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Abstract. As the explosion of data sizes continues to push the limits of our abili-

ties to efficiently store and process big data, next generation big data systems face

multiple challenges. One such important challenge relates to the limited scalabil-

ity of I/O, a determining factor in the overall performance of big data applications.

Although paradigms like MapReduce have long been used to take advantage of

local disks and avoid data movements over the network as much as possible, with

increasing core count per node, local storage comes under increasing I/O pressure

itself and prompts the need to equip nodes with multiple disks. However, given

the rising need to virtualize large datacenters in order to provide a more flexible

allocation and consolidation of physical resources (transforming them into pub-

lic or private/hybrid clouds), the following questions arise: is it possible to take

advantage of multiple local disks at virtual machine (VM) level in order to speed

up big data analytics? If so, what are the best practices to achieve a high virtu-

alized aggregated I/O throughput? This paper aims to answer these questions in

the context of I/O intensive MapReduce workloads: it analyzes and characterizes

their behavior under different virtualization scenarios in order to propose best

practices for current approaches and speculate on future areas of improvement.

1 Introduction

Big Data analytics has enabled unprecedented insight into scientific, social and business

challenges. Major advances in almost all fields (i.e. meteorology, genomics, complex

physics simulations, environmental research, social networking and dynamics, financial

forecasting, etc.) were possible thanks to increasing volume and diversity of data gath-

ered and archived form a variety of sources: sensors, experimental data, mobile devices,

etc.

Not surprisingly, the rapid rate at which data sizes are growing has prompted the

need for bigger and faster systems / techniques capable to perform big data analytics

efficiently at an increasingly larger scale. Today, clusters of tens of thousands of nodes

are a common occurrence. However, advances that make such systems possible are not

homogeneous: while adding more computational power was demonstrated feasible both

in terms cost and scalability, the I/O abilities in terms of networking and storage are

lagging behind. Given the data-intensive nature of big data workloads, I/O performance

is a determining factor in the overall performance of the applications, thus becoming a

critical focus area.



An important technique to limit the impact of I/O bottlenecks is to avoid data move-

ments as much as possible, which conserves network bandwidth and thus helps achieve

horizontal scalability. Several big data paradigms were developed around this concept,

with MapReduce [1] and its open-source implementation Hadoop [2] being widely

adopted in both academia and industry. Two key design principles enable MapReduce

to avoid data movements. First, it forces the users to think their application in an embar-

rassingly parallel fashion that transforms the input as much as possible into a digested

form (map phase) over which an aggregation is performed (reduce phase). Thus, during

the map phase no extra network traffic is generated due to synchronization. Second, it

departs from the traditional model of decoupling storage from computation, taking ad-

vantage of local storage to schedule the computation close to the data if possible, which

again avoids network traffic.

Although avoiding data movements is a powerful concept that helps conserve net-

work bandwidth, at the same time it shifts the burden of I/O on the local storage. With

horizontal scalability increasingly difficult to achieve and attention turning to vertical

approaches (i.e. more cores per node), the I/O pressure grows large enough to introduce

the need for multiple local disks. Thanks to its embarrassingly parallel design and a

streaming I/O model that favors adding new data over modifying old data, MapReduce

can easily take advantage of multiple disks to achieve a high aggregated I/O throughput,

which is a feature already implemented in Hadoop.

As nodes become increasingly complex and expensive to build and maintain in large

numbers, big data systems become prohibitively expensive for most users. In this con-

text, IaaS cloud computing emerged as a key technology to enable users to rent com-

putational resources on-demand, paying only for what they have used. Thanks to vir-

tualization, any user can easily create a large virtual big data cluster with the click of

a button. However, how to efficiently map virtual resources to physical resources is a

difficult challenge, especially when considering the increasing size and complexity of

the nodes. In particular, the problem of how to virtualize multiple local disks efficiently

to achieve a high aggregated I/O throughput is not well understood yet it is a crucial

step in enabling efficient big data analytics on IaaS clouds.

This paper aims to understand the problem mentioned above. What makes it par-

ticularly challenging is the multitude of factors that play a role in the I/O virtualiza-

tion overhead (i.e. how many VMs per node, how many virtual disks per VM, virtual

disk placement, etc.) that need to be analyzed. This is further augmented by missing

functionality in state-of-art cloud middleware to enable users to express placement con-

straints for virtual disks. We summarize our contributions as follows:

– We introduce an experimental framework that emulates a cloud middleware and

enables fine-grain control over the hypervisor in order to easily express mapping

constrains for virtual disks. Using this approach, experimental setups can be easily

defined and the experimental conditions can be tightly monitored and controlled.

– We experiment with I/O intensive MapReduce workloads in several virtualization

setups. In particular, we analyze how well the striping mechanism implemented in

Hadoop scales when using a variable number of VMs per node, virtual disks per

VM and different virtual disk placement strategies.
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Fig. 1. Architecture of the experimental framework

– Based on the results, we identify several potential areas of improvement and com-

ment on the associated research opportunities.

2 Architecture

To facilitate fine-grain control over the hypervisor and the mapping between virtual and

physical resources, we constructed an experimental framework that emulates a typical

cloud middleware yet is highly configurable. The simplified architecture of this frame-

work is depicted in Figure 1. For better clarity, the building blocks that are of special

interest are emphasized with a darker background.

The VM image repository is the storage service responsible to hold the disk image

templates for the root file systems of the VM instances. For the purpose of this work,

we build our own custom template (based on Debian Sid) with a pre-installed Hadoop

environment. All templates are read-only and serve as a base image for locally derived

qcow2 [3] images, where the VM instances are allowed to write into their root file-

system. For better performance, the locally derived images are stored on a SSD. Note

that Hadoop does not write to the root file-system directly, but uses a separate set of

dedicated virtual disks attached to the VM instance.

The hypervisor manager is responsible to control all compute nodes and prepare

the hypervisors to launch the VM instances in the desired configuration. It can be con-

figured to use a variable number of nodes with a variable number of VMs per node, as

well as attach a variable number of virtual disks per VM, according to a mapping strat-

egy. For the purpose of this work, we implemented two mapping strategies: (1) round

robin, which spreads the virtual disks to as many physical disks as possible in order to

avoid I/O contention; and (2) consolidated, which places as many virtual disks as pos-

sible on the same physical disk, thus minimizing the number of required physical disks.

Once a configuration was established, the hypervisor manager calculates the number

of cores and amount of RAM per VM instance, creates the virtual disks according to

the strategy and spawns the VM instances and attaches the virtual disks to them. In a

final step, it generates the necessary configuration files for the Hadoop deployment (in

particular it, enables striping on the attached virtual disks) and then deploys the Hadoop

cluster. Striping is enabled both for HDFS [4], the default storage layer of Hadoop, as



well as for the intermediate data that is generated by the mappers and that is used by

the reducers as input.

To enable detailed analysis of the results, a monitor is deployed on each VM in-

stance to gather performance information at fine granularity (5 seconds). This informa-

tion includes CPU, memory, networking and virtual disk utilization and is kept both

in raw form and in an aggregated fashion that is representative of the whole cluster

utilization.

3 Experimental analysis

Using the experimental framework described in the previous section, we study in this

section the behavior of I/O intensive MapReduce workloads under different virtualiza-

tion scenarios, in order to understand what aspects play an important role with respect

to performance and scalability.

3.1 Setup

The platform used to run our experiments is a custom testbed consisting of 6 nodes,

each equipped with 32 x86 64 cores with support for virtualization, 96 GB of RAM

and several Gigabit Ethernet networking interfaces (one of which is used for the ex-

periments). With respect to local storage, each node is equipped with 12 HDD disks

(capacity per disk: 1 TB, measured I/O throughput per disk: 160 MB/s) and 2 SDD

disks (capacity per disk: 256GB, measured I/O throughput per disk: 430 MB/s).

The hypervisor running on all compute nodes is QEMU/KVM 1.2.0, while the op-

erating system is a recent Ubuntu distribution. The base image used to deploy the VMs

is a recent Debian Sid distribution, on top of which we installed Hadoop 2.0.4. All

VM instances share the same base image but write locally into their own derived copy-

on-write image (using the qcow2 format) that is stored on one of the SSDs. All extra

virtual disks attached to the VMs that are used by Hadoop in striping mode correspond

to raw files (256GB) that are stored on the HDDs (according to the mapping strategies

presented in Section 2). Each VM formats all its extra virtual disks at boot time us-

ing the ext4 file system. To maximize I/O performance, KVM is configured to run in

paravirtualized mode using the virtio driver.

3.2 Methodology

We create a series of scenarios that involve a variable number of VMs per node and

a variable number of virtual disks per VM using a combination of round robin and

consolidated virtual disk mapping strategies.

In all of our experiments, the virtual Hadoop cluster leverages the physical resources

of all 6 nodes. More specifically, we reserve 60 GB of RAM and 30 CPU cores for

VMs on each node, leaving the rest to deal with jitter and virtualization overhead. These

physical resources are leveraged in three configurations: 1 VM / node (using all reserved

cores and RAM), 2 VMs / node (each of which is allocated 30 GB of RAM and 15 CPU

cores) and 3 VMs / node (each of which is allocated 20 GB of RAM and 10 CPU cores).



Thus, we create a virtual Hadoop cluster of 6, 12 and 18 VMs respectively. For each

configuration, we vary the number of virtual disks attached to each VM from 1 up to 8.

These disks are mapped to physical HDDs using a per-VM round robin policy, i.e. all

VMs on the same node share the same physical disk for their vdisk1, another physical

disk for their vdisk2, etc.

The Hadoop deployment itself is performed using YARN. Each VM runs a HDFS

datanode and a YARN nodemanager. As mentioned in Section 2, Hadoop is config-

ured to stripe both its intermediate data and persistent data (i.e. data stored by HDFS).

Furthermore, each nodemanager is configured to accept a number of parallel mappers

that matches the number of cores allocated to the VM. One of the nodes is chosen as

the master and runs the HDFS namespace manager and the YARN resourcemanager, in

addition to the datanode and nodemanager.

As a representative workload to perform our study on, we chose the sort benchmark,

a standard MapReduce workload that is part of the Hadoop distribution. It consists

of two phases. In the first phase, a predefined amount of random data is generated

using randomwriter. This workload writes variable-sized key-value pairs (keys between

10-1000 bytes, values between 0-20000 bytes) directly into HDFS. The mappers do

not emit any output and the reduce phase is not used. For the purpose of this work,

we configured randomwriter to use a total of 180 mappers (i.e. the total number of

cores available in the Hadoop cluster), each of which is writing 2GB. After the first

phase is complete, all previously generated data is sorted. In this case, the mapper is the

predefined IdentityMapper and the reducer is the predefined IdentityReducer, both of

which just pass their inputs directly to the output. The sorting itself is achieved thanks

to the shuffling that is performed by the MapReduce framework. To parallelize this

process as much as possible, we configured sort to use a maximum of 180 reducers,

which matches the number of mapper slots. Thanks to this minimalist setup in terms of

data processing itself, sort is heavily data intensive and emphasizes the I/O part, which

is the reason why we chose it.

Each experiment consists in fixing the number of VMs per node and the number of

virtual disks per VM, then running the sort benchmark to completion, while recording

cluster-wide monitoring information (using the monitors presented in Section 2) and

the completion times.

3.3 Results

The completion times for the sort benchmark using a variable number of VMs per node

and a variable number of disks per VM is depicted in Figure 2(a).

As can be observed, in all three configurations, there is a sharp drop in completion

time with an increasing number of virtual disks attached to the VMs. This fact confirms

that I/O performance plays a crucial role in the overall application performance: when

increasing the number of virtual disks from 1 to 8, a reduction in execution time of up

to 70% is observable.

Focusing on the single VM per node scenario, two main factors contribute to the

results mentioned above. First, as can be observed in Figure 3(b), an increasing num-

ber of virtual disks dramatically lowers the overall I/O pressure in the Hadoop cluster:

from an aggregated utilization that tops 100% in the case of 1 virtual disk, a drop to
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Fig. 2. Performance results for the sort benchmark, using a variable number of VMs per node and

a variable number of disks per VM

a maximum of 50% and 25% is noticeable in the case of 4 and 8 disks respectively.

Figure 3(a) reveals an interesting fact: a lower I/O pressure does not significantly affect

the aggregated CPU utilization: all curves follow a similar pattern up to a point when

the CPU utilization drops sharply for the rest of the execution: this is the point when

the mappers have finished and only reducers are still running. Thus, I/O is the dominat-

ing factor during the reduce phase and it oversaturates the disk bandwidth in the case

of 1 vdisk, leading to a longer execution time. This is also confirmed by Figure 3(b):

using only 1 vdisk results in 100% disk utilization for a significant portion of the reduce

phase.

Second, according to Figure 2(b), a different distribution of map and reduce tasks

is observable: increasing the number of virtual disks results in improved locality (less

remote mappers, which means more data-local mappers) and thus better performance

due to less data movement. However, considering the total number of mappers is around

2800, even for 1 vdisk there are less than 7% of remote mappers. Thus, we suspect the

impact of improved locality on the overall application performance is small compared

to the impact of lower I/O pressure due to more virtual disks.

What scalability is concerned, there is a noticeable drop in the benefits of adding

more virtual disks (i.e. 27% reduction from one to two virtual disks compared to 9%

reduction from 6 to 8 virtual disks). This is understandable considering the lower overall

I/O utilization and it leads to an important observation: while there is considerable

performance improvement due to lower I/O pressure, Hadoop striping does not fully

leverage the aggregated I/O bandwidth offered by multiple local virtual disks.

Counter-intuitively, adding more VMs per node also benefits overall performance,

despite more virtualization overhead and more data movements due to VMs on the same

node being isolated from each other. As can be observed in Figure 2(a), the completion

times for 2 and 3 VMs per node follow the same shape as the curve corresponding to 1

VM per node, however they are smaller by a significant near-constant factor.

To explain this effect, notice the better overall CPU utilization in Figure 3(c) and

Figure 3(e): from an average of 65% in the case of 1 VM per node, it has risen to

80% and 90% for 2 and 3 VMs respectively, leading to a shorter map phase. Thus, we
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conclude that the load balancing implemented in Hadoop is currently tuned towards

horizontal scalability rather than vertical scalability. This tendency is also confirmed by

a shorter reduce phase, for which the explanation is found in Figure 2(b): as the size of

the Hadoop cluster grows, more reducers are used, despite an overall constant number

of reducer slots being available in all configurations.

Nevertheless, when the number of VMs that share the same node increases, so does

the virtualization overhead, limiting the potential to exploit horizontal scalability simply

by adding more VMs per node. This trade-off can be observed from the completion

times of 2 and 3 VMs per node, which are very close to each other (Figure 2(a)). Higher

I/O pressure slightly tips the balance in favor of 2 VMs per node for few virtual disks

per instance, while the opposite holds for higher number of virtual disks per instance.

4 Related work

Several state-of-art cloud middleware [5] (such as OpenStack [6]) offer dedicated stor-

age solutions that aggregate block storage available on compute nodes to form dis-

tributed repositories. However, there is no specific feature or API to control how virtual

disks are mapped to physical disks. Thus, we felt the need to contribute with our own

experimental framework.

Extensive related work has been undertaken in the area of MapReduce workload

characterization. Some works report low resource utilization [7] and suggest potential

energy savings by consolidating workloads to fewer nodes. With respect to I/O, Ren

et al. [8] conclude that improving data locality has little potential to improve I/O per-

formance, which is also confirmed by our findings. They suggest in-memory storage,

potentially in form of a DSM (distributed shared memory) as an alternative to disk stor-

age. Other studies focus particularly on HDFS [9, 10]. Unlike our approach, the focus

is on HDFS utilization (i.e. metadata, file access patterns create, read, write, delete,

etc.) and does not involve intermediate data. Furthermore, instead of mixed I/O from

multiple workloads, we analyze single workloads in isolation, in order to understand

potential correlations.

Our own previous work [11] explores how to replace HDFS with a new storage

layer based on BlobSeer [12], a versioning-based distributed storage system specifi-

cally designed for high throughput under concurrency. This previous work focuses on

horizontal scalability and does not involve virtualization issues.

Several efforts have acknowledged the need to optimize MapReduce I/O at node

level. Themis [13] implements the MapReduce paradigm using different design deci-

sions than Hadoop. In particular, it introduces a centralized per-node disk scheduler

that batches together records produced by different mappers in order to minimize the

number of I/O operations. Ibrahim et al. [14] focus on improving I/O virtualization by

means of smart coupling of the disk schedulers used at host and guest level that adapts

to the workload. Unlike our case, the focus in these efforts is on how to optimize I/O for

single disks rather than how to efficiently aggregate the bandwidth of multiple disks.

To our best knowledge, we are the fist to explore the problem of efficient virtualiza-

tion of multiple local disks for data-intensive MapReduce workloads.



5 Conclusions

With increasing data sizes, big data analytics becomes increasingly challenging. In a

quest to keep up with scalability, paradigms such as MapReduce were specifically de-

signed to decouple tasks and improve horizontal scalability of big data systems. How-

ever, with horizontal scalability increasingly difficult to achieve, vertical scalability has

recently gained increasing attention. Although adding more cores per node is a common

occurrence, adding more disks per node to improve local I/O capabilities is not. Since

big data applications are I/O intensive, doing so is highly desirable in order to remain

scalable. Furthermore, given the tendency to virtualize datacenters in order to improve

utilization and/or sell cloud computing services, the problem of how to efficiently vir-

tualize multiple local disks for big data analytics is becoming crucial.

In this work we addressed the above problem. Given that this direction is still

emerging, current cloud computing middleware is lacking features to guarantee effi-

cient placement of virtual disks. Thus, our first contribution was to build an experimen-

tal framework that is able provide control over virtual disk placement, either spreading

them over multiple physical disks in order to improve aggregated I/O or consolidating

them on few physical disks.

Based on this experimental framework, we analyzed a data-intensive Hadoop work-

load in various virtualization settings. First of all, we found that Hadoop workloads can

significantly benefit from striping to multiple virtual disks, with reductions in overall

completion time of up to 70% when aggregating the I/O of 8 disks compared to a single

disk.

However, our findings also show that Hadoop is better designed for horizontal rather

than vertical scalability: its striping ability makes increasingly less use of the overall

aggregated I/O bandwidth with increasing number of virtual disks. Furthermore, its

load balancing ability increases with increasing number of VMs, despite sharing the

same physical resources. This presents an interesting trade-off: on one side, increasing

the number of VMs per node and/or the number of virtual disks per VM increases

the virtualization overhead, but on the other hand it enables Hadoop to leverage the

infrastructure better.

Thanks to these findings, we propose two interesting directions as future work. The

first direction deals with how to improve Hadoop itself in order to enable it to leverage

multiple virtual disks efficiently, both at the level of intermediate data and persistent

data that needs to be saved in HDFS. In this context, the relationship to virtualization

would be interesting to explore: would Hadoop benefit from being virtualization-aware?

If so, what optimizations would be possible? Furthermore, does this go both ways (in

other words, are there any hints it can give to the virtualization layer so that the latter

can perform specific optimizations)?

Second, since Hadoop striping does not fully leverage the aggregated local I/O

bandwidth to its full potential, another interesting direction to explore is whether pre-

senting a single virtual disk to the VM and doing striping transparently in the back-

ground at hypervisor level can make better use of the aggregated bandwidth. In this

context, we propose the concept of bandwidth-elastic virtual disk: a virtual disk that

stripes to more physical disks under high I/O pressure and consolidates to less physical

disks when the I/O pressure is lower, thus improving I/O resource utilization and en-



abling more efficient multi-tenancy and lower operational costs (e.g. saving energy by

powering off disks).
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3. Gagné, M.: Cooking with Linux—still searching for the ultimate Linux distro? Linux J.

2007(161) (2007) 9

4. Shvachko, K., Huang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:

MSST ’10: The 26th Symposium on Massive Storage Systems and Technologies. (2010)

5. Zhang, Z., Wu, C., Cheung, D.W.: A survey on cloud interoperability: taxonomies, standards,

and practice. SIGMETRICS Perform. Eval. Rev. 40(4) (April 2013) 13–22

6. Baset, S.A.: Open source cloud technologies. In: SoCC ’12: Proceedings of the 3rd ACM

Symposium on Cloud Computing, New York, NY, USA, ACM (2012) 28:1–28:2

7. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of traces from a production

mapreduce cluster. In: CCGRID ’10: Proceedings of the 10th IEEE/ACM International Con-

ference on Cluster, Cloud and Grid Computing, IEEE Computer Society (2010) 94–103

8. Ren, Z., Xu, X., Wan, J., Shi, W., Zhou, M.: Workload characterization on a production

hadoop cluster: A case study on taobao. In: IISWC ’12: Proceedings of the 2012 IEEE

International Symposium on Workload Characterization, San Diego, USA, IEEE Computer

Society (2012) 3–13

9. Abad, C.L., Roberts, N., Lu, Y., Campbell, R.H.: A storage-centric analysis of mapreduce

workloads: File popularity, temporal locality and arrival patterns. In: IISWC ’12 Proceedings

of the 2012 IEEE International Symposium on Workload Characterization, San Diego, USA

(2012) 100–109

10. Abad, C.L., Luu, H., Roberts, N., Lee, K., Lu, Y., Campbell, R.H.: Metadata traces and

workload models for evaluating big storage systems. In: UCC ’12: Proceedings of the 5hth

International Conference on Utility and Cloud Computing, Chicago, USA, IEEE Computer

Society (2012) 125–132
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