks, etc.) thanks to the decou-
pling between publishers and subscribers. At the same time, persisting
the published information is a prerequisite for any further batch analyt-
ics on such big amount of data. As data can be heterogeneous, reliance
on format from the semantic web such as RDF is unavoidable. In this
paper we introduce two versions of a content-based pub/sub matching
algorithm for RDF described events, working on an adapted version of
the CAN structured P2P network designed to both store and dissemi-
nate RDF events. In contrary to existing pub/sub solutions based upon
structured overlay networks that index semantic events several times due
to the use of hash functions, we leverage the lexicographic order of the
event elements. Thus, only subscriptions and not publications have to be
duplicated, which is better given that in real settings, publications may
occur more frequently than subscriptions. Furthermore, our system al-
lows to publish events made of any number of elements and the subscrip-
tion language leverages the SPARQL query language. The first algorithm
we introduce initially derives from the ideas discussed by Liarou. et al.
based upon rewriting continuous queries along matching RDF elements
(CSBV) with the purpose to perform the matching between subscriptions
and several RDF elements on multiple nodes. The experimental results
discuss the applicability of the presented algorithms to some synthetic
scenarios and identify, accordingly, which pub/sub matching algorithm
is the more relevant.

1 Introduction

The advent of the Semantic Web by the precursor Tim Bernes-Lee incites avail-
able information on the World Wide Web to become more and more structured.
Structured contents are possible thanks to powerful data models such as Re-
source Description Model (RDF) that makes knowledges machine-processable
and machine-understandable. Many centralized solutions such as Jena [4], Sesame
[1] or OWLIM [11] have been proposed the last years to store and retrieve RDF
data. However, they all suffer from their inherent design that is not suitable to
scale with the perpetual increase of the resources available on the Web. Some



decentralized approaches have been introduced to overcome this limitation. Most
of them relies on Peer-to-Peer (P2P) networks that are recognized as a key com-
munication model to build distributed and reliable applications at very large
scale [10]. Usually, structured P2P protocols are provided with a standard ab-
straction called Distributed Hash Table (DHT) that offers a simple put(key,
value) and get(key) API to store and fetch data. Even though such an abstrac-
tion is really well suited for manipulating key/value pairs, it does not support
complex queries such as conjunctives and range queries that are at the core of
SPARQL [17], the main query language for RDF data. Furthermore, the tradi-
tional query/response model is not designed for processing data streams.

Publish/subscribe systems are a natural extension of one-time queries where
users formulate meaningful inquiries about their concern and wait for an an-
swer. Unlike one-time queries that are synchronous, pub/sub systems assume
that users register their needs through subscriptions also dubbed continuous-
queries. As the name suggests, continuous-queries are resolved as soon as incom-
ing information or events match subscribers’ interests. Events are published to
a brokering network in charge of performing the matching between the publica-
tions and the subscriptions that have been registered. Once an event is matched,
a notification is triggered to the subscriber(s). Thus, users are kept updated
efficiently and gradually

In this paper we focus mainly on the synergy between RDF-based P2P sys-
tems and the pub/sub messaging paradigm. Section 2 gives an overview of the
existing works regarding this context. In Section 3 we introduce our data and
subscription model along with our system properties. Section 4 enters into the
details of the matching algorithms we have developped. Then, we bring out
some information about the implementation before to introduce and discuss the
experimental results in Section 5. Finally, Section 6 concludes.

2 Related Works

The last two decades, the flexibility, modularity and responsiveness of pub/sub
led to the emergence of several solutions. These systems are classified into topic-
based or content-based categories according to their expressivity. Tibco [23] and
Pubsubhubbub [7] are representatives of this former category that provides lim-
ited filtering capabilities. Most prominent solutions regarding the latter category
are certainly Siena [5] and Hermes [16]. Siena, uses covering-based routing al-
gorithms to reduce routing entries and unnecessary forwarding of subscriptions.
However it incurs several drawbacks that are intrinsic to the choice of the routing
algorithm but also the topology that is static and non-structured. Subscriptions
are flooded to the whole network and an unsubscribe operation may implicitly
unsubscribe to all the filters that are covered by the former filter. Hermes relies
on an extension of Pastry [20], a structured P2P protocol named PAN. Sub-
scriptions and publications are sent to a rendez-vous node and notifications are
forwarded by using reverse paths. More recently, BlueDove [13] propose to match
publications with subscriptions atop a modified version of Cassandra [12] in just

2



one hop: replicating subscriptions on a selected subset of one hop away accessible
peers and then selecting one of these replica to trigger the matching according to
load information of peers, regularly exchanged throughout the system. The clos-
est system to our is certainly Meghdoot [9]. The authors leverage the CAN [19]
logical topology as we do. However, event types, domain (e.g, from 1 to 100 for
event type integer) and the maximum number of attributes per event should be
defined at startup. Moreover, the initial CAN configuration strongly depends on
this last parameter.

RDFPeers [3] is a distributed RDF repository where peers are self-organized
into a Multi-Attribute Addressable Network (MAAN) [2]. MAAN extends Chord
[22] such that information retrieval may be performed for any triple term. Pub-
lishing a triple implies to index it three times, each one based on the hash value
of its subject, predicate and object value. Atomic, disjunctive and range sub-
scriptions are supported with the exception of some patterns. For instance, it is
not possible to subscribe for all the information nor with some join constraints.
Besides, RDFPeers ignores popular terms such as rdf:type predicates and, there-
fore, subscriptions involving them cannot be resolved.

In [18], Ranger et al. introduce an information sharing platform for dissem-
inating RDF activities. Their solution relies on the Scribe [6] system that of-
fers a topic-based pub/sub system on top of Pastry. Queries are expressed in a
SPARQL dialect and registered as topics. Unlike other solutions, the algorithm
they propose does not index data a priori. Instead, their strategy relies upon
finding results through multicast trees built from scratch, associated with re-
dundant caching and cached lookups mechanisms. The peers participating to
the propagation are responsible for removing duplicate results within the limit
of their buffer. This probably leading to duplicate notifications over the time.

CSBV [14] proposes a generic and DHT agnostic approach for resolving
atomic and conjunctive SPARQL subscriptions. Their scheme strongly relies
on hashing and requires to index each triple seven times. Owing to the fact
that the number of indexations that is required correspond to the combination
without repetition of the elements contained by the tuples that are published,
it grows quickly up to 15 when quadruples are considered. Subscriptions are re-
solved by rewriting dynamically subscription patterns matching new incoming
publications. The matching algorithm we introduce in the next sections derives
from this idea.

Recently, Shvartzshnaider et al. proposed in [21] to combine AI and Peer-
to-Peer research approaches for building a pub/sub system that supports publi-
cation of arbitrary tuples and subscriptions with standing graph queries. Their
idea consists in applying Rete [8] algorithms on a Chord network to resolve join
conditions contained by subscriptions. Basically, a Rete network acts as a dis-
tributed cache, where subscription patterns that are executed, and also their
results are cached for future reuse. Thus, only the changed data are matched
against subscriptions. Publications and subscriptions are indexed similarly to
RDFPeers in order to create rendezvous nodes where the satisfaction of sub-
scriptions is verified. Although they claim that Rete approach is effective, no

3



discussion is given about how duplicates are avoided when in-memory buffers
overflow. Moreover, subscriptions are formulated through an ad-hoc scripting
language and no experimental evaluation is available.

3 EventCloud Design

In this section we give a description of the data and subscription model used by
our system, dubbed EventCloud. We explain how events and more specifically
how RDF data, along with subscriptions, are indexed in a CAN network.

3.1 Data and subscription model

Our data and subscription model follows the approach taken in [15] to allow users
to formulate queries and subscriptions but also to insert and publish information
with the same models, that is respectively RDF and SPARQL.

Events The data are expressed in the RDF model using 4-tuples (quadruples)
whose elements are named RDF terms. In our system an RDF term may be
either an IRI or a Literal value. Elements generated at the same time by a given
source form a Compound Event (CE ), as defined by (1b). Each CE is made
of a list of quadruples and all quadruples share a common term called graph
value. This term is built with a combination of a unique source identifier and
a timestamp. The purpose of this graph value is twofold. It is used to identify
the event source, the event itself and also to offer the possibility to link together
several quadruples for emulating, yet unbounded, multi-attribute values like in
traditional pub/sub systems.

q = (g, s, p, o) | g, s, p, o ∈ RDFTerm (1a)

CE = (q1, ..., qi, ..., qn) | qi = (g, si, pi, oi) (1b)

The EventCloud is based on a four dimensional CAN overlay that uses the
lexicographic order for routing requests. The four dimensions of the CAN coor-
dinate space are mapped respectively to the graph, the subject, the predicate
and the object of any RDF 4-tuple that is indexed. One benefit of this approach
is that a quadruple represents a point in the four dimensional Cartesian space.
Hence a quadruple will only be stored by a single peer of the overlay. This index-
ing approach has several advantages. First, it supports range queries (looking for
values in a specified range) efficiently. Second, the lexicographic order preserves
the data semantics so that is gives a form of clustering of quadruples sharing a
common prefix. In contrast, hash-based approaches destroy the natural ordering
of information and make the management of complex queries difficult and ex-
pensive. The Figure 1 shows how CEs and subscriptions are mapped to a CAN
network.

4



(a,a) (z,a)

(a,z) (z,z)

CE =

 q1
q2
q3

(a) Distribution of a Compound
Event with 3 quadruples.

S1 = (?x, p)

S2 = (r, ?y)

(a,a) (z,a)

(a,z) (z,z)

(b) Distribution of 2 subscriptions, over-
lapping on a peer.

Fig. 1. Example data and subscription distribution on a 2D CAN.

Subscriptions A subscription is content-based and formulated using a subset
of SPARQL. It is basically a list of atomic queries called sub-subscriptions or
SS with possibly a FILTER clause. A subscription is applied on different CEs
independently, i.e. only the quadruples that belong to the same CE can trigger
a notification. More precisely, a subscription S = {SS1, SS2, ..., SSn} is found
to match a Compound Event CE = {q1, q2, ..., qm} if for each SSi there exists at
least a matching qj . In other words, the whole subscription should be matched
by a subset of the quadruples contained by a CE.

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
2 SELECT ?id ?name WHERE {
3 GRAPH ?g {
4 ?id foaf:name ?name . // the point at the end of line
5 ?id foaf:age ?age // stands for the and operator
6 }
7 FILTER (?age > 25)
8 }

Listing 1.1. Example of a SPARQL subscription.

For instance, the example depicted in Listing 1.1 states that all events that
are related to an entity, with a name and whose age is greater than 25, have to
be delivered to the subscriber.

To index the subscription in the overlay, we use a similar scheme than for
the events. The subscription is transformed into a set of RDF quadruples. This
set is made of the first sub-subscription and additional quadruples. The first one
contains a unique identifier, the second one a timestamp and the last one the
whole subscription. This set is then sent to the peers responsible for the fixed
parts of the first sub-subscription. The subscription presented in the previous
example is decomposed as shown in Listing 1.2 and S will be stored on the peers
responsible for ?id foaf:name ?name, i.e. those with a zone with value foaf:name
on the predicate dimension, and any value on all others (graph, subject and
object).

1 S = { (?g, ?id , foaf:name , ?name),
2 (id and timestamp), (subscription) }

Listing 1.2. Decomposition of a SPARQL subscription in RDF sets.

5



3.2 System properties

In addition to the data and subscription model, our framework also enforces a
set of properties. If a Compound Event is added to the overlay, where there exist
a matching subscription, then it will be delivered to the subscriber. Conversely,
no false positive should be delivered. Finally, the causal ordering of publish and
subscribe requests will be maintained for a given client (acting both as publisher
and subscriber). If a subscription is issued before a matching compound event
by the same client, then a notification should be issued.

4 Publish/Subscribe Algorithms

This section introduces two pub/sub algorithms optimized for different use cases.
The first one, named Chained Semantic Matching Algorithm (CSMA), is opti-
mized for the publications while One-step Semantic Matching Algorithm (OSMA)
is optimized for the subscriptions.

4.1 CSMA

The general idea of CSMA, as inspired by Liarou et al., is to publish in parallel
and perform the matching of all the sub-subscriptions sequentially. Indeed, all
peers involved in a subscription will be organized in a chain-like fashion. Only
the peers indexing the subscription, as described in Section 3.1 can start the
matching process and notify the next peers in the chain which, in turn, will try
to find a match. The process ends when reaching the last peers in the chain, i.e.
when the whole subscription is satisfied.

Event Routing: A Compound Event upon entering the overlay is divided into
simple events and each of them is published independently. There are two situ-
ations which can trigger the search for a subscription match.

Event Reception: When receiving an event, a peer checks whether there is a
matching subscription or not. If there is one and the current event satisfies the
first atomic query, then the subscription is rewritten into S′. The rewrite op-
eration consists in replacing the variables of the atomic query with the event
elements, basically striping down the subscription of the matched values. It also
adds the unique identifier of the Compound Event so that the rewritten sub-
scription can only match the remaining events. This new subscription is then
sent into the overlay for re-indexing and potential matching.

Subscription Reception: When a peer receives a new subscription, it checks for
events generated after the subscription but received before, using the timestamp
value. This situation could occur because of events and subscription taking dif-
ferent path in the overlay, but more often because of the rewriting described
earlier. Hence, this mechanism will allow for a rewritten subscription to match
events from the same Compound Event, even if they were received earlier.

Finally, when the last matching is performed, the subscriber is notified about
the corresponding graph value and can begin the reconstruction process.

6



Reconstruction: When notified of the graph value g of a matching Compound
Event, a subscriber performs a reconstruction operation to retrieve the whole
event. It synchronously queries the overlay with (g, ?s, ?p, ?o) quadruple pattern
to retrieve all events of the Compound Event. Since some events might still be
routed to the correct peer in the overlay, we use a timeout based algorithm,
i.e. if some events are still missing the subscriber waits a fixed duration before
re-issuing a new request.

The main drawback of CSMA is that matching a subscription is essentially
a sequential process with a complexity (number of steps) equals to the number
of sub-subscriptions. Although any peer in the chain can receive a matching
event, an ordering constraint is imposed by the subscription. Hence, we don’t
take advantage of the distributed nature of the subscription.

Furthermore, CSMA may suffer from duplicate notifications. This can happen
when there is not a single peer at the end of the matching chain. For example, if
the last sub-subscription, after rewriting, still contains variables, then it will be
indexed on multiple peers and potentially trigger multiple notifications. Thus a
filtering at subscriber side has to be performed during the reconstruction.

4.2 OSMA

To alleviate the previous issues, we propose a second algorithm, OSMA, which
allows for parallel matching of subscriptions.

Routing: Instead of indexing only individual quadruples, we now index the whole
Compound Event on each peer using each quadruple as a key.

Event Reception: When receiving the whole CE, the peer first stores only the
quadruples which fall in its responsibility zone. Then, it looks for the subscrip-
tions satisfied by the whole Compound Event.

Notification Triggering: Before notifying the subscriber of a match, some care
has to be taken to avoid duplicate notifications. Indeed, potentially all peers
storing the subscription and involved in the indexation of quadruples from the
CE have now enough information to notify the match. To ensure only one peer
sends the notification, we apply the following rule. A peer notifies a match if
and only if it is responsible for the first of the matching events of the CE. For
instance, if we have a CE = (q1, q2, q3), a subscription S = (SS1) and two peers
P1 and P2 that receive respectively q2 and q3 and index both SS1. If q2 is the
first quadruple from the CE that satisfies SS1 on P1, then only P1 notifies the
subscriber.

The main benefit of this algorithm is the expected low latency for subscribers.
As soon as the CE reaches the peer responsible for the first matching event,
the notification if triggered. Also there is no need for a reconstruction phase
because the Compound Event can be directly sent to the subscriber. However,
this is done at the cost of bandwidth since the whole Compound Event is sent
to multiple peers. Also, note that this algorithm cannot deal with the situation

7



where a subscription is created before an event but reaches a peer after. Correctly
managing this case requires falling back to CSMA, which we do.

To summarize, the different properties of the two algorithms are presented
in Table 1.

Routed
Element

Matching Steps Duplicates
Happen-
Before

CSMA
Individual
quadruples

Multiple, Chain-like
and Reconstruction

Yes, filtering
required

Enforced

OSMA
Whole

Compound Event
Single No

Requires
CSMA

Table 1. Comparison of the two pub/sub algorithms.

5 Experiments

The latest version of our system dubbed EventCloud is publicly available1 as an
open source project under the AGPL license. From an implementation point of
view each peer embeds Jena TDB instances for data and subscription storage.

The experiments introduced hereafter have been performed on 29 nodes of
the Grid’5000 testbed. Each machine embeds a Xeon E5520 @ 2,26 GHz with 32
GB RAM, a hard disk drive at 7200 RPM. The partition used for data storage is
an EXT3 partition mounted with options noatime and nobarrier for performance
reasons. Java 7 was used with JVM option -server. Each result is the average
execution on 6 runs where the first run is laid aside due to JVM warmup.

The workload we are using is made of x synthetic events and y subscriptions
that are generated to be distributed uniformly among the available peers. This
allows us to evaluate the performance of the algorithms when the number of
peers involved is the largest.

Subscriptions are generated to embed k quadruple patterns of the form
(?g, ?s1, p1, ?o1) ∧ (?g, ?o1, p2, ?o2) ∧ . . .∧ (?g, ?ok−1, pk, ?ok). Compound Events
are generated to evenly match subscriptions.

In the first experiment we evaluate the effect of increasing the network size.
For this purpose we place 1 peer per machine and vary the total number of peers
from 1 to 25. There is only one subscriber with a subscription made of k = 5
patterns. One publisher publishes 3×103 CEs, each one containing 5 quadruples
for an approximate size of 670 Bytes. Figure 2(a) depicts the average subscriber

1 http://eventcloud.inria.fr

8



throughput2, i.e. the throughput perceived on the subscriber when the network
size it increased. OSMA outperforms CSMA by a factor of 5.43 according to the
median value. This difference is explained by the matching which is performed
in one step with OSMA whereas CSMA requires a number of steps equals to the
number of SS contained by a subscription that is satisfied. Thus, increasing the
number of routing steps required.

In a second experiment we evaluate the effect of varying the number of pub-
lications. Figure 2(b) shows that the throughput on the subscriber is constantly
increasing with OSMA when the number of publications increases. This is be-
cause the overlay is not working at its full capacity when x = 30 × 103 CEs
are published. On the contrary with CSMA the subscriber throughput decreases
quickly with the number of publications. This behavior is explained by the re-
construction process which overloads peers with requests, slowing the insertions
and the notifications. Owing to the reason that the time required to complete the
experiments is too large when more than 21000 CEs are published with CSMA,
some values are omitted.

The third experiment evaluates the impact of varying the number of sub-
scriptions registered in the system. The scenario consists in one subscriber sub-
scribing with various number of subscriptions. The subscriptions are generated
to match an equal number of Compound Events. Figure 2(c) shows the subscriber
throughput for 1 to 60 subscriptions. With OSMA the throughput decreases al-
most linearly with the number of subscriptions in the system. The reason lies
in the indexing of the subscription. Since it relies on the first sub-subscription
which contains only a predicate as fixed term, only half of the peers of the over-
lay are actually participating in the matching. Also, some of them have multiple
subscriptions to check for each Compound Event received, which is a costly op-
eration with Jena TDB. On the contrary, CSMA remains almost stable with a
throughput that varies around 92 CEs per second. This effect is explained by
the rewritten subscriptions that are generated once a first sub-subscription is
satisfied. A rewritten subscription contains in our case more fixed parts than its
parent and is indexed against potentially less and different peers, thus, increasing
the number of peers involved in the matching.

In a fourth experiment we test the effect of varying the number of peers
when selective subscriptions are replaced by a subscription that accepts all
events (c.f. Figure 2(d)). In such a situation, all peers index the subscription
SELECT ?g WHERE { GRAPH ?g { ?s ?p ?o }}. As explained in Section 4.1,
CSMA generates a lot of duplicate notifications in this situation, which limits the
scalability. Since OSMA always performs a single notification, the throughput
increases with the number of peers.

Finally, the time taken to store different number of publications with no sub-
scription registered on peers is depicted on Figure 2(e). This criteria is directly
related to the bandwidth consumption since no matching is performed. Indeed,

2 Mathematically speaking it is defined as the number of matching publications divided
by the time elapsed between the first notification and the last awaited notification
received by the subscriber.

9



 0

 50

 100

 150

 200

 250

 300

 350

1 5 9 13 17 21 25

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of peers

CSMA
OSMA

(a) Impact of overlay size. 3000 CEs
published, one subscription of k = 5
quadruple patterns.

 0

 100

 200

 300

 400

 500

 600

3000 9000 15000 21000 27000 30000

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of compound events published

CSMA
OSMA

(b) Impact of the number of publica-
tions. 25 peers, one subscription (k = 5).

 50

 100

 150

 200

 250

 300

1 10 20 30 40 50 60

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of subscriptions

CSMA
OSMA

(c) Impact of the number of subscrip-
tions. 25 peers and 3000 CEs published.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 5 9 13 17 21 25

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of peers

CSMA
OSMA

(d) Scalability with one accept-all sub-
scription. 3000 CEs published.

 0

 20000

 40000

 60000

 80000

 100000

3000 9000 15000 21000 27000 30000

T
im

e 
to

 s
to

re
 a

ll
 C

E
s 

(m
s)

Number of compound events published

CSMA
OSMA

(e) Time to store publications on peers.
25 peers, no subscription, 25 quadruples
per CE.

Fig. 2. Performance comparison of CSMA and OSMA.

the only difference between the two algorithms with this configuration is the
quantity of information conveyed from peers to peers. The time to store the
published events quickly differs between CSMA and OSMA when the number
of publications increases from 3000 to 30000. It confirms that OSMA requires
more time than CSMA to forward events to peers that are responsibles to store
quadruples. Thus, it will require more bandwidth than CSMA.

10



In conclusion, the experiments show that OSMA outperforms CSMA in terms
of throughput and scalability at the cost of a higher bandwidth consumption. Its
only limitation is that it cannot enforce the happen-before relation and hence,
depending on the use case, some applications will have to rely on CSMA.

6 Conclusion

In this paper we have introduced a pub/sub framework based on the RDF data
model and SPARQL filter model. Subscribers can express their interests using
the SPARQL language and events are published as RDF data. We rely on a
multi-dimensional indexing space and lexicographical order to distribute both
the publications and subscriptions on an overlay. Compared to previous works,
our scheme does not require multiple indexing of the same publication, thus
reducing the storage space. We have proposed two algorithms for matching sub-
scriptions. The first one, CSMA, is based on the canonical chain-like approach.
It reduces the bandwidth used when publishing at the cost of a longer match-
ing time. It can also handle ordering issues which can happen when the same
client submits both publications and subscriptions. The second one, OSMA, uses
a fully distributed approach which leads to good performance at the cost of a
slightly heavier publication process. Both algorithms have been experimentally
tested for throughput and scalability.

Acknowledgments

This work was in part supported by the EU FP7 STREP project PLAY and
French ANR project SocEDA. Experiments presented in this paper were carried
out using the Grid’5000 experimental testbed (see https://www.grid5000.fr).
The authors wish to thank Bastien Sauvan, Iyad Alshabani, Justine Rochas and
Maeva Antoine for their help with the implementation.

References

1. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. The Semantic Web—ISWC 2002 pp.
54–68 (2002)

2. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. Journal of Grid Computing 2(1), 3–14 (2004)

3. Cai, M., Frank, M., Yan, B., MacGregor, R.: A subscribable peer-to-peer rdf repos-
itory for distributed metadata management. Web Semantics: Science, Services and
Agents on the World Wide Web 2(2), 109–130 (2004)

4. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th international World Wide Web conference on Alternate track papers &
posters. pp. 74–83. ACM (2004)

11



5. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems (TOCS) 19(3), 332–
383 (2001)

6. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. Selected Areas in Commu-
nications, IEEE Journal on 20(8), 1489–1499 (2002)

7. Fitzpatrick, B., Slatkin, B., Atkins, M.: Pubsubhubbub protocol (2010),
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

8. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many ob-
ject pattern match problem. Artificial Intelligence 19(1), 17–37 (1982),
http://dx.doi.org/10.1016/0004-3702(82)90020-0

9. Gupta, A., Sahin, O., Agrawal, D., Abbadi, A.: Meghdoot: content-based pub-
lish/subscribe over p2p networks. In: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. pp. 254–273 (2004)

10. Jelasity, M., Kermarrec, A.: Ordered slicing of very large-scale overlay networks.
In: Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE International Conference
on. pp. 117–124. IEEE (2006)

11. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim–a pragmatic semantic repository
for owl. In: Web Information Systems Engineering–WISE 2005 Workshops. pp.
182–192. Springer (2005)

12. Lakshman, A., Malik, P.: Cassandra—a decentralized structured storage system.
Operating systems review 44(2), 35 (2010)

13. Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: A scalable and elastic publish/subscribe
service. In: Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International. pp. 1254–1265. IEEE (2011)

14. Liarou, E., Idreos, S., Koubarakis, M.: Continuous rdf query processing over dhts.
In: Proceedings of the 6th international semantic web conference. pp. 324–339.
Springer-Verlag (2007)

15. Pellegrino, L., Baude, F., Alshabani, I.: Towards a scalable cloud-based rdf storage
offering a pub/sub query service. In: The Third International Conference on Cloud
Computing, GRIDs, and Virtualization. pp. 243–246 (2012)

16. Pietzuch, P., Bacon, J.: Hermes: A distributed event-based middleware architec-
ture. In: Distributed Computing Systems Workshops, 2002. Proceedings. 22nd In-
ternational Conference on. pp. 611–618. IEEE (2002)

17. Prud’Hommeaux, E., Seaborne, A., et al.: Sparql query language for rdf. W3C
recommendation 15 (2008)

18. Ranger, D., Cloutier, J.: Scalable peer-to-peer rdf query algorithm. In: Web Infor-
mation Systems Engineering–WISE 2005 Workshops. pp. 266–274. Springer (2005)

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. ACM SIGCOMM Computer Communication Review 31(4),
160–172 (2001)

20. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware 2001. pp. 329–350.
Springer (2001)

21. Shvartzshnaider, Y., Ott, M., Levy, D.: Publish/subscribe on top of dht using rete
algorithm. Future Internet-FIS 2010 pp. 20–29 (2010)

22. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. ACM SIGCOMM Com-
puter Communication Review 31(4), 149–160 (2001)

23. TIBCO, I.: Tib/rendezvous white paper. Palo Alto, California (1999)

12


