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Abstract

We provide explicit closed form expressions for strict Lyapunov functions for time-varying discrete time systems. Our Lyapunov
functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of
excitation parameters. This provides a discrete time analog of our previous continuous time Lyapunov function constructions.
We also construct explicit strict Lyapunov functions for systems satisfying nonstrict discrete time analogs of the conditions from
Matrosov’s Theorem. We use our methods to build strict Lyapunov functions for time-varying hybrid systems that contain mixtures
of continuous and discrete time evolutions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of Lyapunov functions plays a fundamental role in modern nonlinear robustness analysis and controller
design [1,3,4,11,14,15,13,16,18]. In many applications, it is essential to have explicit closed form expressions for
a strict Lyapunov function. This is especially the case when one wishes to design stabilizing feedbacks, which are
often expressed in terms of the Lie derivatives of Lyapunov functions in the directions of the vector fields that define
the system evolution. The classical converse Lyapunov function theorem asserts that systems that are stable in an
appropriate sense also admit strict Lyapunov functions [5]. However, the Lyapunov functions provided by the theory
are not closed form explicit expressions since they involve infinite sums or improper integrals or optimal control value
functions and so do not lend themselves to applications. Moreover, whereas most of the known explicit Lyapunov
function constructions are for time-invariant systems, it is well appreciated that time-invariant systems are often
inadequate for engineering practice. For example, there are many applications where the dynamics cannot be stabilized
by time-invariant feedback but can be stabilized using time-varying controllers [8,19,22,24]. Time-varying systems
are also ubiquitous in tracking. While some methods for building Lyapunov functions for time-varying systems are
known, general methods for constructing explicit closed form Lyapunov functions for time-varying discrete and hybrid
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systems are not available. Hybrid systems are ubiquitous in science and engineering [27]. Hence, the construction of
explicit Lyapunov functions for time-varying systems presents significant challenges that are of considerable ongoing
research interest.

One recently developed and powerful approach to this problem involves constructing strict Lyapunov functions in
terms of given nonstrict Lyapunov functions for the system; see for instance [2,9,16,18]. By a nonstrict Lyapunov
function, we roughly mean a function that is positive definite and radially unbounded and that has a negative semi-
definite derivative along all solutions; see Section 2 for precise definitions. The advantage of this strictification
approach is that in many applications, a nonstrict Lyapunov function is readily available through backstepping or
physical considerations [13]. For continuous time systems, the strictification approach has been applied to rotating
rigid bodies, robot manipulators, and other important engineering applications. This suggests the possibility of
extending the strictification approach by constructing explicit closed form Lyapunov functions for discrete time
time-varying systems or, more generally, hybrid time-varying systems containing both continuous and discrete time
evolutions. The purpose of this work is to show that both of the extensions are indeed possible.

In Section 2, we provide the relevant definitions of strict Lyapunov functions and the necessary formalism of
hybrid systems, hybrid time domains, and hybrid trajectories. In Section 3, we show how to construct explicit closed
form strict Lyapunov functions for time-varying discrete time nonlinear systems in terms of given nonstrict Lyapunov
functions. This provides a discrete time analog of [16] as well as a more explicit Lyapunov function construction than
the known discrete time constructions that involve infinite sums of persistency of excitation (PE) parameters [20].
We also build Lyapunov functions for time-varying systems under appropriate versions of the assumptions from
Matrosov’s Theorem thus providing a discrete time analog of the results [18] on continuous time systems satisfying
the Matrosov conditions. In Section 4, we merge our results with the known continuous time analogs to construct
explicit closed form Lyapunov functions for time-varying hybrid systems, under appropriate hybrid analogs of the PE
or Matrosov conditions. To our knowledge, this provides the first general method for explicitly constructing Lyapunov
functions for general time-varying nonlinear hybrid systems. In Section 5, we prove our theorems. We provide some
examples covered by our results in Section 6, and we close in Section 7 with some remarks about possible extensions.

2. Definitions, assumptions, and lemmas

We let K∞ denote the set of all continuous functions ρ : [0, ∞) → [0, ∞) for which (i) ρ(0) = 0 and (ii) ρ is
strictly increasing and unbounded. Note that K∞ is closed under inverse and composition; i.e., if ρ1, ρ2 ∈ K∞, then
ρ−1

1 , ρ1 ◦ ρ2 ∈ K∞. We let KL denote the class of all continuous functions β : [0, ∞) × [0, ∞) → [0, ∞) for which
(I) β(·, t) ∈ K∞ for each t ≥ 0, (II) β(s, ·) is nonincreasing for each s ≥ 0, and (III) β(s, t) → 0 as t → +∞ for
each s ≥ 0. We let KLL denote the set of all functions β : [0, ∞) × [0, ∞) × [0, ∞) → [0, ∞) such that for each
t̄ ≥ 0, the functions (s, t) 7→ β(s, t, t̄) and (s, t) 7→ β(s, t̄, t) are of class KL. When we say that a function ρ is
smooth (a.k.a. C1), we mean it is continuously differentiable, written ρ ∈ C1. (For functions ρ defined on [0, ∞), we
interpret ρ′(0) as a one-sided derivative, and continuity of ρ′ at 0 as one-sided continuity.)

We set Z≥0 = {0, 1, 2, . . .}, we let Rn denote the set of all real n-tuples, and we use | · | to denote the usual
Euclidean norm. We say that a function Θ : Rn

× [0, ∞) × Z≥0 → R : (x, t, k) 7→ Θ(x, t, k) (which may
be independent of t or k) is uniformly state-bounded and write Θ ∈ USB provided there exists µ ∈ K∞ such
that |Θ(x, t, k)| ≤ µ(|x |) for all x ∈ Rn , t ≥ 0, and k ∈ Z≥0. More generally, a vector valued function
H : Rn

× [0, ∞) × Z≥0 → Rn
: (x, t, k) 7→ H(x, t, k) is of class USB, written H ∈ USB, provided

(x, t, k) 7→ |H(x, t, k)| is of class USB. Following [13], we also say Θ is uniformly proper and positive definite
(UPPD) and write Θ ∈ UPPD provided there are α1, α2 ∈ K∞ such that α1(|x |) ≤ Θ(x, t, k) ≤ α2(|x |) for all
x ∈ Rn, t ∈ [0, ∞), and k ∈ Z≥0. We say Θ is (ω1, ω2)-periodic provided ω1 ∈ [0, ∞) and ω2 ∈ Z≥0 satisfy

Θ(x, t − ω1, k − ω2) = Θ(x, t, k) ∀(x, t, k) ∈ Rn
× [0, ∞) × Z≥0.

When Θ is independent of t (resp., k), we define ω2-periodicity (resp., ω1-periodicity) analogously. A continuous
function defined on a subset of Euclidean space that includes 0 and valued in (−∞, 0] is negative semi-definite
provided it is zero at zero. A continuous function α defined on a subset of Euclidean space and valued in [0, ∞) is
positive definite provided α is zero only at zero in which case we also write α ∈ PD.

We study the stability properties of the discrete time fully nonlinear time-varying system

xk+1 = F(xk, k) (1)
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where we always assume F ∈ USB. We also study continuous time time-varying systems

ẋ = G(x, t) (2)

where G ∈ USB is locally Lipschitz. We always assume (2) is forward complete, meaning for each xo ∈ Rn and
to ≥ 0, there is a unique solution t 7→ φ(t, to, xo) for (2) defined on [to, ∞) that satisfies φ(to, to, xo) = xo. We
interpret the solutions of (2) in the generalized Lebesgue almost all (a.a.) sense. We also use k 7→ φ(k, ko, xo) to
denote the discrete time solution of (1) satisfying φ(ko, ko, xo) = xo whenever this would not lead to confusion.
Given a function V : Rn

× [0, ∞) × Z≥0 → R : (x, t, k) 7→ V (x, t, k), we set

∆k V (x, t, k) := V (F(x, k), t, k + 1) − V (x, t, k), DV (x, t, k) :=
∂V

∂t
(x, t, k) +

∂V

∂x
(x, t, k)G(x, t)

assuming (x, t) 7→ V (x, t, k) is also smooth for each k ∈ Z≥0 in the definition of DV . In our analysis of (1), V will
generally not depend on t but we need to allow its dependence on t in our discussion of hybrid systems.

Definition 1. (a) Let V : Rn
× Z≥0 → R be of class UPPD. We call V a (strict) Lyapunov function for (1) provided

there exists α3 ∈ PD such that:

∆k V (x, k) ≤ −α3(|x |) ∀x ∈ Rn & k ∈ Z≥0. (3)

(b) We say that (1) is globally asymptotically stable (GAS) provided there exists β ∈ KL such that for all xo ∈ Rn

and ko ∈ Z≥0, we have |φ(k, ko, xo)| ≤ β(|xo|, k − ko) for all k ≥ ko.

The corresponding Lyapunov function and GAS definitions for (2) are obtained from Definition 1 by replacing
k with t , Z≥0 with [0, ∞), and ∆k V with DV . Notice that we do not require α3 to be of class K∞. For the
special case where α3 ∈ K∞, the existence of a discrete time Lyapunov function V is known to imply that (1)
is GAS since then ∆k V (x, k) ≤ −α(V (x, k)) everywhere with α := α3 ◦ α−1

2 ∈ K∞ and α2 as in the UPPD
condition on V [21, Theorem 8]. Furthermore, by replacing the function α3(|x |) in (3) by the smaller function
Θ(V (x, k)) := min{α3(s) : α−1

2 (V (x, k)) ≤ s ≤ α−1
1 (V (x, k))}, we are in a situation where Lemma 15 below

applies and straightforwardly implies that one can construct a Lyapunov function satisfying (3) with a new function
α3 of class K∞. Combining this fact with the stability result from [21], we get:

Lemma 2. If (1) admits a strict Lyapunov function, then it is GAS.

We also use the following persistency of excitation (PE) notions from [13,20]:

Definition 3. (a) We say that a bounded function p : Z≥0 → [0, ∞) is of discrete PE type with parameters l and δ

and write p ∈ Pdis(l, δ) provided l ∈ Z≥0 and δ > 0 are such that

k∑
i=k−l

p(i) ≥ δ ∀k ∈ Z≥0. (4)

(b) We say that a bounded continuous function q : [0, ∞) → [0, ∞) is of continuous PE type with parameters τ and
ε and write q ∈ Pcts(τ, ε) provided τ ≥ 0 and ε > 0 are such that∫ t

t−τ

q(r)dr ≥ ε ∀t ≥ 0. (5)

(c) We set Pdis =
⋃

{Pdis(l, δ) : l ∈ Z≥0, δ > 0} and Pcts =
⋃

{Pcts(τ, ε) : τ ≥ 0, ε > 0}.

Elements of Pdis and Pcts are called PE parameters and arise in a variety of contexts, e.g., q(t) = sin2(t) as well
as cases where q can be null on intervals of arbitrarily large length [13]. The following lemma follows from a simple
change of variables, a Fubini Theorem argument (as was used in [13]), and the formula 1+2+· · ·+m = m(m +1)/2:

Lemma 4. Let l ∈ Z≥0, let τ, ε, δ > 0, and let p ∈ Pdis(l, δ) and q ∈ Pcts(τ, ε) be bounded above by p̄ and q̄
respectively. Define the functions S : Z≥0 → [0, ∞) and R : [0, ∞) → [0, ∞) by

S(k) :=

k∑
s=k−l

k∑
j=s

p( j), R(t) :=

∫ t

t−τ

∫ t

z
q(ν) dν dz. (6)
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Then S(k) ≤ p̄(l + 1)2 and R(t) ≤ τ 2q̄/2 hold for all k ∈ Z≥0 and t ≥ 0. If p is l-periodic, then so is S. If q is
τ -periodic, then so is R.

We next recall the hybrid system tools developed in [6,7], generalized to time-varying systems. For simplicity, we
only consider singleton valued dynamics although our results carry through in the more general setting of difference
and differential inclusions. Given sets C, D ⊆ Rn and F and G satisfying the assumptions above, the corresponding
hybrid dynamical system is defined to be the formal object

H :=

{
ẋ = G(x, t), x ∈ C
xk+1 = F(xk, k), xk ∈ D.

(7)

A compact hybrid time domain is a subset E ⊂ [0, ∞) × Z≥0 of the form ∪
K−1
k=0 ([tk, tk+1] × {k}) for some finite

sequence 0 ≤ to ≤ t1 ≤ · · · ≤ tK . A hybrid time domain is a set E ⊂ [0, ∞) × Z≥0 with the property that for all
(T, K ) ∈ E , the intersection E ∩ ([0, T ]×{0, 1, . . . , K }) is a compact hybrid time domain. A hybrid arc is a function
x(t, k) defined on a hybrid time domain dom(x) such that t 7→ x(t, k) is locally absolutely continuous for each k. A
hybrid trajectory of (7) is a hybrid arc x(t, k) that satisfies the following:

(S1) For all k ∈ Z≥0 and a.a. t such that (t, k) ∈ dom(x), we have x(t, k) ∈ C and ∂
∂t x(t, k) = G(x(t, k), t).

(S2) For all (t, k) ∈ dom(x) such that (t, k + 1) ∈ dom(x), we have x(t, k) ∈ D and x(t, k + 1) = F(x(t, k), k).

Notice that E is a hybrid time domain provided it is a finite or infinite union of sets of the form [tk, tk+1] × {k}

with {tk} nondecreasing in [0, ∞), with a possible additional ‘last’ set having the form [tk, T ) × {k} with T finite or
infinite. To keep our notation simple, we use ∪k∈J ([tk, tk+1] × {k}) to denote a generic hybrid time domain with the
understanding that (i) either J = Z≥0 or J is a finite set of the form {0, 1, 2, . . . , jmax} and (ii) [tk, tk+1] may mean
[tk, tk+1) if J is finite and k = jmax. Notice that continuous time solutions of (2) in C and discrete time solutions of
(1) in D starting with k = 0 correspond to hybrid trajectories of (7) that have no switchings between the discrete and
continuous evolutions.

Definition 5. (a) Let V ∈ UPPD be C1 in x and t . We call V a (strict) Lyapunov function forH provided there exists
α3 ∈ PD such that the following hold for all t ≥ 0 and k ∈ Z≥0:

∆k V (x, t, k) ≤ −α3(|x |) ∀x ∈ D; DV (x, t, k) ≤ −α3(|x |) ∀x ∈ C. (8)

If, in addition, there is a constant r > 0 such that

V (F(x, k), t, k + 1) ≤ e−r V (x, t, k) ∀x ∈ D; DV (x, t, k) ≤ −r V (x, t, k) ∀x ∈ C, (9)

then we call V an exponential decay Lyapunov function for H. (b) We call H globally asymptotically stable (GAS)
provided there exists β ∈ KLL such that: for each trajectory x(t, k) of H defined on any hybrid time domain
∪k∈J ([tk, tk+1] × {k}), we have |x(t, k)| ≤ β(|x(to, 0)|, k, t − tk) for all k ∈ J and all t ∈ [tk, tk+1].

Lemma 6. If H admits a Lyapunov function, then it is GAS.

To prove this lemma, first note that since α3 in (8) is independent of k, standard arguments (e.g. those in [23]
applied with a(x) := α3(|x |)) provide β1 ∈ KL such that for each hybrid trajectory x(t, j) defined on a hybrid time
domain ∪k∈J ([tk, tk+1] × {k}) and satisfying any initial condition x(to, 0) = xo, we have

|x(t, k)| ≤ β1(|x(tk, k)|, t − tk) ∀k ∈ J, t ∈ [tk, tk+1]. (10)

Similarly, since α3 in (8) is independent of t , and since we can assume as above that α3 ∈ K∞, the argument from [21,
Theorem 8] provides β2 ∈ KL such that

|x(tk, k)| ≤ β2(|xo|, k) ∀k ∈ J. (11)

In fact, β2 can be constructed using the decay conditions from (8) as follows. First note that by arguing as in
the proof of Lemma 2 above and replacing V with κ ◦ V for a suitable function κ ∈ K∞ in the discrete decay
condition without relabeling, we can find γ ∈ K∞ such that ∆k V (x, t, k) ≤ −γ (V (x, t, k)) when x ∈ D;
see Lemma 15 for the construction of κ . Since t 7→ V (x(t, k), t, k) decays on (tk, tk+1) for each k, we get
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V (x(tk+2, k + 1), tk+2, k + 1) ≤ V (x(tk+1, k + 1), tk+1, k + 1) = V (F(x(tk+1, k), k), tk+1, k + 1) so

V (x(tk+2, k + 1), tk+2, k + 1) − V (x(tk+1, k), tk+1, k) ≤ ∆k V (x(tk+1, k), tk+1, k)

≤ −γ (V (x(tk+1, k), tk+1, k))

everywhere. Applying [21, Theorem 8] to the function k 7→ V (x(tk+1, k), tk+1, k) and recalling that V is uniformly
proper and positive definite gives β̃2 ∈ KL (not depending on the choice of the trajectory) such that |x(tk+1, k)| ≤

β̃2(|x(t1, 0)|, k) for all k. Choosing α1, α2 ∈ K∞ such that α1(|x |) ≤ V (x, t, k) ≤ α2(|x |) everywhere, the discrete
time decay condition in (8) gives

|x(tk+1, k)| ≥ α−1
2 ◦ V (x(tk+1, k), tk+1, k) ≥ α−1

2 ◦ V (x(tk+1, k + 1), tk+1, k + 1)

≥ α−1
2 ◦ α1(|x(tk+1, k + 1)|)

for all k ∈ J . Similarly, the continuous time decay condition in (8) gives

|x(t1, 0)| ≤ α−1
1 ◦ V (x(t1, 0), t1, 0) ≤ α−1

1 ◦ V (x(to, 0), to, 0) ≤ α−1
1 ◦ α2(|xo|).

We can therefore satisfy (11) by taking β2(s, k) := α−1
1 ◦ α2 ◦ β̃2(α

−1
1 ◦ α2(s), k) + s/(k + 1), where the additional

term s/(k + 1) is used to account for the case k = 0. Combining (10) and (11) shows we can satisfy the requirements
of Lemma 6 using β(s, t, k) = β1(β2(s, k), t).

3. Statement of results on discrete time systems

3.1. Strictifying persistence of excitation (PE) decay estimates

We begin by constructing explicit closed form Lyapunov functions for discrete time systems in terms of nonstrict
Lyapunov functions and appropriate PE parameters p ∈ Pdis. For an alternative construction, involving infinite sums
of PE parameter values, see [20]. We prove the following in Section 5:

Theorem 7. Let l ∈ Z≥0, δ > 0, p ∈ Pdis(l, δ), V ∈ UPPD, and Θ ∈ PD satisfy

∆k V (x, k) ≤ −p(k + 1)Θ(V (x, k)) ∀x ∈ Rn & k ∈ Z≥0. (12)

Then one can construct κ, γ ∈ K∞ such that

U (x, k) := κ(V (x, k)) +
γ (V (x, k))

4(l + 1)

k∑
s=k−l

k∑
j=s

p( j) (13)

is a strict Lyapunov function for (1), so (1) is GAS. If p and V are also both l-periodic in k, then so is U.

Remark 8. A key feature in (12) is that the PE condition on p allows p(k +1) = 0 for some values of k in which case
we could have ∆k V (x, k) = 0. An additional novel feature of Theorem 7 is that we do not require the gain function
Θ in (12) to be of class K∞. This properness of the gain function was required in [13,20]. Our proof of Theorem 7
will show that we can take κ(s) ≡ s if Θ ∈ K∞.

3.2. Lyapunov function constructions under Matrosov conditions

Recall the definitions of UPPD and USB from Section 2. We explicitly construct a Lyapunov function for discrete
time systems (1) satisfying the following analog of the Matrosov Theorem conditions from [18]:

Assumption 9. There exist V1 : Rn
× Z≥0 → [0, ∞) of class UPPD, V2 : Rn

× Z≥0 → R of class USB, a function
φ2 ∈ K∞, nonnegative functions N1, N2 ∈ USB, a function χ : Rn

× [0, ∞) × Z≥0 → R, a positive increasing
function φ1, a positive definite function W , and p ∈ Pdis such that

∆k V1(x, k) ≤ −N1(x, k),

∆k V2(x, k) ≤ −N2(x, k) + χ(x, N1(x, k), k),

|χ(x, N1(x, k), k)| ≤ φ1(|x |)φ2(N1(x, k)), and N1(x, k) + N2(x, k) ≥ p(k + 1)W (x)

hold for all x ∈ Rn and k ∈ Z≥0.
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Notice that we allow V2 to take both positive and negative values. In Section 5, we prove:

Theorem 10. If (1) satisfies Assumption 9, then one can construct an explicit strict Lyapunov function for (1). In
particular, (1) is GAS.

4. Statement of results on hybrid systems

4.1. Hybrid persistency of excitation estimates

We next extend Theorem 7 to hybrid systems. To keep the exposition simple, we assume the gain functions Θ in
(12) and its continuous analog are Θ(s) = s, but the extension to general positive definite Θ can be done using similar
arguments. We prove the following in Section 5:

Theorem 11. Let V ∈ UPPD be C1 in x and t. Consider the hybrid systemH in (7), and let δ, ε, τ > 0 and l ∈ Z≥0
be given. Assume there exist r ∈ Pdis(l, δ) and q ∈ Pcts(τ, ε) such that

V (F(x, k), t, k + 1) ≤ e−r(k+1)V (x, t, k) ∀x ∈ D; DV (x, t, k) ≤ −q(t)V (x, t, k) ∀x ∈ C (14)

hold for all t ≥ 0 and k ∈ Z≥0. Then

V ](x, t, k) =

[
2 +

1
4(l + 1)

k∑
s=k−l

k∑
j=s

(
1 − e−r( j)

)
+

1
τ

∫ t

t−τ

∫ t

z
q(ν) dν dz

]
V (x, t, k) (15)

is an exponential decay Lyapunov function for H which is therefore GAS. If in addition V is (τ, l)-periodic and r and
q are l-periodic and τ -periodic respectively, then V ] is also (τ, l)-periodic.

Remark 12. The preceding theorem covers continuous dynamics (by taking D = ∅ and C = Rn with the
understanding that the term involving the double sum in V ] is not present) and discrete dynamics (by taking C = ∅

and D = Rn in which case the term involving the double integral in V ] is not present). See [6] for an alternative,
nonexplicit construction of a Lyapunov function for time-invariant hybrid systems.

4.2. Hybrid systems satisfying Matrosov conditions

We next extend Theorem 10 to hybrid systems that satisfy the following analog of Assumption 9.

Assumption 13. There exist V1 ∈ UPPD and V2 ∈ USB that are C1 in (x, t), nonnegative N1, N2 ∈ USB, a
function χ : Rn

× [0, ∞)2
× Z≥0 → R, a positive increasing φ1, and a positive definite function W , p ∈ Pdis,

φ2 ∈ K∞, and q ∈ Pcts such that

1. For all x ∈ D, we have ∆k V1(x, t, k) ≤ −N1(x, t, k), ∆k V2(x, t, k) ≤ −N2(x, t, k) + χ(x, N1(x, t, k), t, k), and
N1(x, t, k) + N2(x, t, k) ≥ p(k + 1)W (x).

2. For all x ∈ C , we have DV1(x, t, k) ≤ −N1(x, t, k), DV2(x, t, k) ≤ −N2(x, t, k) + χ(x, N1(x, t, k), t, k), and
N1(x, t, k) + N2(x, t, k) ≥ q(t)W (x).

3. For all x ∈ Rn , we have |χ(x, N1(x, t, k), t, k)| ≤ φ1(|x |)φ2(N1(x, t, k))

hold for all t ≥ 0 and k ∈ Z≥0.

Assumption 13 simply means the discrete and continuous parts ofH satisfy the appropriate discrete and continuous
Matrosov conditions. It reduces to Assumption 9 for discrete systems when C = ∅ and D = Rn in which case its
condition 2 holds vacuously. Notice that we again do not require V2 to be nonnegative. In Section 5, we prove:

Theorem 14. If H satisfies Assumption 13, then one can construct an explicit closed form strict Lyapunov function
for H. In particular, H is GAS.
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5. Proofs of theorems

5.1. Results on discrete systems

5.1.1. Proof of Theorem 7
By minorizing Θ ∈ PD without relabeling as in [17], we assume in the following that Θ ∈ C1 is nondecreasing

on [0, 1] and nonincreasing on [1, ∞). The next technical lemma allows us to assume that Θ ∈ K∞ in (12):

Lemma 15. Let Θ ∈ PD be as above and p ∈ Pdis. Define µ : [0, ∞) → [1, ∞), κ , and χ by

κ(r) := 2
∫ r

0
µ(z) dz, χ(r) := Θ(2r)µ(r), and µ(r) =

1 + 4r2, 0 ≤ r ≤ 1/2
4Θ(1)r

Θ(2r)
, 1/2 ≤ r < ∞.

(16)

Let ν ∈ UPPD satisfy ∆kν(x, k) ≤ −p(k +1)Θ(ν(x, k)) for all x ∈ Rn and k ∈ Z≥0. Then κ ∈ K∞ ∩C1, χ ∈ K∞,
and V := κ(ν) ∈ UPPD satisfies

∆k V (x, k) ≤ −p(k + 1)γ (V (x, k)) ∀x ∈ Rn & k ∈ Z≥0, (17)

where γ ∈ K∞ is defined by γ (s) := χ(κ−1(s)/2).

To prove Lemma 15, fix x ∈ Rn and k ∈ Z≥0 and apply the Fundamental Theorem of Calculus to s 7→ F(s) :=

κ (sν(F(x, k), k + 1) + (1 − s)ν(x, k)) to write ∆k V (x, k) = F(1) − F(0) =
∫ 1

0 F
′(s) ds and so also

∆k V (x, k) =

[∫ 1

0
κ ′ (sν(F(x, k), k + 1) + (1 − s)ν(x, k)) ds

]
[ν(F(x, k), k + 1) − ν(x, k)]

≤ −p(k + 1)

[∫ 1

0
κ ′(sν(F(x, k), k + 1) + (1 − s)ν(x, k))ds

]
Θ(ν(x, k))

≤ −p(k + 1)

[∫ 1

0
κ ′((1 − s)ν(x, k))ds

]
Θ(ν(x, k))

≤ −p(k + 1)

[∫ 1/2

0
κ ′

(
1
2
ν(x, k)

)
ds

]
Θ(ν(x, k)) = −p(k + 1)µ

(
1
2
ν(x, k)

)
Θ(ν(x, k))

where the first inequality holds because κ is nondecreasing and the other inequalities used the fact that κ ′ is
nondecreasing. The lemma now follows from our choices of γ and χ .

We can therefore assume that V satisfies (17) with γ ∈ K∞, possibly by replacing V with κ(V ) for κ ∈ K∞

defined in (16). Defining S(k) as in (6) and defining U by (13) with κ(s) ≡ s therefore gives

∆kU (x, k) = V (F(x, k), k + 1) +
S(k + 1)

4(l + 1)
γ (V (F(x, k), k + 1)) − V (x, k) −

S(k)

4(l + 1)
γ (V (x, k))

= ∆k V (x, k) +
1

4(l + 1)
S(k + 1)∆k(γ ◦ V )(x, k) +

1
4(l + 1)

γ (V (x, k)) [S(k + 1) − S(k)]

≤ ∆k V (x, k) +
1

4(l + 1)
γ (V (x, k)) [S(k + 1) − S(k)] , (18)

where the last inequality holds because γ is increasing, so ∆k(γ ◦ V )(x, k) ≤ 0. Note that

S(k + 1) − S(k) =

k∑
s=k+1−l

k∑
j=s

p( j) + (l + 1)p(k + 1) −

k∑
s=k−l

k∑
j=s

p( j)

=

k∑
s=k−l

k∑
j=s

p( j) −

k∑
j=k−l

p( j) + (l + 1)p(k + 1) −

k∑
s=k−l

k∑
j=s

p( j)
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= −

k∑
j=k−l

p( j) + (l + 1)p(k + 1). (19)

Substituting (19) into (18) gives

∆kU (x, k) ≤ ∆k V (x, k) +
1

4(l + 1)
γ (V (x, k))

(
(l + 1)p(k + 1) −

k∑
j=k−l

p( j)

)

≤ ∆k V (x, k) +
p(k + 1)γ (V (x, k))

4
−

γ (V (x, k))

4(l + 1)

k∑
j=k−l

p( j) ≤ −
δ

4(l + 1)
γ (V (x, k)), (20)

where the last inequality follows from the PE property of p and (17). This, the fact that V ∈ UPPD, and the
global boundedness of S(k) from Lemma 4 shows that U is a Lyapunov function for (1). Therefore, (1) is GAS, by
Lemma 2. The assertion in the theorem about periodicity follows from Lemma 4 and the formula for U , so this proves
our theorem.

5.1.2. Proof of Theorem 10
Let V3 = V1 + V2, and let α1, α2 ∈ K∞ satisfy the UPPD requirements for V1. In the rest of the proof, all

inequalities should be interpreted as holding globally unless otherwise indicated. We also leave out the argument
(x, k) of some of our USB functions when this would not lead to confusion. It follows from Assumption 9 that we
can determine a positive definite function λ such that

∆k V3(x, k) ≤ −p(k + 1)W (x) + φ1(|x |)φ2(N1(x, k)) ≤ −p(k + 1)λ(V1(x, k)) + φ1(|x |)φ2(N1(x, k)) (21)

e.g. λ(s) = min{W (x) : x ∈ Rn, α1(|x |) ≤ s ≤ α2(|x |)} (which is positive definite because W ∈ PD). By minorizing
λ as necessary as in [17], we can assume it is C1, nondecreasing on [0, 1/2] and nonincreasing on [1/2, ∞). The
proof of Lemma 15 above with Θ(r) := λ(r/2) provides an increasing continuous function k1 : [0, ∞) → [1, ∞)

such that Λ1(s) := k1(s)λ(s) is of class K∞. Let V4 = k1(V1)V3. Then (21) gives

∆k V4(x, k) = [k1(V1(F(x, k), k + 1)) − k1(V1(x, k))] V3(F(x, k), k + 1)

+ k1(V1(x, k)) [V3(F(x, k), k + 1) − V3(x, k)]

≤ [k1(V1(F(x, k), k + 1)) − k1(V1(x, k))] V3(F(x, k), k + 1)

− k1(V1(x, k))p(k + 1)λ(V1(x, k)) + k1(V1(x, k))φ1(|x |)φ2(N1(x, k)). (22)

Since F, V3 ∈ USB and V1 ∈ UPPD, we get continuous increasing positive functions Γ and Λ2 such that

∆k V4(x, k) ≤ [−∆k V1(x, k)]Γ (V1(x, k)) − p(k + 1)Λ1(V1(x, k)) + Λ2(V1(x, k))φ2(N1(x, k)) (23)

e.g. by first finding an increasing positive function α̃ such that |k′

1(r)| ≤ α̃(r). Define k2 ∈ K∞ by k2(s) = sΓ (s).
Since k2(s)/s is increasing, we have k2(b) − k2(a) ≥ (b − a)Γ (b) when b ≥ a ≥ 0 (since (k2(b) − k2(a))

(b − a)−1
≥ k2(b)b−1 when b > a ≥ 0). Hence by choosing a = V1(F(x, k), k + 1) and b = V1(x, k), we

get ∆k(k2 ◦ V1)(x, k) ≤ ∆k V1(x, k)Γ (V1(x, k)) everywhere. Therefore, by adding a K∞ function to k2 as necessary,
we can assume V5 := V4 + k2(V1) ∈ UPPD and satisfies

∆k V5(x, k) ≤ −p(k + 1)Λ1(V1(x, k)) + Λ2(V1(x, k))φ2(N1(x, k)). (24)

Arguing as in the proof of Theorem 7 except with γ replaced by Λ1 provides V6 ∈ UPPD such that

∆k V6(x, k) ≤ −
δ

4(l + 1)
Λ1(V1(x, k)) + Λ2(V1(x, k))φ2(N1(x, k)). (25)

By arguing as in [17, Section IV.A], we can select k3 ∈ C1
∩ PD so that |k′

3(s)| ≤ 1 for all s ≥ 0 and

k3(r) ≤ φ−1
2

(
δ

8(l + 1)

Λ1(r)

1 + Λ2(r)

)
1

1 + Λ2(r)
, hence φ2 (k3(V1)Λ2(V1))Λ2(V1) ≤

δ

8(l + 1)
Λ1(V1) (26)
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everywhere. Choose µF , α6 ∈ K∞ such that V6(x, k) ≤ α6(|x |) and |F(x, k)| ≤ µF (|x |) everywhere. Arguing as
above (with Γ replaced by α6 ◦ µF ◦ α−1

1 ) and recalling that ∆k V1(x, k) ≤ 0 provides k4 ∈ K∞ such that

∆k(k4 ◦ V1)(x, k) ≤ α6 ◦ µF ◦ α−1
1 ◦ V1(x, k)∆k V1(x, k) ≤ α6(µF (|x |))∆k V1(x, k)

everywhere. Since |k′

3(s)| ≤ 1 for all s ≥ 0, we have

[∆k(k3 ◦ V1)(x, k)]V6(F(x, k), k + 1) ≤ [−∆k V1(x, k)]V6(F(x, k), k + 1) ≤ −α6(µF (|x |))∆k V1(x, k)

everywhere. It follows that V7 := k3(V1)V6 + k4(V1) ∈ UPPD satisfies

∆k V7(x, k) = [∆k(k3 ◦ V1)(x, k)]V6(F(x, k), k + 1) + k3(V1(x, k))∆k V6(x, k) + ∆k(k4 ◦ V1)(x, k)

≤ −
δ

4(l + 1)
k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2(N1(x, k)). (27)

Next note that for all functions µ ∈ K∞,

∆k V7 ≤ −
δ

4(l + 1)
k3(V1)Λ1(V1) + µ (k3(V1)Λ2(V1)) k3(V1)Λ2(V1) + µ−1(φ2(N1(x, k)))φ2(N1(x, k)). (28)

(The fact that ab ≤ µ(a)a + µ−1(b)b for all a, b ≥ 0 follows by separately considering the cases where µ(a) ≥ b
and µ−1(b) ≥ a.) Choosing µ = φ2 in (28) gives

∆k V7 ≤ −
δ

4(l + 1)
k3(V1)Λ1(V1) + φ2 (k3(V1)Λ2(V1)) k3(V1)Λ2(V1) + N1(x, k)φ2(N1)

≤ −
δ

8(l + 1)
k3(V1)Λ1(V1) + N1(x, k)φ2(N1) (by (26)). (29)

Therefore, since N1 ∈ USB and φ2 ∈ K∞, a suitable function φ3 ∈ K∞ gives

∆k V7 ≤ −
δ

8(l + 1)
k3(V1)Λ1(V1) + N1(x, k)φ3(V1). (30)

Arguing as in the construction of k2 above (but with Γ replaced by φ3) provides k5 ∈ K∞ such that ∆k(k5◦V1)(x, k) ≤

∆k V1(x, k)φ3(V1(x, k)) ≤ −N1(x, k)φ3(V1(x, k)). Hence, V8 := V7 + k5(V1) ∈ UPPD satisfies

∆k V8(x, k) ≤ −
δ

8(l + 1)
k3(V1(x, k))Λ1(V1(x, k)) ≤ −α3(|x |), (31)

where

α3(s) :=
δ

8(l + 1)
min{k3(u)Λ1(u) : α1(s) ≤ u ≤ α2(s)}.

Since α3 ∈ PD, V8 satisfies the requirements of the theorem. This and Lemma 2 proves the theorem.

5.2. Results for hybrid systems

5.2.1. Proof of Theorem 11
For each k ∈ Z≥0, let Vcts(x, t, k) denote the continuous time strictification of V obtained in [13] for the

nonstrictness parameter q ∈ Pcts. Thus,

Vcts(x, t, k) :=

[
1 +

1
τ

∫ t

t−τ

∫ t

z
q(ν) dν dz

]
V (x, t, k).

The results from [13] show that DVcts(x, t, k) ≤ −(ε/τ)Vcts(x, t, k) for all x ∈ C, t ≥ 0, and k ∈ Z≥0. We next
rewrite the first decay condition in (14) as

V (F(x, k), t, k + 1) − V (x, t, k) ≤ −p(k + 1)V (x, t, k), ∀x ∈ D, t ∈ [0, ∞), k ∈ Z≥0 (32)
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where k 7→ p(k) := 1 − e−r(k) is again of PE type. For each t ≥ 0, let Vdis(x, t, k) be the strictification

Vdis(x, t, k) :=

[
1 +

1
4(l + 1)

k∑
s=k−l

k∑
j=s

p( j)

]
V (x, t, k)

of V from Theorem 7. The proof of Theorem 7 shows we can take κ(s) ≡ γ (s) ≡ s, and therefore also

∆k Vdis(x, t, k) = Vdis(F(x, k), t, k + 1) − Vdis(x, t, k) ≤ −
δ

4(l + 1)
Vdis(x, t, k) ∀t ∈ [0, ∞), k ∈ Z≥0

for all x ∈ D. By enlarging l from the PE assumption as necessary, we can assume δ < l. It follows that the discrete
decay condition in (14) holds with V replaced by Vdis and with the constant

r(k) ≡ ln
(

4(l + 1)

4(l + 1) − δ

)
> 0.

Since DV ≤ 0 on C and ∆k V ≤ 0 on D, we have DVdis ≤ 0 on C and ∆k Vcts ≤ 0 on D. The uniform boundedness
of S(k) and

∫ t
t−τ

∫ t
z q(ν) dν dz from Lemma 4 provides constants rc, rd > 0 such that

Vcts(x, t, k) ≤ rcVdis(x, t, k) ≤ rd Vcts(x, t, k)

everywhere. One therefore easily checks that V ](x, t, k) := Vcts(x, t, k) + Vdis(x, t, k) as given by (15) is an
exponential decay Lyapunov function for the hybrid dynamic H. The periodicity assertion follows as before from
Lemma 4, so the result follows from Lemma 6.

5.2.2. Proof of Theorem 14
For each t ≥ 0 we apply the first part of the proof of Theorem 10 to the functions (x, k) 7→ V1(x, t, k) and

(x, k) 7→ V2(x, t, k) to get V5 that satisfies

∆k V5(x, t, k) ≤ −p(k + 1)Λ1 (V1(x, t, k)) + Λ2 (V1(x, t, k)) φ2(N1(x, t, k)) ∀x ∈ D, t ≥ 0, k ∈ Z≥0.

(33)

This can be done with Λ1 ∈ C1 and Λ2 independent of t . For each k ∈ Z≥0, we next apply the continuous time analog
of the preceding argument (which is almost exactly the same except with ∆k Vi replaced by DVi for i = 1, 2, . . . , 5,
as discussed in the Appendix below) to get a continuous version V cts

5 of V5 that satisfies

DV cts
5 (x, t, k) ≤ −q(t)Λ1 (V1(x, t, k)) + Λ2 (V1(x, t, k)) φ2(N1(x, t, k)) ∀x ∈ C, t ≥ 0, k ∈ Z≥0. (34)

In fact, by enlarging k2 as necessary (e.g., by enlarging Γ in the discrete version of the proof), we can assume V cts
5

and V5 have the same formula. Applying the strictification method from Theorem 7 to V5 produces

V dis
6 (x, t, k) := V5(x, t, k) +

1
4(l + 1)

S(k)Λ1(V5(x, t, k))

that satisfies (25) with V6 replaced by V dis
6 and with V1 and N1 now also depending on t . Similarly, we apply the

continuous time strictification from [13] (as in the proof of Theorem 11) to V cts
5 to get

V cts
6 (x, t, k) := V cts

5 (x, t, k) +
1
τ

[∫ t

t−τ

∫ t

z
q(ν) dν dz

]
Λ1(V cts

5 (x, t, k))

that satisfies DV cts
6 (x, t, k) ≤ −Λ1 (V1(x, t, k)) + Λ2 (V1(x, t, k)) φ2(N1(x, t, k)) when x ∈ C , possibly by reducing

Λ1 and increasing Λ2 ∈ K∞ without relabeling. Setting V6 = V cts
6 + V dis

6 , and assuming without loss of generality
that 1 > δ/{4(l + 1)} (by enlarging l without relabeling as before), it follows from the fact that V cts

5 and V5 have the
same formula that we can enlarge Λ2 sufficiently so that

∆k V6(x, t, k) ≤ −
δ

4(l + 1)
Λ1 (V1(x, t, k)) + Λ2 (V1(x, t, k)) φ2(N1(x, t, k)) ∀x ∈ D (35)

DV6(x, t, k) ≤ −
δ

4(l + 1)
Λ1 (V1(x, t, k)) + Λ2 (V1(x, t, k)) φ2(N1(x, t, k)) ∀x ∈ C (36)
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hold for all t ≥ 0 and k ∈ Z≥0. (This can be seen by bounding |Λ′

1| on the relevant intervals and recalling that
F, G ∈ USB and V1 ∈ UPPD. In particular, to get (35), we write ∆k(Λ1 ◦ V5)(x, t, k) = Λ′

1(ηV5(F(x, k), t, k + 1)

+ (1 − η)V5(x, t, k))∆k V5(x, t, k) for η ∈ [0, 1] depending on x , t , and k and use the fact that Λ′

1 ≥ 0 everywhere.)
We next follow the remainder of the proof of Theorem 10 applied to V6 for each t ≥ 0 to get a function V dis

8 (x, t, k)

satisfying the conclusion of the proof when x ∈ D. We also apply the continuous time analog of that part of the proof
to V6 for each k (with ∆k Vi replaced byDVi for all i as before, similarly to the argument done in the Appendix below)
to get V cts

8 satisfying

DV cts
8 (x, t, k) ≤ −α̃(|x |), ∀x ∈ C, t ≥ 0, k ∈ Z≥0

for a suitable α̃ ∈ PD. By enlarging k4, k5 ∈ K∞ and reducing k3 ∈ PD in the continuous and discrete versions
of the proof, we can assume they are the same in both versions, so V cts

8 and V dis
8 have the same expression. Hence,

we can satisfy the requirements of the theorem with their common value. Combined with the result of Lemma 6, this
proves the theorem.

6. Examples

One class of systems covered by our discrete time results is as follows. Assume (1) is GAS and that a strict
Lyapunov function V for the system is available. This provides α1, α2 ∈ K∞ and α3 ∈ PD such that ∆k V (x, k) ≤

−α3(|x |) and α1(|x |) ≤ V (x, k) ≤ α2(|x |) everywhere. Assume now that the system is acted on by a PE term p ∈ Pdis
that freezes the dynamics for certain times. The new system becomes

xk+1 = [1 − p(k + 1)]xk + p(k + 1)F(xk, k). (37)

Thus the new dynamic Fp(x, k) := [1 − p(k + 1)]x + p(k + 1)F(x, k) fixes the state when p(k + 1) = 0.
By separately considering the cases p(k + 1) = 0 and p(k + 1) = 1, one checks that if p(k) ∈ {0, 1} for
all k, then V (Fp(x, k), k + 1) − V (x, k) ≤ −p(k + 1)α3(|x |) ≤ −p(k + 1)Θ(V (x, k)) everywhere, where
Θ(s) = min{α3(p) : α−1

2 (s) ≤ p ≤ α−1
1 (s)}. Since Θ ∈ PD, V satisfies the PE decay condition from Theorem 7

for the new dynamic Fp. More generally, assume p(k) ∈ [0, 1] for all k. Assume also that V (x, k) is a Lyapunov
function for (1) that is independent of k and convex in x . Choose α3 ∈ PD such that V (F(x, k)) − V (x) ≤ −α3(|x |)

everywhere. Then

V (Fp(x, k)) − V (x) ≤ [1 − p(k + 1)]V (x) + p(k + 1)V (F(x, k)) − V (x)

≤ −p(k + 1)V (x) + p(k + 1)[V (x) − α3(|x |)] = −p(k + 1)α3(|x |)

everywhere, so Fp again satisfies our PE assumptions.
A general class of hybrid systems covered by our strictification results is as follows. Assume the continuous time

system (2) admits q ∈ Pcts, γ ∈ K∞, V ∈ C1, and α1, α2 ∈ K∞ satisfying DV (x, t) ≤ −q(t)γ (V (x, t)) and
α1(|x |) ≤ V (x, t) ≤ α2(|x |) for all x ∈ Rn and t ≥ 0 (i.e., (2) admits a nonstrict Lyapunov function in the sense
of [13]).1Given subsets C, D ⊆ Rn and p ∈ Pdis taking all its values in {0, 1}, we determine conditions on F ∈ USB
guaranteeing that we can construct a Lyapunov function for

Hp :=

{
ẋ = G(x, t), x ∈ C
xk+1 = Fp(xk, k), xk ∈ D,

(38)

where Fp is as defined above. (The construction we are about to give also works if instead of assuming p(k) ∈ {0, 1}

for all k ∈ Z≥0, we assume (i) x 7→ V (x, t) is convex for each t ∈ [0, ∞) and (ii) p(k) ∈ [0, 1] for all k ∈ Z≥0.
This situation arises if ẋ = G(x, t) := A(t)x is GAS and A(t) is continuous and bounded since then we can take
V (x, t) := x> P(t)x for a suitable bounded everywhere positive definite matrix P(t) [10, Section 4.6].) To this end,
first notice that by reducing γ ∈ K∞ as necessary, we can assume γ ∈ C1 and γ (s) ≤ α1(α

−1
2 (s))/2 for all s ≥ 0.

Let F satisfy |F(x, k)| ≤ α−1
2 (α1(|x |)/2) for all x ∈ D and k ∈ Z≥0. (This reduces to a linear growth condition when

1 A concrete example where this occurs and where it is easy to find V is where q ∈ Pcts (e.g. q(t) = sin2(t)) and ẋ = h(x, t) is GAS
(e.g. ẋ = −x) and we take the dynamic G(x, t) = q(t)h(x, t) and a Lyapunov function V (x, t) for ẋ = h(x, t).
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V (x, t) = x> P(t)x and P has bounded positive eigenvalues.) By separately considering the cases p(k + 1) = 0 and
p(k + 1) = 1, it follows that

V (Fp(x, k), t) − V (x, t) ≤ p(k + 1)α2(|F(x, k)|) − p(k + 1)α1(|x |)

≤ −
1
2

p(k + 1)α1(|x |) ≤ −p(k + 1)γ (α2(|x |)) ≤ −p(k + 1)γ (V (x, t))

for all x ∈ D, t ≥ 0, and k ∈ Z≥0. A slight variant of the proof of Theorem 11 therefore provides an explicit globally
smooth strict Lyapunov function for Hp having the form

V ](x, t, k) := 2V (x, t) +
1
τ

[∫ t

t−τ

∫ t

s
q(r) dr ds

]
γ (V (x, t)) +

[
1

4(l + 1)

k∑
s=k−l

k∑
j=s

p( j)

]
γ (V (x, t))

for l and τ as in the requirements p ∈ Pdis and q ∈ Pcts so Hp is GAS, as claimed.

7. Conclusions

We provided new methods for constructing closed form strict Lyapunov functions for hybrid systems that admit
appropriate nonstrict Lyapunov functions. Our results cover cases where the given nonstrict Lyapunov functions
satisfy a decay condition involving persistency of excitation parameters or hybrid versions of the conditions of
Matrosov’s Theorem. Due to the ubiquity of Lyapunov functions in engineering applications, we expect that our
results will be useful in a wide range of settings in which explicit Lyapunov functions are needed such as Lyapunov-
based controller design and robustness analysis. We conjecture that our results can be extended to hybrid control
systems with outputs. This would extend [25,26] and the input-to-output stability Lyapunov function constructions
from [12] to hybrid systems and also provide more explicit constructions that would be suited for applications.
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Appendix

Our proof of Theorem 14 was based on a continuous time version of Theorem 10. We next give a precise statement
and proof of this continuous time result, which is applied in the proof of Theorem 14 to (x, t) 7→ Vi (x, t, k) for each
k and i = 1, 2. We assume the following version of the Matrosov conditions:

Assumption A.1. There exist V1 : Rn
× [0, ∞) → [0, ∞) of class UPPD and V2 : Rn

× [0, ∞) → R of class USB
that are C1, φ2 ∈ K∞, nonnegative functions N1, N2 ∈ USB, a function χ : Rn

× [0, ∞) × [0, ∞) → R, a positive
increasing function φ1, W ∈ PD, and q ∈ Pcts such that

DV1(x, t) ≤ −N1(x, t), DV2(x, t) ≤ −N2(x, t) + χ(x, N1(x, t), t),

|χ(x, N1(x, t), t)| ≤ φ1(|x |)φ2(N1(x, t)), and N1(x, t) + N2(x, t) ≥ q(t)W (x)

hold for all x ∈ Rn and t ∈ [0, ∞).

Notice that V2 can take both positive and negative values. We show:

Theorem A.2. If (2) satisfies Assumption A.1, then one can construct an explicit strict Lyapunov function for (2). In
particular, (2) is GAS.

To prove this theorem, we indicate the changes needed in the proof of Theorem 10. We define V3 and λ as in
Section 5.1.2 which therefore satisfy

DV3(x, t) ≤ −q(t)W (x) + φ1(|x |)φ2(N1(x, t)) ≤ −q(t)λ(V1(x, t)) + φ1(|x |)φ2(N1(x, t))
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everywhere. We also define k1, Λ1, and V4 := k1(V1)V3 as before and as before also determine positive increasing
functions Γ and Λ2 such that

DV4(x, t) ≤ [−DV1(x, t)]Γ (V1(x, t)) − q(t)Λ1(V1(x, t)) + Λ2(V1(x, t))φ2(N1(x, t)). (A.1)

Choosing k2 ∈ K∞ such that k′

2 ≥ Γ everywhere gives D(k2 ◦ V1) = k′

2(V1)DV1 ≤ Γ (V1)DV1, since DV1 ≤ 0
everywhere. Enlarging k2 ∈ K∞ as necessary, it follows that V5 := V4 + k2(V1) ∈ UPPD satisfies

DV5(x, t) ≤ −q(t)Λ1(V1(x, t)) + Λ2(V1(x, t))φ2(N1(x, t)). (A.2)

Applying the continuous time strictification method of [13] and enlarging Λ2 and reducing Λ1 as necessary without
relabeling provides γ ∈ K∞ and τ > 0 such that

V6(x, t) := V5(x, t) +

[∫ t

t−τ

∫ t

s
q(r) dr ds

]
γ (V5(x, t)) (A.3)

satisfies DV6(x, t) ≤ −Λ1(V1(x, t)) + Λ2(V1(x, t))φ2(N1(x, t)). This uses the global boundedness of the double
integral in (A.3) from Lemma 4. Arguing as in the proof of Theorem 10 gives k3 ∈ PD ∩ C1 such that

k3(r) ≤ φ−1
2

(
Λ1(r)

1 + Λ2(r)

)
1

1 + Λ2(r)
, hence φ2 (k3(V1)Λ2(V1))Λ2(V1) ≤ Λ1(V1)

everywhere. Choose k4 ∈ K∞ ∩ C1 such that k′

4(s) ≥ |k′

3(s)|(α6 ◦ α−1
1 )(s) everywhere, where α1 is as in the UPPD

requirement on V1, and α6(|x |) ≥ V6(x, t) for all x ∈ Rn and t ≥ 0. Then k′

4(V1) ≥ |k′

3(V1)|V6 everywhere, so
V7 := k3(V1)V6 + k4(V1) ∈ UPPD everywhere satisfies

DV7 ≤ −k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2(N1) − V6|k
′

3(V1)|DV1 + k′

4(V1)DV1

≤ −k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2(N1).

The rest of the argument is similar to the corresponding part of the proof of Theorem 10 with ∆k replaced by D and
δ

8(l+1)
replaced by 1.
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