Skip to Main content Skip to Navigation
Conference papers

Intrinsic shape context descriptors for deformable shapes

Abstract : In this work, we present intrinsic shape context (ISC) descriptors for 3D shapes. We generalize to surfaces the polar sampling of the image domain used in shape contexts: for this purpose, we chart the surface by shooting geodesic outwards from the point being analyzed; `angle' is treated as tantamount to geodesic shooting direction, and radius as geodesic distance. To deal with orientation ambiguity, we exploit properties of the Fourier transform. Our charting method is intrinsic, i.e., invariant to isometric shape transformations. The resulting descriptor is a meta-descriptor that can be applied to any photometric or geometric property field defined on the shape, in particular, we can leverage recent developments in intrinsic shape analysis and construct ISC based on state-of-the-art dense shape descriptors such as heat kernel signatures. Our experiments demonstrate a notable improvement in shape matching on standard benchmarks.
Document type :
Conference papers
Complete list of metadata
Contributor : Iasonas Kokkinos Connect in order to contact the contributor
Submitted on : Tuesday, September 3, 2013 - 4:48:01 PM
Last modification on : Thursday, July 9, 2020 - 4:06:04 PM

Links full text




Iasonas Kokkinos, Michael M. Bronstein, Roee Litman, Alexander M. Bronstein. Intrinsic shape context descriptors for deformable shapes. CVPR 2012 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2012, Providence, United States. pp.159-166, ⟨10.1109/CVPR.2012.6247671⟩. ⟨hal-00857572⟩



Les métriques sont temporairement indisponibles